1
|
Expression characteristics of polymeric immunoglobulin receptor in Bactrian camel (Camelus bactrianus) lungs. PLoS One 2022; 17:e0264815. [PMID: 35245335 PMCID: PMC8896721 DOI: 10.1371/journal.pone.0264815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR), the transmembrane transporter of polymeric immunoglobulin A and M, has multiple immune functions. To explore the characteristics of pIgR expression in Bactrian camel lungs, twelve healthy adult (2-7 years old) Bactrian camels were systematically studied. The results showed that pIgR was mainly expressed in the cytoplasm and membrane of ciliated cells, as well as in the cytoplasm and membrane of basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells in Bactrian camel lungs. Specially, as the bronchial branches extended, the pIgR expression level in ciliated cells significantly declined (p<0.05), and the corresponding bronchial luminal areas obviously decreased (p<0.05). However, pIgR was not expressed in goblet cells, endocrine cells, alveolar type 1 cells and mucous cells of bronchial glands. The results demonstrated that ciliated cells continuously distributed throughout the whole bronchial tree mucosa were the major expression sites of pIgR, and pIgR was also expressed in basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells, which would facilitate secretory immunoglobulin A (SIgA) transmembrane transport by pIgR and form an intact protective barrier. Moreover, the pIgR expression level in ciliated cells was positively correlated with the bronchial luminal areas; but negatively correlated with the cleanliness of airflow through the bronchial cross-sections, showing that the pIgR expression level in the bronchial epithelium was inhomogeneous. Our study provided a foundation for further exploring the regulatory functions of immunoglobulins (i.e., SIgA) after transport across the membrane by pIgR in Bactrian camel lungs.
Collapse
|
2
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
3
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
4
|
Isolation and Identification of Porcine Deltacoronavirus and Alteration of Immunoglobulin Transport Receptors in the Intestinal Mucosa of PDCoV-Infected Piglets. Viruses 2020; 12:v12010079. [PMID: 31936476 PMCID: PMC7019308 DOI: 10.3390/v12010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a porcine enteropathogenic coronavirus that causes watery diarrhea, vomiting, and frequently death in piglets, causing serious economic losses to the pig industry. The strain CHN-JS-2017 was isolated and identified by cytopathology, immunofluorescence assays, transmission electron microscopy, and sequence analysis. A nucleotide sequence alignment showed that the whole genome of CHN-JS-2017 is 97.4%-99.6% identical to other PDCoV strains. The pathogenicity of the CHN-JS-2017 strain was investigated in orally inoculated five-day-old piglets; the piglets developed acute, watery diarrhea, but all recovered and survived. CHN-JS-2017 infection-induced microscopic lesions were observed, and viral antigens were detected mainly by immunohistochemical staining in the small intestine. The neonatal Fc receptor (FcRn) and polymeric immunoglobulin receptor (pIgR) are crucial immunoglobulin (Ig) receptors for the transcytosis ofimmunoglobulin G (IgG), IgA, or IgM. Importantly, CHN-JS-2017 infected five-day-old piglets could significantly down-regulate the expression of FcRn, pIgR, and nuclear factor-kappa B (NF-κB)in the intestinal mucosa. Note that the level of FcRn mRNA in the intestinal mucosa of normal piglets is positively correlated with pIgR and NF-κB. At the same time, the expressions of FcRn, pIgR, and NF-κB mRNA are also positively correlated in infected piglets. These results may help explain the immunological and pathological changes associated with porcine deltacorononirus infection.
Collapse
|
5
|
Wang W, Zhou X, Cui F, Shi C, Wang Y, Men Y, Zhao W, Zhao J. Proteomic Analysis on Exosomes Derived from Patients' Sera Infected with Echinococcus granulosus. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:489-497. [PMID: 31715689 PMCID: PMC6851256 DOI: 10.3347/kjp.2019.57.5.489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
Abstract
Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.
Collapse
Affiliation(s)
- Wen Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaojing Zhou
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fang Cui
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Chunli Shi
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yulan Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yanfei Men
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.,The Medical Scientific Institute of Ningxia, Yinchuan 750004, China.,Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaqing Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.,The Medical Scientific Institute of Ningxia, Yinchuan 750004, China.,Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
6
|
Qian S, Zhang W, Jia X, Sun Z, Zhang Y, Xiao Y, Li Z. Isolation and Identification of Porcine Epidemic Diarrhea Virus and Its Effect on Host Natural Immune Response. Front Microbiol 2019; 10:2272. [PMID: 31636617 PMCID: PMC6788300 DOI: 10.3389/fmicb.2019.02272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/18/2019] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly infectious intestinal disease caused by porcine epidemic diarrhea virus (PEDV). A PEDV strain was isolated from the piglet intestinal tract in Vero cells in Jiangsu Province, designated as the JS-A strain. PEDV was identified as the isolated virus by cytopathology, immunofluorescence assay, western blotting, transmission electron microscopy, and sequence analysis. The full-length genome of the JS-A isolate and the S gene were systematically analyzed, indicating that PEDV JS-A belongs to the G2a subtype, which is closely related to the prevalent PEDV in many countries and different from many current vaccines. Animal regression tests showed that piglets that are orally infected with the virus continue to develop diarrhea with yellowish and unpleasant odors. Further, piglets showed reduced food consumption and weight loss in the challenged group, while there were no abnormalities in the control group. In addition, Toll-like receptors (TLRs), RIG-I, and the downstream medium gene in the intestinal mucosa of newborn pigs infected with PEDV JS-A strain were studied. The neonatal Fc receptor (FcRn) was the only IgG transport receptor and protected IgG from degradation. Therefore, PEDV JS-A infection might inhibit FcRn expression by down-regulating TLRs and downstream signaling molecules. Taken together, isolation of the JS-A variant contributes to evolutionary analysis of the diarrhea virus. Further, the experimental infection model lays a foundation for further research related to vaccine development and the antiviral natural immune response of infected piglets, which helps us to better understand PEDV pathogenesis and immune mechanism.
Collapse
Affiliation(s)
- Shaoju Qian
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
7
|
Huang L, Sun C, Peng R, Liu Z. A study on the mechanism of agonists in regulating transcriptional level of pIgR in salivary gland epithelial cells. Exp Ther Med 2018; 16:4367-4372. [PMID: 30542385 PMCID: PMC6257701 DOI: 10.3892/etm.2018.6792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to explore the mechanism of agonists in regulating transcriptional level of polymeric immunoglobulin receptor (pIgR) in salivary gland epithelial cells, thus revealing the defense effect of salivary immune on bacteria in the oral cavity. Sixty patients with oral bacterial infection and 70 patients suffering from oral diseases without bacterial infection were selected randomly from patients in Renmin Hospital of Wuhan University from April 2015 to April 2017. Ribonucleic acid (RNA) was extracted from salivary gland epithelial cells of all patients. Fluorescent quantitative polymerase chain reaction (FQ-PCR) and western blotting methods were adopted to detect and compare the transcriptional level of pIgR. The salivary gland epithelial cells of the 60 patients with oral bacterial infection were isolated and extracted, and they were divided into two groups (observation group and control group) randomly. Agonists were added to the observation group for acting for 24 h. FQ-PCR and immunofluorescence (IF) were adopted to detect and compare the transcriptional level of pIgR after acting with agonists. The toxicity of agonists on the cells was detected with Cell Counting kit-8 (CCK-8). The isolated salivary gland epithelial cells conformed to the morphology of epithelial cells, and adhered to the wall for growing. The transcriptional level of pIgR in the bacterial infection group was lower than that in the non-bacterial infection group (p<0.05). The transcriptional level of pIgR in the observation group was higher than that in the control group (p<0.05) after acting with agonists. Agonists can promote the rise of transcriptional level of pIgR in salivary gland epithelial cells, and the increase in pIgR is closely related to the cure of oral bacterial infection. Therefore, agonists can improve the oral immune function by regulating the transcription of pIgR.
Collapse
Affiliation(s)
- Li Huang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chuankong Sun
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ruobing Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiming Liu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Cui YF, Wang FJ, Yu L, Ye HH, Yang GB. Metagenomic comparison of the rectal microbiota between rhesus macaques ( Macaca mulatta) and cynomolgus macaques ( Macaca fascicularis). Zool Res 2018; 40:89-93. [PMID: 30127329 PMCID: PMC6378564 DOI: 10.24272/j.issn.2095-8137.2018.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) are frequently used in establishing animal models for human diseases. To determine the differences in gut microbiota between these species, rectal swabs from 20 rhesus macaques and 21 cynomolgus macaques were collected, and the microbial composition was examined by deep sequencing of the 16S rRNA gene. We found that the rectal microbiota of cynomolgus macaques exhibited significantly higher alpha diversity than that of rhesus macaques, although the observed number of operational taxonomic units (OTUs) was almost the same. The dominant taxa at both the phylum and genus levels were similar between the two species, although the relative abundances of these dominant taxa were significantly different between them. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed significant differences in the functional components between the microbiota of the two species, in particular the lipopolysaccharide (LPS) synthesis proteins. The above data indicated significant differences in microbial composition and function between these two closely related macaque species, which should be taken into consideration in the future selection of these animals for disease models.
Collapse
Affiliation(s)
- Yan-Fang Cui
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, China
| | - Feng-Jie Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, China
| | - Lei Yu
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, China
| | - Hua-Hu Ye
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, China; E-mail:
| |
Collapse
|
9
|
Turula H, Wobus CE. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses 2018; 10:E237. [PMID: 29751532 PMCID: PMC5977230 DOI: 10.3390/v10050237] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.
Collapse
Affiliation(s)
- Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|