1
|
Marchesini N, Demetriades AK, Alves O, Dange RM, Choco HM, Lozada ED, Figueredo Sanabria DJ, Gamboa A, Mendoza Victoria LL, Montealegre EN, Pardo Carranza JA, Quintero JV, Rubiano AM, the BOOTStraP-SCI Study Group. BOOTStrap-SCI: Beyond One option of treatment for spinal trauma and spinal cord injury: Consensus-based stratified protocols for pre-hospital care and emergency room (part I). BRAIN & SPINE 2025; 5:104251. [PMID: 40276265 PMCID: PMC12019844 DOI: 10.1016/j.bas.2025.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
Introduction Spinal trauma (STx), with or without spinal cord injury (SCI), represents a significant global health burden, particularly in low- and middle-income countries (LMICs). Existing guidelines often rely on tools and resources that are not always universally available, especially in less resourced settings, contributing to disparities in care and outcomes. A pragmatic, resource-adapted approach may help optimize management in these contexts. Research question This study aimed to develop resource-adapted protocols for pre-hospital and emergency room management of STx and SCI, addressing challenges specific to LMICs while supported by clinical evidence and expert based practices. Material and methods A multidisciplinary Delphi consensus combined international evidence-based guidelines with expert opinions. Iterative discussions and voting by healthcare providers from LMICs and high-income countries (HICs) ensured the development of context-sensitive protocols. These were tailored to varying levels of training, resource availability, and healthcare infrastructure. Results The resulting protocols address key areas of pre-hospital and emergency management, including initial resuscitation, immobilization, clinical interventions, and timely referral. These protocols emphasize adaptability, providing structured plus flexible guidance for optimizing care according to specific contexts from low to high resourced clinical settings. Discussion and conclusion The proposed protocols are not intended as gold-standard guidelines but as adaptable frameworks to guide management of STx/SCI in contexts with different availability of resources. By addressing disparities in resource availability and clinical competencies, they can serve as a foundation for local adaptations and improvements in care. Future research should evaluate their implementation and impact on outcomes.
Collapse
Affiliation(s)
- Nicolò Marchesini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- EANS Global and Humanitarian Neurosurgery Committee, International
| | - Andreas K. Demetriades
- EANS Global and Humanitarian Neurosurgery Committee, International
- Department of Neurosurgery, Royal Infirmary Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Oscar Alves
- Department of Neurosurgery, Hospital Lusíadas Porto, Porto, Portugal
| | - Riya Mandar Dange
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | | | | | | | | | | | | | | | - Andrès M. Rubiano
- Fundación Meditech, Cali, Colombia
- Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
2
|
Artha Wiguna IGLNA, Kristian Y, Deslivia MF, Limantara R, Cahyadi D, Liando IA, Hamzah HA, Kusuman K, Dimitri D, Anastasia M, Suyasa IK. A deep learning approach for cervical cord injury severity determination through axial and sagittal magnetic resonance imaging segmentation and classification. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4204-4213. [PMID: 39198286 DOI: 10.1007/s00586-024-08464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
STUDY DESIGN Cross-sectional Database Study. OBJECTIVE While the American Spinal Injury Association (ASIA) Impairment Scale is the standard for assessing spinal cord injuries (SCI), it has limitations due to subjectivity and impracticality. Advances in machine learning (ML) and image recognition have spurred research into their use for outcome prediction. This study aims to analyze deep learning techniques for identifying and classifying cervical SCI severity from MRI scans. METHODS The study included patients with traumatic and nontraumatic cervical SCI admitted from 2019 to 2022. MRI images were labeled by two senior resident physicians. A deep convolutional neural network was trained using axial and sagittal cervical MRI images from the dataset. Model performance was assessed using Dice Score and IoU to measure segmentation accuracy by comparing predicted and ground truth masks. Classification accuracy was evaluated with the F1 Score, balancing false positives and negatives. RESULT In the axial spinal cord segmentation, we achieved a Dice score of 0.94 for and IoU score of 0.89. In the sagittal spinal cord segmentation, we obtained Dice score up to 0.9201 and IoU scores up to 0.8541. The model for axial image score classification gave a satisfactory result with an F1 score of 0.72 and AUC of 0.79. CONCLUSION Our models successfully identified cervical SCI on T2-weighted MR images with satisfactory performance. Further research is needed to develop more advanced models for predicting patient outcomes in SCI cases.
Collapse
Affiliation(s)
| | - Yosi Kristian
- Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia
| | | | - Rudi Limantara
- Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia
| | - David Cahyadi
- Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia
| | - Ivan Alexander Liando
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Hendra Aryudi Hamzah
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Kevin Kusuman
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Dominicus Dimitri
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Maria Anastasia
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - I Ketut Suyasa
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| |
Collapse
|
3
|
Naseri Alavi SA, Habibi MA, Naseri Alavi SH, Zamani M, Kobets AJ. The Neutrophil-to-Lymphocyte Ratio in Patients with Spinal Cord Injury: A Narrative Review Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1567. [PMID: 39459357 PMCID: PMC11509609 DOI: 10.3390/medicina60101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Traumatic spinal cord injury (SCI) is a devastating condition that occurs in two phases: primary and secondary injury. These phases contribute to changes in blood vessels and the influx of inflammatory cells such as neutrophils and lymphocytes. The biomarker known as the neutrophil-to-lymphocyte ratio (NLR) has been suggested as being highly valuable in predicting outcomes for patients with traumatic brain injury, acute ischemic stroke, and traumatic spinal cord injury. Therefore, this review study aims to investigate the prognostic value of the NLR in predicting outcomes for patients with SCI. Materials and Methods: A thorough review of relevant articles was conducted using Mesh keywords in Medline via Embase, PubMed, Google Scholar, and Scopus from 2000 to 2023. The search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. After reviewing the articles and applying inclusion and exclusion criteria, only relevant articles were included in the study. Results: In the initial search, 41 papers were identified. After applying exclusion criteria, only three clinical studies remained for review. It is still debatable whether the NLR can serve as a cost-effective, readily available, and independent predictive factor for both mortality and recovery outcomes in patients with traumatic spinal cord injuries. Conclusions: Our study demonstrates that NLR, a readily available and inexpensive marker, can serve as an independent predictor of both mortality and recovery outcomes in patients with traumatic spinal cord injury. To reach a conclusive decision, additional data are required.
Collapse
Affiliation(s)
- Seyed Ahmad Naseri Alavi
- Department of Neurological Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Sciences, Tehran 1441987566, Iran;
| | - Seyed Hamed Naseri Alavi
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Mahsa Zamani
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Andrew J. Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY 10467, USA;
| |
Collapse
|
4
|
Schading-Sassenhausen S, Pfyffer D, Farner L, Grillhösl A, Mach O, Maier D, Grassner L, Leister I, Curt A, Freund P. Extent of Traumatic Spinal Cord Injury Is Lesion Level Dependent and Predictive of Recovery: A Multicenter Neuroimaging Study. J Neurotrauma 2024; 41:2146-2157. [PMID: 39001825 PMCID: PMC12054703 DOI: 10.1089/neu.2023.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Assessing the extent of the intramedullary lesion after spinal cord injury (SCI) might help to improve prognostication. However, because the neurological level of injury impacts the recovery potential of SCI patients, the question arises whether lesion size parameters and predictive models based on those parameters are affected as well. In this retrospective observational study, the extent of the intramedullary lesion between individuals who sustained cervical and thoracolumbar SCI was compared, and its relation to clinical recovery was assessed. In total, 154 patients with subacute SCI (89 individuals with cervical lesions and 65 individuals with thoracolumbar lesions) underwent conventional clinical magnetic resonance imaging 1 month after injury and clinical examination at 1 and 12 months. The morphology of the focal lesion within the spinal cord was manually assessed on the midsagittal slice of T2-weighted magnetic resonance images and compared between cervical and thoracolumbar SCI patients, as well as between patients who improved at least one American Spinal Injury Association Impairment Scale (AIS) grade (converters) and patients without AIS grade improvement (nonconverters). The predictive value of lesion parameters including lesion length, lesion width, and preserved tissue bridges for predicting AIS grade conversion was assessed using regression models (conditional inference tree analysis). Lesion length was two times longer in thoracolumbar compared with cervical SCI patients (F = 39.48, p < 0.0001), whereas lesion width and tissue bridges width did not differ. When comparing AIS grade converters and nonconverters, converters showed a smaller lesion length (F = 5.46, p = 0.021), a smaller lesion width (F = 13.75, p = 0.0003), and greater tissue bridges (F = 12.87, p = 0.0005). Using regression models, tissue bridges allowed more refined subgrouping of patients in AIS groups B, C, and D according to individual recovery profiles between 1 month and 12 months after SCI, whereas lesion length added no additional information for further subgrouping. This study characterizes differences in the anteroposterior and craniocaudal lesion extents after SCI. The two times greater lesion length in thoracolumbar compared with cervical SCI might be related to differences in the anatomy, biomechanics, and perfusion between the cervical and thoracic spines. Preserved tissue bridges were less influenced by the lesion level while closely related to the clinical impairment. These results highlight the robustness and utility of tissue bridges as a neuroimaging biomarker for predicting the clinical outcome after SCI in heterogeneous patient populations and for patient stratification in clinical trials.
Collapse
Affiliation(s)
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Lynn Farner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Orpheus Mach
- Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Doris Maier
- Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Lukas Grassner
- Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
- Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Iris Leister
- Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
5
|
Hamel C, Abdeen N, Avard B, Campbell S, Corser N, Ditkofsky N, Berger F, Murray N. Canadian Association of Radiologists Trauma Diagnostic Imaging Referral Guideline. Can Assoc Radiol J 2024; 75:279-286. [PMID: 37679336 DOI: 10.1177/08465371231182972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
The Canadian Association of Radiologists (CAR) Trauma Expert Panel consists of adult and pediatric emergency and trauma radiologists, emergency physicians, a family physician, a patient advisor, and an epidemiologist/guideline methodologist. After developing a list of 21 clinical/diagnostic scenarios, a systematic rapid scoping review was undertaken to identify systematically produced referral guidelines that provide recommendations for 1 or more of these clinical/diagnostic scenarios. Recommendations from 49 guidelines and contextualization criteria in the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) for guidelines framework were used to develop 50 recommendation statements across the 21 scenarios related to the evaluation of traumatic injuries. This guideline presents the methods of development and the recommendations for head, face, neck, spine, hip/pelvis, arms, legs, superficial soft tissue injury foreign body, chest, abdomen, and non-accidental trauma.
Collapse
Affiliation(s)
- Candyce Hamel
- Canadian Association of Radiologists, Ottawa, ON, Canada
| | - Nishard Abdeen
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Barb Avard
- North York General Hospital, Toronto, ON, Canada
| | - Samuel Campbell
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | | - Noah Ditkofsky
- St Michael's Hospital, Toronto, ON, Canada
- Michael Garon Hospital , Toronto, ON, Canada
| | - Ferco Berger
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
6
|
Zheng R, Fan Y, Guan B, Fu R, Yao L, Wang W, Li G, Zhou Y, Chen L, Feng S, Zhou H. A critical appraisal of clinical practice guidelines on surgical treatments for spinal cord injury. Spine J 2023; 23:1739-1749. [PMID: 37339698 DOI: 10.1016/j.spinee.2023.06.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) is a global health problem with a heavy economic burden. Surgery is considered as the cornerstone of SCI treatment. Although various organizations have formulated different guidelines on surgical treatment for SCI, the methodological quality of these guidelines has still not been critically appraised. PURPOSE We aim to systematically review and appraise the current guidelines on surgical treatments of SCI and summarize the related recommendations with the quality evaluation of supporting evidence. STUDY DESIGN Systematic review. METHODS Medline, Cochrane library, Web of Science, Embase, Google Scholar, and online guideline databases were searched from January 2000 to January 2022. The most updated and recent guidelines containing evidence-based or consensus-based recommendations and established by authoritative associations were included. The Appraisal of Guidelines for Research and Evaluation, 2nd edition instrument containing 6 domains (eg, applicability) was used to appraise the included guidelines. An evidence-grading scale (ie, level of evidence, LOE) was utilized to evaluate the quality of supporting evidence. The supporting evidence was categorized as A (the best quality), B, C, and D (the worst quality). RESULTS Ten guidelines from 2008 to 2020 were included, however, all of them acquired the lowest scores in the domain of applicability among all the six domains. Fourteen recommendations (eight evidence-based recommendations and six consensus-based recommendations) were totally involved. The SCI types of the population and timing of surgery were studied. Regarding the SCI types of the population, eight guidelines (8/10, 80%), two guidelines (2/10, 20%), and three guidelines (3/10, 30%) recommended surgical treatment for patients with SCI without further clarification of characteristics, incomplete SCI, and traumatic central cord syndrome (TCCS), respectively. Besides, one guideline (1/10, 10%) recommended against surgery for patients with SCI without radiographic abnormality. Regarding the timing of surgery, there were eight guidelines (8/10, 80%), two guidelines (2/10, 20%), and two guidelines (2/10, 20%) with recommendations for patients with SCI without further clarification of characteristics, incomplete SCI, and TCCS, respectively. For patients with SCI without further clarification of characteristics, all eight guidelines (8/8, 100%) recommended for early surgery and five guidelines (5/8, 62.5%) recommended for the specific timing, which ranged from within 8 hours to within 48 hours. For patients with incomplete SCI, two guidelines (2/2, 100%) recommended for early surgery, without specific time thresholds. For patients with TCCS, one guideline (1/2, 50%) recommended for surgery within 24 hours, and another guideline (1/2, 50%) simply recommended for early surgery. The LOE was B in eight recommendations, C in three recommendations, and D in three recommendations. CONCLUSIONS We remind the reader that even the highest quality guidelines often have significant flaws (eg, poor applicability), and some of the conclusions are based on consensus recommendations which is certainly less than ideal. With these caveats, we found most included guidelines (8/10, 80%) recommended early surgical treatment for patients after SCI, which was consistent between evidence-based recommendations and consensus-based recommendations. Regarding the specific timing of surgery, the recommended time threshold did vary, but it was usually within 8 to 48 hours, where the LOE was B to D.
Collapse
Affiliation(s)
- Ruiyuan Zheng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yuxuan Fan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Medical University, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Bin Guan
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Runhan Fu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Liang Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Wei Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Guoyu Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400000, P.R. China
| | - Lingxiao Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China; Sydney Musculoskeletal Health, The Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China; Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Medical University, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China; Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Medical University, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China.
| |
Collapse
|
7
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Chen S, Li G, Li F, Wang G, Wang Q. A dynamic nomogram for predicting the probability of irreversible neurological dysfunction after cervical spinal cord injury: research based on clinical features and MRI data. BMC Musculoskelet Disord 2023; 24:459. [PMID: 37277760 DOI: 10.1186/s12891-023-06570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Irreversible neurological dysfunction (IND) is an adverse event after cervical spinal cord injury (CSCI). However, there is still a shortage of objective criteria for the early prediction of neurological function. We aimed to screen independent predictors of IND and use these findings to construct a nomogram that could predict the development of neurological function in CSCI patients. METHODS Patients with CSCI attending the Affiliated Hospital of Southwest Medical University between January 2014 and March 2021 were included in this study. We divided the patients into two groups: reversible neurological dysfunction (RND) and IND. The independent predictors of IND in CSCI patients were screened using the regularization technique to construct a nomogram, which was finally converted into an online calculator. Concordance index (C-index), calibration curves analysis and decision curve analysis (DCA) evaluated the model's discrimination, calibration, and clinical applicability. We tested the nomogram in an external validation cohort and performed internal validation using the bootstrap method. RESULTS We enrolled 193 individuals with CSCI in this study, including IND (n = 75) and RND (n = 118). Six features, including age, American spinal injury association Impairment Scale (AIS) grade, signal of spinal cord (SC), maximum canal compromise (MCC), intramedullary lesion length (IMLL), and specialized institution-based rehabilitation (SIBR), were included in the model. The C-index of 0.882 from the training set and its externally validated value of 0.827 demonstrated the model's prediction accuracy. Meanwhile, the model has satisfactory actual consistency and clinical applicability, verified in the calibration curve and DCA. CONCLUSION We constructed a prediction model based on six clinical and MRI features that can be used to assess the probability of developing IND in patients with CSCI.
Collapse
Affiliation(s)
- Si Chen
- Department of Orthopaedics, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Guangzhou Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Sichuan, 646000, China
| | - Feng Li
- Department of Orthopaedics, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Gaoju Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Sichuan, 646000, China
| | - Qing Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Sichuan, 646000, China.
| |
Collapse
|
9
|
A critical appraisal of clinical practice guidelines for diagnostic imaging in the spinal cord injury. Spine J 2023:S1529-9430(23)00107-9. [PMID: 36934792 DOI: 10.1016/j.spinee.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) is a serious health problem which carries a heavy economic burden. Imaging technologies play an important role in the diagnosis of SCI. Although several organizations have developed guidelines for diagnostic imaging of SCI, their quality has not yet been systematically assessed. PURPOSE We aim to conduct a systematic review to appraise SCI guidelines and summarize their recommendations for diagnostic imaging of SCI. STUDY DESIGN Systematic review. METHODS We searched Embase, Medline, Web of Science, Cochrane, some guideline-specific databases (e.g., Scottish Intercollegiate Guidelines Network) and Google Scholar from January 2000 to January 2022. We included guidelines developed by nationally recognized organizations. If multiple versions could be obtained, we included the latest one. We appraised included guidelines using the AGREE II instrument which contains six domains (e.g., scope and purpose). We also extracted recommendations and assessed their supporting evidence using levels of evidence (LOE). The evidence was categorized as A (the best quality), B, C, and D (the worst quality). RESULTS Seven guidelines (2008 to 2020) were included. They all received the lowest scores in the domain of applicability. All guidelines (7/7, 100%) recommended magnetic resonance imaging (MRI) in patients with SCI or SCI without radiographic abnormality (SCIWORA). A total of 12 recommendations involving patient age (e.g., adult and child patients), timing of MRI (e.g., as soon as possible and in the acute period), symptoms indicated for MRI (e.g., a stiff spine and midline tenderness, suspected disc and posterior ligamentous complex injury, and neurological deficit), and types of MRI (e.g., T2-weighted imaging and diffusion tensor imaging) were extracted. Among them, the LOE was C in nine (75%) recommendations and D in three (25%) recommendations. CONCLUSIONS Seven guidelines were included in the present systematic review, and all of them showed the worst applicability scores in the AGREE II instrument. They all weakly recommended MRI for patients with suspected SCI or SCIWORA based on a low LOE.
Collapse
|
10
|
Birch NC, Cheung JPY, Takenaka S, El Masri WS. Which treatment provides the best neurological outcomes in acute spinal cord injury? Bone Joint J 2023; 105-B:347-355. [PMID: 36924170 DOI: 10.1302/0301-620x.105b4.bjj-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this annotation presents.
Collapse
Affiliation(s)
- Nick C Birch
- Spine and Bone Heath Department, Bragborough Hall Health Centre, Daventry, UK
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Shota Takenaka
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wagih S El Masri
- Keele University, Keele, UK
- Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry, UK
| |
Collapse
|
11
|
Pan B, Wu X, Zeng X, Chen J, Zhang W, Cheng X, Wan Y, Li X. Transplantation of Wnt4-modified neural stem cells mediate M2 polarization to improve inflammatory micro-environment of spinal cord injury. Cell Prolif 2023:e13415. [PMID: 36747440 PMCID: PMC10392051 DOI: 10.1111/cpr.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Neural stem cells (NSCs) transplantation has been considered as a potential strategy to reconnect the neural circuit after spinal cord injury (SCI) but the therapeutic effect was still unsatisfied because of the poor inflammatory micro-environment of SCI. Previous study reported that neuroprotection and inflammatory immunomodulation were considered to be most important mechanism of NSCs transplantation. In addition, Wnt4 has been considered to be neurogenesis and anti-inflammatory so that it would be an essential assistant agent for NSCs transplantation. Our single cells sequence indicates that macrophages are the most important contributor of inflammatory response after SCI and the interaction between macrophages and astrocytes may be the most crucial to inflammatory microenvironment of SCI. We further report the first piece of evidence to confirm the interaction between Wnt4-modified NSCs and macrophages using NSCs-macrophages co-cultured system. Wnt4-modified NSCs induce M2 polarization and inhibit M1 polarization of macrophages through suppression of TLR4/NF-κB signal pathway; furthermore, M2 cells promote neuronal differentiation of NSCs through MAPK/JNK signal pathway. In vivo, transplantation of Wnt4-modified NSCs improves inflammatory micro-environment through induce M2 polarization and inhibits M1 polarization of macrophages to promote axonal regeneration and tissue repair. The current study indicated that transplantation of Wnt4-modified NSCs mediates M2 polarization of macrophages to promote spinal cord injury repair. Our novel findings would provide more insight of SCI and help with identification of novel treatment strategy.
Collapse
Affiliation(s)
- Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiaolin Zeng
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiewen Chen
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Zhang
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Cheng
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Wan
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
ZILELI M, FORNARI M, PARTHIBAN J, SHARIF S. Osteoporotic vertebral fractures: WFNS Spine Committee Recommendations. J Neurosurg Sci 2022; 66:279-281. [DOI: 10.23736/s0390-5616.22.05771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Tabarestani TQ, Lewis NE, Kelly-Hedrick M, Zhang N, Cellini BR, Marrotte EJ, Williamson T, Wang H, Laskowitz DT, Faw TD, Abd-El-Barr MM. Surgical Considerations to Improve Recovery in Acute Spinal Cord Injury. Neurospine 2022; 19:689-702. [PMID: 36203295 PMCID: PMC9537855 DOI: 10.14245/ns.2244616.308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acute traumatic spinal cord injury (SCI) can be a devastating and costly event for individuals, their families, and the health system as a whole. Prognosis is heavily dependent on the physical extent of the injury and the severity of neurological dysfunction. If not treated urgently, individuals can suffer exacerbated secondary injury cascades that may increase tissue injury and limit recovery. Initial recognition and rapid treatment of acute SCI are vital to limiting secondary injury, reducing morbidity, and providing the best chance of functional recovery. This article aims to review the pathophysiology of SCI and the most up-to-date management of the acute traumatic SCI, specifically examining the modern approaches to surgical treatments along with the ethical limitations of research in this field.
Collapse
Affiliation(s)
| | - Nicholle E. Lewis
- Doctor of Physical Therapy Division, Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | | | - Nina Zhang
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Brianna R. Cellini
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Eric J. Marrotte
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA,Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Haichen Wang
- Department of Neurology, Duke University, Durham, NC, USA
| | | | - Timothy D. Faw
- Doctor of Physical Therapy Division, Department of Orthopaedic Surgery, Duke University, Durham, NC, USA,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Muhammad M. Abd-El-Barr
- Department of Neurosurgery, Duke University, Durham, NC, USA,Corresponding Author Muhammad M. Abd-El-Barr Department of Neurosurgery, Duke University Medical Center 2840, Room 5335 5th Floor, Orange Zone, Duke South, Durham, NC 27710, USA
| |
Collapse
|
14
|
Gadot R, Smith DN, Prablek M, Grochmal JK, Fuentes A, Ropper AE. Established and Emerging Therapies in Acute Spinal Cord Injury. Neurospine 2022; 19:283-296. [PMID: 35793931 PMCID: PMC9260540 DOI: 10.14245/ns.2244176.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Acute spinal cord injury (SCI) is devastating for patients and their caretakers and has an annual incidence of 20–50 per million people. Following initial assessment with appropriate physical examination and imaging, patients who are deemed surgical candidates should undergo decompression with stabilization. Earlier intervention can improve neurological recovery in the post-operative period while allowing earlier mobilization. Optimized medical management is paramount to improve outcomes. Emerging strategies for managing SCI in the acute period stem from an evolving understanding of the pathophysiology of the injury. General areas of focus include ischemia prevention, reduction of secondary injury due to inflammation, modulation of the cytotoxic and immune response, and promotion of cellular regeneration. In this article, we review established, emerging, and novel experimental therapies. Continued translational research on these methods will improve the feasibility of bench-to-bedside innovations in treating patients with acute SCI.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - David N. Smith
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Marc Prablek
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Joey K. Grochmal
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alfonso Fuentes
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alexander E. Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Corresponding Author Alexander E. Ropper Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge St. Suite 9A, Houston, TX, USA
| |
Collapse
|
15
|
Song BG, Kwon SY, Kyung JW, Roh EJ, Choi H, Lim CS, An SB, Sohn S, Han I. Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation. Int J Mol Sci 2022; 23:ijms23116218. [PMID: 35682897 PMCID: PMC9181792 DOI: 10.3390/ijms23116218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
Synaptic cell adhesion molecules (SynCAMs) play an important role in the formation and maintenance of synapses and the regulation of synaptic plasticity. SynCAM3 is expressed in the synaptic cleft of the central nervous system (CNS) and is involved in the connection between axons and astrocytes. We hypothesized that SynCAM3 may be related to the astrocytic scar (glial scar, the most important factor of CNS injury treatment) through extracellular matrix (ECM) reconstitution. Thus, we investigated the influence of the selective removal of SynCAM3 on the outcomes of spinal cord injury (SCI). SynCAM3 knock-out (KO) mice were subjected to moderate compression injury of the lower thoracic spinal cord using wild-type (WT) (C57BL/6JJc1) mice as controls. Single-cell RNA sequencing analysis over time, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and immunohistochemistry (IHC) showed reduced scar formation in SynCAM3 KO mice compared to WT mice. SynCAM3 KO mice showed improved functional recovery from SCI by preventing the transformation of reactive astrocytes into scar-forming astrocytes, resulting in improved ECM reconstitution at four weeks after injury. Our findings suggest that SynCAM3 could be a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Byeong Gwan Song
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Department of Life Science, CHA University School of Medicine, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Jae Won Kyung
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Department of Life Science, CHA University School of Medicine, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Chang Su Lim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Seong Bae An
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Correspondence:
| |
Collapse
|
16
|
Kim Y, Roh EJ, Joshi HP, Shin HE, Choi H, Kwon SY, Sohn S, Han I. Bazedoxifene, a Selective Estrogen Receptor Modulator, Promotes Functional Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci 2021; 22:ijms222011012. [PMID: 34681670 PMCID: PMC8537911 DOI: 10.3390/ijms222011012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In research on various central nervous system injuries, bazedoxifene acetate (BZA) has shown two main effects: neuroprotection by suppressing the inflammatory response and remyelination by enhancing oligodendrocyte precursor cell differentiation and oligodendrocyte proliferation. We examined the effects of BZA in a rat spinal cord injury (SCI) model. Anti-inflammatory and anti-apoptotic effects were investigated in RAW 264.7 cells, and blood-spinal cord barrier (BSCB) permeability and angiogenesis were evaluated in a human brain endothelial cell line (hCMEC/D3). In vivo experiments were carried out on female Sprague Dawley rats subjected to moderate static compression SCI. The rats were intraperitoneally injected with either vehicle or BZA (1mg/kg pre-SCI and 3 mg/kg for 7 days post-SCI) daily. BZA decreased the lipopolysaccharide-induced production of proinflammatory cytokines and nitric oxide in RAW 264.7 cells and preserved BSCB disruption in hCMEC/D3 cells. In the rats, BZA reduced caspase-3 activity at 1 day post-injury (dpi) and suppressed phosphorylation of MAPK (p38 and ERK) at dpi 2, hence reducing the expression of IL-6, a proinflammatory cytokine. BZA also led to remyelination at dpi 20. BZA contributed to improvements in locomotor recovery after compressive SCI. This evidence suggests that BZA may have therapeutic potential to promote neuroprotection, remyelination, and functional outcomes following SCI.
Collapse
Affiliation(s)
- Yiyoung Kim
- School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea;
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Hari Prasad Joshi
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Hae Eun Shin
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
- Correspondence:
| |
Collapse
|
17
|
Schading S, Emmenegger TM, Freund P. Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers. Curr Neurol Neurosci Rep 2021; 21:49. [PMID: 34268621 PMCID: PMC8282571 DOI: 10.1007/s11910-021-01134-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Traumatic spinal cord injury (SCI) is a life-changing event with drastic implications for patients due to sensorimotor impairment and autonomous dysfunction. Current clinical evaluations focus on the assessment of injury level and severity using standardized neurological examinations. However, they fail to predict individual trajectories of recovery, which highlights the need for the development of advanced diagnostics. This narrative review identifies recent advances in the search of clinically relevant biomarkers in the field of SCI. RECENT FINDINGS Advanced neuroimaging and molecular biomarkers sensitive to the disease processes initiated by the SCI have been identified. These biomarkers range from advanced neuroimaging techniques, neurophysiological readouts, and molecular biomarkers identifying the concentrations of several proteins in blood and CSF samples. Some of these biomarkers improve current prediction models based on clinical readouts. Validation with larger patient cohorts is warranted. Several biomarkers have been identified-ranging from imaging to molecular markers-that could serve as advanced diagnostic and hence supplement current clinical assessments.
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim M Emmenegger
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| |
Collapse
|
18
|
Lee HL, Yeum CE, Lee H, Oh J, Kim JT, Lee WJ, Ha Y, Yang YI, Kim KN. Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents. Int J Mol Sci 2021; 22:ijms22084141. [PMID: 33923671 PMCID: PMC8072978 DOI: 10.3390/ijms22084141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy is one of the most promising candidate treatments for spinal cord injury. Research has shown optimistic results for this therapy, but clinical limitations remain, including poor viability, engraftment, and differentiation. Here, we isolated novel peripheral nerve-derived stem cells (PNSCs) from adult peripheral nerves with similar characteristics to neural-crest stem cells. These PNSCs expressed neural-crest specific markers and showed multilineage differentiation potential into Schwann cells, neuroglia, neurons, and mesodermal cells. In addition, PNSCs showed therapeutic potential by releasing the neurotrophic factors, including glial cell-line-derived neurotrophic factor, insulin-like growth factor, nerve growth factor, and neurotrophin-3. PNSC abilities were also enhanced by their development into spheroids which secreted neurotrophic factors several times more than non-spheroid PNSCs and expressed several types of extra cellular matrix. These features suggest that the potential for these PNSC spheroids can overcome their limitations. In an animal spinal cord injury (SCI) model, these PNSC spheroids induced functional recovery and neuronal regeneration. These PNSC spheroids also reduced the neuropathic pain which accompanies SCI after remyelination. These PNSC spheroids may represent a new therapeutic approach for patients suffering from SCI.
Collapse
Affiliation(s)
- Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Chung-Eun Yeum
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Jinsoo Oh
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Jong-Tae Kim
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - Won-Jin Lee
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Young-Il Yang
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
- Correspondence: (Y.-I.Y.); (K.-N.K.)
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
- Correspondence: (Y.-I.Y.); (K.-N.K.)
| |
Collapse
|