1
|
Diaby M, Bangoura ST, Hounmenou CG, Kadio KJJO, Touré AB, Bereté K, Bongono EF, Sidibé S, Delamou A, Camara A, Keita AK, Touré A. Exploratory analysis of poultry workers' knowledge and practices Regarding highly pathogenic avian influenza in Guinea. PLoS One 2025; 20:e0320890. [PMID: 40146750 PMCID: PMC11949357 DOI: 10.1371/journal.pone.0320890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND In 2022-2023, Guinea experienced a major avian influenza epizootic, leading to significant economic losses and increasing the risk of transmission to humans. Raising awareness and promoting protective behaviour among the general population, particularly high-risk groups, could help strengthen prevention and control measures for this zoonosis. This study aimed to assess knowledge and practices related to avian influenza among poultry workers in Guinea. METHODS A cross-sectional study was conducted between November and December 2023 on poultry farms in Coyah and Forecariah, Guinea prefectures. A survey was administered to all poultry farms in these two prefectures. Data were collected using a questionnaire, which included the following variables: socio-demographic and professional profile of respondents, avian influenza information, sources of information, and a series of questions to assess their knowledge and practices. Knowledge and practice scores were then calculated. The cumulative local effects method was used to assess the influence and contribution of each co-variate to changes in the probability of knowledge and practice levels among poultry farm staff. RESULTS A total of 326 poultry workers participated in the survey, including poulterers (62.3%), managers (17.5%), and poultry technicians (13.8%). More than half of these workers (54.9%) had heard of influenza avian. Their primary sources of information were health workers (27.9%), friends and fellow farmers (23.3%) and employees (22.7%). Overall, the knowledge of avian influenza was relatively low among poultry workers (42.9%), and the majority (68.4%) demonstrated poor practices on poultry farms. Analysis using the ALE model reveals that age, education and type of occupation are significantly associated with knowledge. At the same time, the number of farms managed, the number of hours worked, and gender are associated considerably with practices among these workers. CONCLUSION The study revealed a low level of knowledge and poor practices among poultry farm workers despite an avian flu epizootic. These findings suggest the need for a targeted strategy to prevent the risk of virus transmission to humans, including awareness-raising, training, and providing personal protective equipment.
Collapse
Affiliation(s)
- Maladho Diaby
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Pharmaceutical and Biological Sciences, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Salifou Talassone Bangoura
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Pharmaceutical and Biological Sciences, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Castro Gbêmêmali Hounmenou
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Kadio Jean-Jacques Olivier Kadio
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Pharmaceutical and Biological Sciences, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Aly Badara Touré
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- African Centre of Excellence in the Prevention and Control of Communicable Diseases (CEA-PC MT), Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Kouramoudou Bereté
- Department of the Central Veterinary Laboratory of Guinea (LCVD), Ministry of Agriculture and Livestock, Conakry, Republic of Guinea
| | - Emile Faya Bongono
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Sidikiba Sidibé
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- African Centre of Excellence in the Prevention and Control of Communicable Diseases (CEA-PC MT), Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Alexendre Delamou
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- African Centre of Excellence in the Prevention and Control of Communicable Diseases (CEA-PC MT), Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Alioune Camara
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| | - Alpha-Kabinet Keita
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
- TransVIHMI, IRD/INSERM/Monpellier University, Montpellier, France
| | - Abdoulaye Touré
- Guinea Infectious Diseases Research and Training Center (CERFIG), Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Pharmaceutical and Biological Sciences, Gamal Abdel Nasser University, Conakry, Republic of Guinea
- Department of Public Health, Gamal Abdel Nasser University, Conakry, Republic of Guinea
| |
Collapse
|
2
|
Zeng J, Du F, Xiao L, Sun H, Lu L, Lei W, Zheng J, Wang L, Shu S, Li Y, Zhang Q, Tang K, Sun Q, Zhang C, Long H, Qiu Z, Zhai K, Li Z, Zhang G, Sun Y, Wang D, Zhang Z, Lycett SJ, Gao GF, Shu Y, Liu J, Du X, Pu J. Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. J Virol 2024; 98:e0140123. [PMID: 38358287 PMCID: PMC10949427 DOI: 10.1128/jvi.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.
Collapse
Affiliation(s)
- Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fanshu Du
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linna Xiao
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Lu
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jialu Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ke Zhai
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhichao Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Geli Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhengwang Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Ovuru KF, Izah SC, Ogidi OI, Imarhiagbe O, Ogwu MC. Slaughterhouse facilities in developing nations: sanitation and hygiene practices, microbial contaminants and sustainable management system. Food Sci Biotechnol 2024; 33:519-537. [PMID: 38274182 PMCID: PMC10805746 DOI: 10.1007/s10068-023-01406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 01/27/2024] Open
Abstract
Poor personal and environmental hygiene and sanitary conditions of abattoirs in developing countries in sub-Saharan Africa have been implicated in the occurrence and spread of foodborne diseases. This focused review aims to evaluate the sanitation and hygiene practices of slaughterhouses in selected sub-Saharan African countries as well as the microbial (bacterial) contaminants associated with these slaughterhouses. Pathogenic microorganisms of public health importance have been associated with these slaughterhouses due to poor hygiene conditions, non-formal occupational health and safety training, and poor knowledge of workers as well as substandard infrastructures and crude tools in these facilities. Put together, these conditions enable the growth, survival, transmission, and proliferation of foodborne pathogens such as bacteria, parasites, and viruses. To address this issue, there is a need to assess the poor environmental and personal hygiene of butchers and other abattoir workers, the inaccessibility of potable water, waste management practices, and the lack of appropriate infrastructure and technology, which have been identified as some of the enabling factors for bacteria, fungi, and viruses. Sustainable strategies should include instituting regulations that are backed by law.
Collapse
Affiliation(s)
- Kurotimipa Frank Ovuru
- Neglected Tropical Diseases Programme, Directorate of Public Health, Ministry of Health, Yenagoa, Bayelsa State Nigeria
| | - Sylvester Chibueze Izah
- Department of Microbiology, Faculty of Science, Bayelsa Medical University, Yenagoa, Bayelsa State Nigeria
| | - Odangowei Inetiminebi Ogidi
- Department of Biochemistry, School of Applied Sciences, Federal Polytechnic Ekowe, Ekowe, Bayelsa State Nigeria
| | - Odoligie Imarhiagbe
- London School of Science and Technology, 50 Rocky Lane, Aston, Birmingham, B6 5RQ UK
| | - Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Appalachian State University, 212 Living Learning Center, 305 Bodenheimer Drive, Boone, NC 28608 USA
| |
Collapse
|
4
|
Meseko C, Ameji NO, Kumar B, Culhane M. Rational approach to vaccination against highly pathogenic avian influenza in Nigeria: a scientific perspective and global best practice. Arch Virol 2023; 168:263. [PMID: 37775596 DOI: 10.1007/s00705-023-05888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/01/2023]
Abstract
Since 2006, highly pathogenic avian influenza (HPAI) subtypes H5Nx have adversely affected poultry production in Nigeria. Successive waves of infections in the last two decades have raised concerns about the ability to contain infections by biosecurity alone, and evidence of recurrent outbreaks suggests a need for adoption of additional control measures such as vaccination. Although vaccination can be used to control virus spread and reduce the morbidity and mortality caused by HPAI, no country using vaccination alone as a control measure against HPAI has been able to eliminate or prevent re-infection. To inform policy in Nigeria, we examined the intricacies of HPAI vaccination, government regulations, and scientific data regarding what kind of vaccines can be used based on subtype, whether inactivated or live attenuated should be used, when to deliver vaccine either proactively or reactively, where to apply vaccination either in disease control zones, regionally, or nationally, and how to vaccinate the targeted poultry population for optimum success. A resurgence of HPAI outbreaks in Nigeria since 2018, after the country was declared free of the epidemic following the first outbreak in 2006, has led to enhanced intervention. Controlled vaccination entails monitoring the application of vaccines, the capacity to differentiate vaccinated from infected (DIVA) flocks, and assessing seroconversion or other immune correlates of protection. Concurrent surveillance for circulating avian influenza virus (AIV) and analyzing AIV isolates obtained via surveillance efforts for genetic and/or antigenic mismatch with vaccine strains are also important. Countries with high investment in commercial poultry farms like Nigeria may identify and zone territories where vaccines can be applied. This may include ring vaccination to control HPAI in areas or production systems at risk of infection. Before adoption of vaccination as an additional control measure on commercial poultry farms, two outcomes must be considered. First, vaccination is an admission of endemicity. Secondly, vaccinated flocks may no longer be made accessible to international poultry markets in accordance with WOAH trade regulations. Vaccination must therefore be approached with utmost caution and be guided by science-based evidence throughout the implementation strategy after thorough risk assessment. Influenza vaccine research, development, and controlled application in addition to biosecurity may be a precautionary measure in the evolving HPAI scenario in Nigeria.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza and Transboundary Diseases, National Veterinary Research Institute, vom plateau, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria.
| | - Negedu Onogu Ameji
- Department of Veterinary Medicine, Surgery and Radiology, University of Jos, Jos, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minnesota, USA
| |
Collapse
|
5
|
Mahmoud SH, Khalil AA, Abo Shama NM, El Sayed MF, Soliman RA, Hagag NM, Yehia N, Naguib MM, Arafa AS, Ali MA, El-Safty MM, Mostafa A. Immunogenicity and Cross-Protective Efficacy Induced by an Inactivated Recombinant Avian Influenza A/H5N1 (Clade 2.3.4.4b) Vaccine against Co-Circulating Influenza A/H5Nx Viruses. Vaccines (Basel) 2023; 11:1397. [PMID: 37766075 PMCID: PMC10538193 DOI: 10.3390/vaccines11091397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Controlling avian influenza viruses (AIVs) is mainly based on culling of the infected bird flocks or via the implementation of inactivated vaccines in countries where AIVs are considered to be endemic. Over the last decade, several avian influenza virus subtypes, including highly pathogenic avian influenza (HPAI) H5N1 clade 2.2.1.2, H5N8 clade 2.3.4.4b and the recent H5N1 clade 2.3.4.4b, have been reported among poultry populations in Egypt. This demanded the utilization of a nationwide routine vaccination program in the poultry sector. Antigenic differences between available avian influenza vaccines and the currently circulating H5Nx strains were reported, calling for an updated vaccine for homogenous strains. In this study, three H5Nx vaccines were generated by utilizing the reverse genetic system: rgH5N1_2.3.4.4, rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2. Further, the immunogenicity and the cross-reactivity of the generated inactivated vaccines were assessed in the chicken model against a panel of homologous and heterologous H5Nx HPAIVs. Interestingly, the rgH5N1_2.3.4.4 induced high immunogenicity in specific-pathogen-free (SPF) chicken and could efficiently protect immunized chickens against challenge infection with HPAIV H5N1_2.3.4.4, H5N8_2.3.4.4 and H5N1_2.2.1.2. In parallel, the rgH5N1_2.2.1.2 could partially protect SPF chickens against infection with HPAIV H5N1_2.3.4.4 and H5N8_2.3.4.4. Conversely, the raised antibodies to rgH5N1_2.3.4.4 could provide full protection against HPAIV H5N1_2.3.4.4 and HPAIV H5N8_2.3.4.4, and partial protection (60%) against HPAIV H5N1_2.2.1.2. Compared to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2 vaccines, chickens vaccinated with rgH5N1_2.3.4.4 showed lower viral shedding following challenge infection with the predefined HPAIVs. These data emphasize the superior immunogenicity and cross-protective efficacy of the rgH5N1_2.3.4.4 in comparison to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2.
Collapse
Affiliation(s)
- Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
| | - Ahmed A. Khalil
- Veterinary Serum and Vaccine Research Institute, Agricultural Research Center (ARC), Abbasia, Cairo 11381, Egypt;
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
| | - Marwa F. El Sayed
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center (ARC), Abbasia, Cairo 11517, Egypt (M.M.E.-S.)
| | - Reem A. Soliman
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center (ARC), Abbasia, Cairo 11517, Egypt (M.M.E.-S.)
| | - Naglaa M. Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud M. Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Abdel-Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
| | - Mounir M. El-Safty
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center (ARC), Abbasia, Cairo 11517, Egypt (M.M.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
6
|
Kabantiyok D, Ninyio N, Shittu I, Meseko C, Emeto TI, Adegboye OA. Human Respiratory Infections in Nigeria: Influenza and the Emergence of SARS-CoV-2 Pandemic. Vaccines (Basel) 2022; 10:1551. [PMID: 36146628 PMCID: PMC9506385 DOI: 10.3390/vaccines10091551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing outbreak of zoonotic diseases presents challenging times for nations and calls for a renewed effort to disrupt the chain of events that precede it. Nigeria's response to the 2006 bird flu provided a platform for outbreak response, yet it was not its first experience with Influenza. This study describes the impact of SARS-CoV-2 on Influenza surveillance and, conversely, while the 1918 Influenza pandemic remains the most devastating (500,000 deaths in 18 million population) in Nigeria, the emergence of SARS CoV-2 presented renewed opportunities for the development of vaccines with novel technology, co-infection studies outcome, and challenges globally. Although the public health Intervention and strategies left some positive outcomes for other viruses, Nigeria and Africa's preparation against the next pandemic may involve prioritizing a combination of technology, socioeconomic growth, and active surveillance in the spirit of One Health.
Collapse
Affiliation(s)
- Dennis Kabantiyok
- Laboratory Diagnostic Services Division, National Veterinary Research Institute, PMB 01, Vom 930001, Nigeria
| | - Nathaniel Ninyio
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Ismaila Shittu
- Department of Avian Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, PMB 01, Vom 930010, Nigeria
| | - Clement Meseko
- Department of Avian Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, PMB 01, Vom 930010, Nigeria
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, Department, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne, Neglected Tropical Diseases Department, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Oyelola A. Adegboye
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, Department, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne, Neglected Tropical Diseases Department, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Safety, Immunogenicity, and Protective Efficacy of an H5N1 Chimeric Cold-Adapted Attenuated Virus Vaccine in a Mouse Model. Viruses 2021; 13:v13122420. [PMID: 34960689 PMCID: PMC8709164 DOI: 10.3390/v13122420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
H5N1 influenza virus is a threat to public health worldwide. The virus can cause severe morbidity and mortality in humans. We constructed an H5N1 influenza candidate virus vaccine from the A/chicken/Guizhou/1153/2016 strain that was recommended by the World Health Organization. In this study, we designed an H5N1 chimeric influenza A/B vaccine based on a cold-adapted (ca) influenza B virus B/Vienna/1/99 backbone. We modified the ectodomain of H5N1 hemagglutinin (HA) protein, while retaining the packaging signals of influenza B virus, and then rescued a chimeric cold-adapted H5N1 candidate influenza vaccine through a reverse genetic system. The chimeric H5N1 vaccine replicated well in eggs and the Madin-Darby Canine Kidney cells. It maintained a temperature-sensitive and cold-adapted phenotype. The H5N1 vaccine was attenuated in mice. Hemagglutination inhibition (HAI) antibodies, micro-neutralizing (MN) antibodies, and IgG antibodies were induced in immunized mice, and the mucosal IgA antibody responses were detected in their lung lavage fluids. The IFN-γ-secretion and IL-4-secretion by the mouse splenocytes were induced after stimulation with the specific H5N1 HA protein. The chimeric H5N1 candidate vaccine protected mice against lethal challenge with a wild-type highly pathogenic avian H5N1 influenza virus. The chimeric H5 candidate vaccine is thus a potentially safe, attenuated, and reassortment-incompetent vaccine with circulating A viruses.
Collapse
|
8
|
Zhang L, Zhang B, Wang L, Lou M, Shen Y. Huanglian-Houpo drug combination ameliorates H1N1-induced mouse pneumonia via cytokines, antioxidant factors and TLR/MyD88/NF-κB signaling pathways. Exp Ther Med 2021; 21:428. [PMID: 33747167 PMCID: PMC7967853 DOI: 10.3892/etm.2021.9845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Huanglian-Houpo drug combination (HHDC) is a classical traditional Chinese medicine that has been effectively used to treat seasonal colds and flu. However, no systematic studies of the effects of HHDC on H1N1 influenza infection and the associated mechanisms have been reported. The aim of the present study was to determine the anti-H1N1 influenza effects of HHDC and explore the underlying mechanisms. A mouse model of H1N1-induced pneumonia was established and the mice were treated with HHDC (4, 8 and 16 g/kg) for 5 days after viral challenge. The antiviral effects of HHDC and the underlying mechanisms in the mice were investigated and evaluated with respect to inflammation, oxidative stress and Toll-like receptor (TLR)/myeloid differentiation factor (MyD88)/nuclear factor (NF)-κB signaling pathways. HHDC provided significant protection against weight loss and reduced the H1N1 viral load in the lungs. In addition, HHDC significantly decreased the lung index and increased the spleen and thymus indices of the H1N1-infected mice. HHDC also significantly ameliorated the histopathological changes of pneumonia, decreased serum levels of the cytokines interleukin (IL)-6, tumor necrosis factor-α and interferon-γ, and increased the serum level of IL-2. Moreover, HHDC significantly increased the levels of the antioxidant factors superoxide dismutase and glutathione, and reduced the serum level of nitric oxide. Furthermore, the mRNA and protein expression levels of TLR3, TLR7, MyD88, NF-κB p65 and tumor necrosis factor receptor-associated factor 3 in the lung tissues were significantly decreased by HHDC. These findings suggest that HHDC directly inhibited H1N1 infection in vivo and exerted a therapeutic effect on influenza-induced pneumonia in mice by modulating cytokines, antioxidant factors and TLR/MyD88/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518116, P.R. China
| | - Bei Zhang
- Department of Radiology, Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518116, P.R. China
| | - Linjing Wang
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, P.R. China
| | - Mingwu Lou
- Department of Radiology, Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518116, P.R. China
| | - Yunxia Shen
- Department of Radiology, Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
9
|
Alders RG, Ali SN, Ameri AA, Bagnol B, Cooper TL, Gozali A, Hidayat MM, Rukambile E, Wong JT, Catley A. Participatory Epidemiology: Principles, Practice, Utility, and Lessons Learnt. Front Vet Sci 2020; 7:532763. [PMID: 33330678 PMCID: PMC7672004 DOI: 10.3389/fvets.2020.532763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
Participatory epidemiology (PE) evolved as a branch of veterinary epidemiology and has been largely employed for the control and early warning of infectious diseases within resource-limited settings. It was originally based on combining practitioner communication skills with participatory methods to facilitate the involvement of animal caretakers and owners (embracing their knowledge, experience, and motivations) in the identification and assessment of animal disease problems, including in the design, implementation, monitoring and evaluation of disease control programs, policies, and strategies. With the importance of understanding social perceptions and drivers receiving increasing recognition by epidemiologists, PE tools are being adapted for an increasingly wide range of settings and endeavors. More recently, PE tools have been adapted for use in food and nutrition security programs, One Health activities, wildlife disease surveillance and as part of mixed-methods research across a range of socio-economic settings. This review describes the evolution of PE (in relation to veterinary epidemiology and briefly in relation to public health epidemiology), the underpinning philosophy and principles essential to its effective application and the importance of gender-sensitive approaches and data triangulation, including conventional confirmatory testing. The article also provides illustrative examples highlighting the diversity of approaches and applications of PE, hallmarks of successful PE initiatives and the lessons we can learn when these are missing. Finally, we look forward, describing the particular utility of PE for dealing with emerging infectious diseases, gaining attention of field-level cross-sector officials who can escalate concerns to a higher level and for continuing to raise the voices of those less-heard (such as women, minority groups, and remote communities with limited exposure to formal education) in defining the problems and planning activities that will likely impact directly on their well-being and livelihoods.
Collapse
Affiliation(s)
- Robyn G Alders
- Kyeema Foundation, Brisbane, QLD, Australia.,Kyeema Foundation, Maputo, Mozambique.,Center for Universal Health, Chatham House, London, United Kingdom.,Development Policy Center, Australian National University, Canberra, NSW, Australia.,Food and Agriculture Organization of the United Nations Animal Health, Jakarta, Indonesia
| | - Syed Noman Ali
- Livestock Department, Government of Sindh, Karachi, Pakistan
| | | | - Brigitte Bagnol
- Kyeema Foundation, Brisbane, QLD, Australia.,Kyeema Foundation, Maputo, Mozambique.,Department of Anthropology, University of the Witwatersrand, Johannesburg, South Africa
| | - Tarni L Cooper
- Kyeema Foundation, Brisbane, QLD, Australia.,School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia.,International Livestock Research Institute, Hanoi, Vietnam.,Centre for Communication and Social Change, School of Communication and Arts, The University of Queensland, Brisbane, QLD, Australia
| | - Ahmad Gozali
- Food and Agriculture Organization of the United Nations Animal Health, Jakarta, Indonesia
| | - M M Hidayat
- Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Jakarta, Indonesia
| | - Elpidius Rukambile
- Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.,Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Johanna T Wong
- Center for Universal Health, Chatham House, London, United Kingdom.,Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Andrew Catley
- Friedman School of Nutrition Science and Policy at Tufts University, Feinstein International Center, Boston, MA, United States
| |
Collapse
|
10
|
Abedinia A, Mohammadi Nafchi A, Sharifi M, Ghalambor P, Oladzadabbasabadi N, Ariffin F, Huda N. Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Kalonda A, Saasa N, Nkhoma P, Kajihara M, Sawa H, Takada A, Simulundu E. Avian Influenza Viruses Detected in Birds in Sub-Saharan Africa: A Systematic Review. Viruses 2020; 12:E993. [PMID: 32906666 PMCID: PMC7552061 DOI: 10.3390/v12090993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
In the recent past, sub-Saharan Africa has not escaped the devastating effects of avian influenza virus (AIV) in poultry and wild birds. This systematic review describes the prevalence, spatiotemporal distribution, and virus subtypes detected in domestic and wild birds for the past two decades (2000-2019). We collected data from three electronic databases, PubMed, SpringerLink electronic journals and African Journals Online, using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol. A total of 1656 articles were reviewed, from which 68 were selected. An overall prevalence of 3.0% AIV in birds was observed. The prevalence varied between regions and ranged from 1.1% to 7.1%. The Kruskal-Wallis and Wilcoxon signed-rank sum test showed no significant difference in the prevalence of AIV across regions, χ2(3) = 5.237, p = 0.1553 and seasons, T = 820, z = -1.244, p = 0.2136. Nineteen hemagglutinin/neuraminidase subtype combinations were detected during the reviewed period, with southern Africa recording more diverse AIV subtypes than other regions. The most detected subtype was H5N1, followed by H9N2, H5N2, H5N8 and H6N2. Whilst these predominant subtypes were mostly detected in domestic poultry, H1N6, H3N6, H4N6, H4N8, H9N1 and H11N9 were exclusively detected in wild birds. Meanwhile, H5N1, H5N2 and H5N8 were detected in both wild and domestic birds suggesting circulation of these subtypes among wild and domestic birds. Our findings provide critical information on the eco-epidemiology of AIVs that can be used to improve surveillance strategies for the prevention and control of avian influenza in sub-Saharan Africa.
Collapse
Affiliation(s)
- Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (A.K.); (P.N.)
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Africa Centre of Excellence for Infectious Disease of Humans and Animals, School of Veterinary Medicine, Lusaka 10101, Zambia
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (A.K.); (P.N.)
| | - Masahiro Kajihara
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo 001-0020, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Macha Research Trust, Choma 20100, Zambia
| |
Collapse
|
12
|
Uribe Soto M, Gómez Ramírez AP, Ramírez Nieto GC. INFLUENZA REQUIERE UN MANEJO BAJO LA PERSPECTIVA DE “ONE HEALTH” EN COLOMBIA. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n3.79364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
La influenza es una infección viral de importancia y distribución mundial, cuyo agente causal es el Alfainfluenzavirus o influenza virus tipo A (IAV). El cual se caracteriza por poseer un genoma de tipo ssRNA segmentado, lo cual le confiere una alta variabilidad y capacidad recombinante. Esto, sumado al amplio rango de huéspedes susceptibles y la posibilidad de transmisión entre especies, se constituye en un reto tanto para la salud humana como animal. El IAV es capaz de infectar una amplia variedad de huéspedes, incluyendo múltiples especies de aves y mamíferos, tanto domésticos como salvajes y al humano, así como a reptiles y anfibios, entre otros. Dentro de los Alphainfluenzavirus se reconocen 16 subtipos de Hemaglutinina (HA) y 9 de Neuraminidasa (NA), siendo su principal reservorio las aves silvestres acuáticas. Adicionalmente se han reconocido dos nuevos subtipos en murciélagos (H17-18 y N10-11), los cuales se han denominado Influenza-like virus. Teniendo en cuenta lo anterior y conocedores de la riqueza en biodiversidad que posee Colombia, país en el que está demostrada la circulación del virus en cerdos y en humanos y hay resultados preliminares de la presencia de Orthomyxovirus en murciélagos, es imperativo estudiar y conocer los IAV circulantes en el medio, establecer factores de riesgo y analizar el efecto que ha tenido y seguirán teniendo condiciones asociadas al cambio climático, los factores sociodemográficos y el papel de diferentes especies en la ecología de este agente viral. Todo lo anterior bajo el contexto de “una salud” en la infección por IAV.
Collapse
|
13
|
Soliman ES, Abdallah MS. Assessment of biosecurity measures in broiler's farms in the Suez Canal area - Egypt using a seasonal prevalence of Salmonellosis. Vet World 2020; 13:622-632. [PMID: 32546904 PMCID: PMC7245725 DOI: 10.14202/vetworld.2020.622-632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/28/2020] [Indexed: 01/12/2023] Open
Abstract
Background and Aim Biosecurity practices are a must in broiler farms to reduce the risk of infectious agents. This study aimed to evaluate biosecurity measures in nine broiler farms in the Suez Canal area - Egypt with measuring the seasonal prevalence of salmonellosis. Materials and Methods A cross-sectional study was conducted on randomly selected nine broiler farms of different housing systems based on the ventilation methods from March 2018 to April 2019. A total of 12,600 samples (6480 environmental, 4320 non-environmental, 1080 sera, and 720 live birds) were collected during four successive seasons. Results Highly significant increases (p<0.01) were recorded in body weight gains in opened and closed-houses during summer; in food conversion ratios in opened-houses during winter and in closed-houses during winter and fall; in performance indices in opened-houses during summer and closed-houses during winter; and in live body weights, carcasses weights, liver, spleen, and bursa's weights in opened-houses during spring and in closed-houses during fall. Highly significant increases (p<0.01) were recorded in total bacterial, Enterobacteriaceae, and Salmonella counts in opened-houses during spring and in closed-houses during summer, in Salmonella Typhi O and H, and Salmonella Paratyphi A and B sera titer in opened-houses during summer and closed-houses during fall. Biosecurity measures scored 34 out of 43 with an average salmonellosis prevalence of 6.0% in closed-house and 24 out of 43 with an average salmonellosis prevalence of 24.67% in opened-house broiler farms. Conclusion Weak biosecurity measures in broiler houses (opened and closed) were not sufficient to prevent the entrance and multiplication of Salmonella spp. Disciplines, commitment, and regulations of biosecurity need to be enforced in broiler houses to prevent the introduction and spread of diseases.
Collapse
Affiliation(s)
- Essam S Soliman
- Department of Animal Hygiene, Zoonosis, and Animal Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona S Abdallah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
14
|
Matilda AA, Juergen M, Krumkamp R, Timm H, Eva M. Molecular and serological prevalence of influenza A viruses in poultry and poultry farmers in the Ashanti region, Ghana. Infect Ecol Epidemiol 2019; 9:1698904. [PMID: 32002146 PMCID: PMC6968574 DOI: 10.1080/20008686.2019.1698904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
For an analysis of the prevalence of influenza A viruses (IAVs) circulating in chickens and their farmers in the Ashanti region, Ghana, we examined 2,400 trachea and cloaca swabs (chickens) and 102 oropharyngeal swabs (farmers) by qRT-PCR. Sera from 1,200 (chickens) and 102 (farmers) were analysed for IAV antibodies by ELISA and haemagglutination inhibition (HI). Avian influenza virus (AIV) was detected in 0.2% (n = 5) of chickens but not farmers. Virus detection was more pronounced in the cloacal (n = 4, 0.3%) than in tracheal swabs (n = 1, 0.1%). AIV antibodies were not detected in chickens. Two farmers (2.0%) tested positive to human seasonal IAV H1N1pdm09. Sixteen (15.7%) farmers tested seropositive to IAV of which 68.8% (n = 11) were due to H1N1pdm09-specific antibodies. AIV H5- or H7-specific antibodies were not detected in the farmers. Questionnaire evaluation indicated the rare usage of basic personal protective equipment by farmers when handling poultry. In light of previous outbreaks of zoonotic AIV in poultry in Ghana the open human-animal interface raises concern from a OneHealth perspective and calls for continued targeted surveillance.
Collapse
Affiliation(s)
- Ayim-Akonor Matilda
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Animal Health and Food safety, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - May Juergen
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Harder Timm
- Friedrich-Loeffler-Institut, Institute for Diagnostic Virology, Insel Riems, Germany
| | - Mertens Eva
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
15
|
Evidence of the Presence of Low Pathogenic Avian Influenza A Viruses in Wild Waterfowl in 2018 in South Africa. Pathogens 2019; 8:pathogens8040163. [PMID: 31557802 PMCID: PMC6963398 DOI: 10.3390/pathogens8040163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses are pathogens of global concern to both animal and human health. Wild birds are the natural reservoir of avian influenza viruses and facilitate virus transport over large distances. Surprisingly, limited research has been performed to determine avian influenza host species and virus dynamics in wild birds on the African continent, including South Africa. This study described the first wild bird surveillance efforts for influenza A viruses in KwaZulu-Natal Province in South Africa after the 2017/2018 outbreak with highly pathogenic avian influenza virus H5N8 in poultry. A total of 550 swab samples from 278 migratory waterfowl were tested using real-time RT-PCR methods. Two samples (0.7%) were positive for avian influenza virus based on the matrix gene real-time RT-PCR but were negative for the hemagglutinin subtypes H5 and H7. Unfortunately, no sequence information or viable virus could be retrieved from the samples. This study shows that avian influenza viruses are present in the South African wild bird population, emphasizing the need for more extensive surveillance studies to determine the South African avian influenza gene pool and relevant local host species.
Collapse
|
16
|
Co-subsistence of avian influenza virus subtypes of low and high pathogenicity in Bangladesh: Challenges for diagnosis, risk assessment and control. Sci Rep 2019; 9:8306. [PMID: 31165743 PMCID: PMC6549172 DOI: 10.1038/s41598-019-44220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022] Open
Abstract
Endemic co-circulation of potentially zoonotic avian influenza viruses (AIV) of subtypes H5N1 and H9N2 (G1 lineage) in poultry in Bangladesh accelerated diversifying evolution. Two clinical samples from poultry obtained in 2016 yielded five different subtypes (highly pathogenic [HP] H5N1, HP H5N2, HP H7N1, HP H7N2, H9N2) and eight genotypes of AIV by plaque purification. H5 sequences grouped with clade 2.3.2.1a viruses while N1 was related to an older, preceding clade, 2.2.2. The internal genome segments of the plaque-purified viruses originated from clade 2.2.2 of H5N1 or from G1/H9N2 viruses. H9 and N2 segments clustered with contemporary H9N2 strains. In addition, HP H7 sequences were detected for the first time in samples and linked to Pakistani HP H7N3 viruses of 2003. The unexpected findings of mixtures of reassorted HP H5N1 and G1-like H9N2 viruses, which carry genome segments of older clades in association with the detection of HP H7 HA segments calls for confirmation of these results by targeted surveillance in the area of origin of the investigated samples. Hidden niches and obscured transmission pathways may exist that retain or re-introduce genome segments of older viruses or reassortants thereof which causes additional challenges for diagnosis, risk assessment and disease control.
Collapse
|
17
|
Kouam MK, Tchouankui HN, Ngapagna AN. Epidemiological Features of Highly Pathogenic Avian Influenza in Cameroon. Vet Med Int 2019; 2019:3796369. [PMID: 30834103 PMCID: PMC6369508 DOI: 10.1155/2019/3796369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022] Open
Abstract
The epidemiology of avian influenza is unknown in Cameroon despite the two outbreaks that occurred in 2006 and 2016-2017, respectively. In order to fill the gap, an attempt was made to provide some basic information on the epidemiology of highly pathogenic avian influenza in Cameroon. Thus, data were collected from follow-up reports of the second HPAI outbreaks prepared by the veterinary health officials of Cameroon and sent to the World Organisation for Animal Health (OIE). Two HPAI virus strains (H5N1 and H5N8) turned out to occur, with H5N1 virus involved in the Center, South, West, and Adamawa regions outbreaks and H5N8 involved in the Far North outbreak only. The affected hosts were the laying hens, backyard chickens, turkeys, guinea fowls, ducks, broiler and layer breeders, and geese for the H5N1 virus and the Indian peafowl (Pavo cristatus), pigeon, ducks, backyard chickens, and guinea fowls for the H5N8 virus. The first outbreak took place in Mvog-Betsi poultry complex in the Center region on the 20th May 2016 and spread to other regions. The mortality rate varied from 8% to 72% for H5N1 virus and was 96.26% for the H5N8 strain in Indian peafowl. No human case was recorded. The potential supporting factors for disease dissemination identified on the field were the following: poultry and eggs dealers moving from one farm, market, or town to another without any preventive care; poor biosecurity measures on farms and live poultry markets. After the first HPAI H5N1 virus outbreak in 2006, the second HPAI outbreak ten years later (2016-2017) involving two virus strains is a cause of concern for the poultry industry. The Cameroon Epidemio-Surveillance Network needs to be more watchful.
Collapse
Affiliation(s)
- Marc K. Kouam
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, P.O. Box 188, Dschang, Cameroon
- Center for Research on Filariasis and Other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon
| | - Honorine N. Tchouankui
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, P.O. Box 188, Dschang, Cameroon
| | - Arouna Njayou Ngapagna
- Unit of Veterinary Public Health and Clinical Sciences, Faculty of Veterinary Medicine, Universite des Montagnes, Cameroon
| |
Collapse
|
18
|
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.
Collapse
|