1
|
Aliyu A, Dellschaft N, Hoad C, Williams H, Gaudoin E, Sulaiman S, Crooks C, Gowland P, Aran A, Lange R, Bois De Fer B, Corsetti M, Marciani L, Spiller R. Magnetic Resonance Imaging Reveals Novel Insights into the Dual Mode of Action of Bisacodyl: A Randomized, Placebo-controlled Trial in Constipation. Clin Pharmacol Ther 2025; 117:1284-1291. [PMID: 39679695 PMCID: PMC11993282 DOI: 10.1002/cpt.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Bisacodyl is a widely used laxative that stimulates both motility and secretion. Our aim was to exploit the unique capabilities of MRI to define bisacodyl's mode of action. Two placebo-controlled cross-over trials were performed, one using a single dose of Bisacodyl 5 mg while the second dosed daily for 3 consecutive days. Serial MRI was performed every 75 minutes. Primary endpoint: ascending colon water content as assessed by T1AC AUC300-450 minutes. Secondary endpoints included: small bowel water content, whole gut transit time (WGTT), colonic volumes, stool frequency, and consistency using Bristol Stool Form Score (BSFS). Exploratory endpoints: changes in the serial segmental volumes were quantified from the number of "mass movements" defined as episodes when segmental volume change from the previous scan was > 20% of baseline volume. We also measure the time to defecate after dosing. After 3 days of bisacodyl, ascending colon water content (T1) was 62% greater than after placebo, mean difference T1 AUC300-450 minutes 50.2 (61.0) sec.min, 95% CI (9.2, 91.2), P = 0.02, while after a single dose difference was only 11% (P = 0.58). Both single and repeated doses shortened WGTT (P < 0.049) and time to defecate (P 0.01). Only repeated doses significantly increased small bowel water content (P < 0.03), the number of "mass movements" (P = 0.048), bowel frequency (P = 0.006), and BSFS (P = 0.03). Repeated, compared to single dosing of Bisacodyl, additionally increases small bowel and colon water content and increases the number of "mass movements" thereby increasing its laxative effect. MRI is a non-invasive, patient-acceptable technique for evaluating drugs which alter secretion and/or motility.
Collapse
Affiliation(s)
- Abdulsalam Aliyu
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Neele Dellschaft
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Caroline Hoad
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Hannah Williams
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Emily Gaudoin
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | | | - Colin Crooks
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Penny Gowland
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | | | | | | | - Maura Corsetti
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Luca Marciani
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Robin Spiller
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
2
|
Zhang Z, Li J, Wan Z, Fang S, Zhao Y, Li Q, Zhang M. Bifidobacterium animalis subsp. lactis BLa80 alleviates constipation in mice through modulating the stem cell factor (SCF)/c-Kit pathway and the gut microbiota. Food Funct 2025; 16:2347-2362. [PMID: 39992179 DOI: 10.1039/d4fo06350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Probiotics, as health ingredients, have attracted widespread attention. However, due to the wide variety of probiotic species, their laxative effects and the underlying mechanisms remain elusive. In this study, we investigated the laxative effect of Bifidobacterium animalis subsp. lactis BLa80 (at concentrations of 1.0 × 108, 2.0 × 108, and 4.0 × 108 CFU per mL, with a dosage of 0.2 mL each) in mice, utilizing a functional constipation mouse model induced with loperamide hydrochloride (0.2 mL, 10 mg per kg BW) for 7 consecutive days. Meanwhile, a blank group (treated with 0.2 mL of 0.9% saline) and a positive control group (treated with mosapride at a dose of 5 mg per kg BW) were also set up. The body weight, fecal water content, intestinal propulsion rate, colon tissue histology, fecal microbial composition, serum indices, and colon mRNA levels of the mice were measured, employing histological and biochemical assays, GC-MS, RT-qPCR and 16S rRNA gene sequencing etc. Results showed BLa80 could accelerate intestinal peristalsis, maintain fecal moisture, prevent intestinal barrier disruption, increase short-chain fatty acid production, prevent gut microbe dysbiosis and constipation in mice. It also helped to keep the levels of 5-hydroxytryptamine (5-HT), motilin (MTL), and substance P (SP) normal, up-regulated the mRNAs of intestinal mucin 2 (MUC2), stem cell factor (SCF), and the tyrosine kinase receptor c-Kit, and down-regulated the mRNA of aquaporins (AQPs), especially at a high-dose. This study indicated that BLa80 held the potential to emerge as a novel ingredient in functional foods designed for constipation relief and as a treatment alternative.
Collapse
Affiliation(s)
- Zhaochun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ziyi Wan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuguang Fang
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu Province 215200, China
| | - Yunjiao Zhao
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu Province 215200, China
| | - Qian Li
- Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
3
|
Gao J, Wu F, Yan M, Wang X, Chi Y, Zhang Y, Peng Y, Li M, Ni Y, Wen X. Effects of brown seaweed oligosaccharides on obesity and constipation managements. J Food Sci 2025; 90:e17647. [PMID: 39736091 DOI: 10.1111/1750-3841.17647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Brown seaweed oligosaccharides (BSO) have demonstrated potential as nutraceuticals with cholesterol-lowering, anti-obesity, and anti-constipation properties. In this study, we initially examined how BSO impact body weight, blood lipid levels, and adipose tissue in a rat model of obesity induced by a high-fat diet. Our findings revealed that BSO administration significantly attenuated body weight gain, ameliorated dyslipidemia, and reduced visceral adiposity. Additionally, we evaluated the prophylactic efficacy of BSO in a loperamide hydrochloride-induced constipation mouse model by assessing defecation parameters and gastrointestinal motility. Our results indicated that BSO intervention significantly increased fecal pallet output and fecal water content, as well as improved intestinal transit. In conclusion, this study lays the foundation for a deeper understanding of how BSO may influence obesity and constipation, offering novel insights into its potential safe and efficacious clinical applications.
Collapse
Affiliation(s)
- Jingyu Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Fan Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejiang Wang
- Wuzhoufeng Agricultural Science & Technology Co., Ltd, Yantai, China
| | - Yan Chi
- Wuzhoufeng Agricultural Science & Technology Co., Ltd, Yantai, China
| | - Yu Zhang
- Wuzhoufeng Agricultural Science & Technology Co., Ltd, Yantai, China
| | - Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
4
|
Alavi K, Thorsen AJ, Fang SH, Burgess PL, Trevisani G, Lightner AL, Feingold DL, Paquette IM. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Evaluation and Management of Chronic Constipation. Dis Colon Rectum 2024; 67:1244-1257. [PMID: 39250791 DOI: 10.1097/dcr.0000000000003430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Karim Alavi
- Division of Colon and Rectal Surgery, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Amy J Thorsen
- Division of Colon and Rectal Surgery, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sandy H Fang
- Division of Gastrointestinal and General Surgery, Department of Surgery, Oregon Health and Sciences University, Portland, Oregon
| | - Pamela L Burgess
- Colon and Rectal Surgery, M Health Fairview Southdale Hospital, Minneapolis, Minnesota
| | - Gino Trevisani
- Colon and Rectal Surgery, University of Vermont Medical Center, Burlington, Vermont
| | - Amy L Lightner
- Department of Surgery, Scripps Clinic Medical Group, La Jolla, California
| | - Daniel L Feingold
- Division of Colon and Rectal Surgery, Department of Surgery, Rutgers University, New Brunswick, New Jersey
| | - Ian M Paquette
- Department of Surgery Section of Colon and Rectal Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
5
|
Wang Y, Zhang Y, Wang Q, Fan Y, Li W, Liu M, Zhang X, Zhou W, Wang M, Jiang S, Shang E, Duan J. Multi-omics combined to explore the purging mechanism of Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124218. [PMID: 38959707 DOI: 10.1016/j.jchromb.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Chen KD, Wang KL, Chen C, Zhu YJ, Tang WW, Wang YJ, Chen ZP, He LH, Chen YG, Zhang W. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. World J Gastroenterol 2024; 30:2709-2725. [PMID: 38855154 PMCID: PMC11154682 DOI: 10.3748/wjg.v30.i20.2709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, β-leucine (β-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.
Collapse
Affiliation(s)
- Kai-Di Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Kui-Ling Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yi-Jia Zhu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wen-Wen Tang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Ji Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Ze-Peng Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Lin-Hai He
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wei Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
7
|
Ayele AG, Kawet JS. Evaluations of the in vivo Laxative Effects of Aqueous Leaf and Stem Extracts of Artemisia Abyssinica in Mice. J Exp Pharmacol 2024; 16:135-142. [PMID: 38528962 PMCID: PMC10962457 DOI: 10.2147/jep.s456029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background People frequently complain of long-term constipation. The cost associated with using modern medications to treat constipation is significant, and the probability of encountering side effects is notably high. These limitations restrict their effectiveness in therapy, remain unresolved, and underscore the need for research on alternative therapeutic approaches. Plants of the genus Artemisia have been used to treat constipation. Therefore, the aim of this study was to evaluate the laxative effects of aqueous A. abyssinica leaf and stem extracts of Artemisia abyssinica in mice. Methods The laxative activity of A. abyssinica leaf and stem extracts was evaluated using three models: laxative activity, gastrointestinal motility, and gastrointestinal secretion. In this study, bisacodyl was used as a standard laxative and loperamide was used to induce constipation. Results In the laxative test, 200 (P<0.05) and 400 mg/kg (p<0.01) doses of plant extract significantly increased the percentage of fecal water content. Moreover, the highest dose of extract increased the frequency of defecation after 12 h (p<0.05). In the remaining two models, the experimental plans also showed significantly higher gastrointestinal motility and noticeable accumulation of intestinal fluid. Conclusion The results of this study indicate that aqueous leaf and stem extracts of A. abyssinica have laxative effects.
Collapse
Affiliation(s)
- Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jeylan Sinba Kawet
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Staursky D, Shimoga D, Sharma A. Step on the accelerator: modern treatment of constipation. Curr Opin Gastroenterol 2024; 40:43-49. [PMID: 37678175 DOI: 10.1097/mog.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore effective management of constipation, examine challenges in making a positive diagnosis, and highlights the significance of a positive patient-provider relationship and emerging treatments. RECENT FINDINGS Less than one-fifth of patients feel satisfied with treatment of their constipation. Sixty percent of patients with functional dyspepsia and gastroparesis have severe to very severe constipation that correlates with their upper gastrointestinal symptom severity. Two gold kiwifruits are noninferior to 10 g of psyllium in the treatment of constipation. More than 40% of patients undergoing lumbar fusion continue to fill opioid prescriptions 90 days after surgery, contributing to 80 000 chronic opioid users annually. Most patients are using over-the-counter (OTC) treatments for constipation with greater than 60% dissatisfied. Pharmacologic management involves the use of GCC agonists and emerging drug classes such as bile acid transport inhibitors and sodium hydrogen exchanger isoform 3 (NHE3) inhibitors. Nonpharmacologic treatments, including neuromodulation and FDA-approved vibrating capsule, show promise in improving symptoms and quality of life. SUMMARY Constipation significantly impacts patients' quality of life and well being and the majority of patients are refractory to conservative measures and OTC treatments. Both pharmacologic and nonpharmacologic treatments hold promise for improving constipation and quality of life.
Collapse
Affiliation(s)
- Daniel Staursky
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | | |
Collapse
|
9
|
Dong L, Xu Z, Huang G, Zhang R, Deng M, Huang F, Su D. Lychee Pulp-Derived Dietary Fiber-Bound Phenolic Complex Upregulates the SCFAs-GPRs-ENS Pathway and Aquaporins in Loperamide-Induced Constipated Mice by Reshaping Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15087-15096. [PMID: 37814441 DOI: 10.1021/acs.jafc.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate the effects of the lychee pulp-derived dietary fiber-bound phenolic complex (DF-BPC) on a murine model of loperamide-induced constipation and its molecular mechanism associated with gut microbiota modification. DF-BPC supplementation mitigated loperamide-induced dyschezia, intestinal hypomotility, and colonic impairment, as evidenced by the increased gastro-intestinal transit rate and mucus cell counts. By comparison, short-chain fatty acids (SCFAs) contents and relative abundances of associated genera (Butyricimonas, Clostridium, and Lactobacillus) were effectively upregulated following DF-BPC supplementation. Notably, DF-BPC significantly enhanced expressions of G protein-coupled receptor (GPR) 41 and 43, reaching 1.43- and 1.62-fold increase, respectively. Neurotransmitter secretions were simultaneously altered in DF-BPC-treated mice, suggesting upregulation of the SCFAs-GPRs-enteric nervous system pathway. The overexpression of aquaporins (AQP3, 8, and 9) was stimulated partly through GPRs activation. Mild inflammation associated with constipation was inhibited by suppressing LBP-TLR4-NF-κB signaling translocation. These findings suggest that DF-BPC from lychee pulp has the potential to alleviate constipation in mice through modifying the gut microbiome.
Collapse
Affiliation(s)
- Lihong Dong
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Zhuohui Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Guitao Huang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Mei Deng
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Fei Huang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Zhang T, Zullo AR, James HO, Lee Y, Taylor DCA, Daiello LA. The Burden and Treatment of Chronic Constipation Among US Nursing Home Residents. J Am Med Dir Assoc 2023; 24:1247-1252.e5. [PMID: 37308090 PMCID: PMC10642798 DOI: 10.1016/j.jamda.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To evaluate the burden of chronic constipation (CC) and the use of drugs to treat constipation (DTC) in 2 complementary data sources. DESIGN Retrospective cohort study. SETTING AND PARTICIPANTS US nursing home residents aged ≥65 years with CC. METHODS We conducted 2 retrospective cohort studies in parallel using (1) 2016 electronic health record (EHR) data from 126 nursing homes and (2) 2014-2016 Medicare claims, each linked with the Minimum Data Set (MDS). CC was defined as (1) the MDS constipation indicator and/or (2) chronic DTC use. We described the prevalence and incidence rate of CC and the use of DTC. RESULTS In the EHR cohort, we identified 25,739 residents (71.8%) with CC during 2016. Among residents with prevalent CC, 37% received a DTC, with an average duration of use of 19 days per resident-month during follow-up. The most frequently prescribed DTC classes included osmotic (22.6%), stimulant (20.9%), and emollient (17.9%) laxatives. In the Medicare cohort, a total of 245,578 residents (37.5%) had CC. Among residents with prevalent CC, 59% received a DTC and slightly more than half (55%) were prescribed an osmotic laxative. Duration of use was shorter (10 days per resident-month) in the Medicare (vs EHR) cohort. CONCLUSIONS AND IMPLICATIONS The burden of CC is high among nursing home residents. The differences in the estimates between the EHR and Medicare data confirm the importance of using secondary data sources that include over-the-counter drugs and other treatments unobservable in Medicare Part D claims to assess the burden of CC and DTC use in this population.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, RI, USA
| | - Andrew R Zullo
- Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, RI, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Center of Innovation in Long-Term Services and Supports, Providence Veterans Affairs Medical Center, Providence, RI, USA; Department of Pharmacy, Lifespan-Rhode Island Hospital, Providence, RI, USA
| | - Hannah O James
- Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, RI, USA
| | - Yoojin Lee
- Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, RI, USA
| | | | - Lori A Daiello
- Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
11
|
Fan W, Tan Q. Application of the steady-state intestinal perfusion system in measuring intestinal fluid absorption and bicarbonate secretion in vivo. Front Physiol 2023; 14:1163888. [PMID: 37497438 PMCID: PMC10366686 DOI: 10.3389/fphys.2023.1163888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background: The steady-state intestinal perfusion system represents a tool used in measuring intestinal fluid absorption and bicarbonate secretion in vivo; however, detailed procedures and parameters were not elucidated fully. Aim: We focused on the methods of the steady-state intestinal perfusion system comprehensively including the blood pressure, hematocrit, blood gas, and heart rate of mouse. Methods: Anesthetized, tracheally intubated, and artificially ventilated mice were used for this system. The blood pressure, hematocrit, blood gas, heart rate, and rate of fluid absorption and HCO3 - secretion of the small intestine and colon at different time points were evaluated. Results: Blood pressure, hematocrit, blood gas, and heart rate became stable at the 30 min time point after completion of surgery and could be maintained for 2 h. Rates of fluid absorption and bicarbonate secretion were also kept stable during the period of steady state of mice. Rates of fluid absorption and bicarbonate secretion were different among the jejunum, ileum, proximal, and mid-distal colon. Conclusion: The steady-state intestinal perfusion system is a reliable system for measuring intestinal fluid absorption and bicarbonate secretion in vivo.
Collapse
|
12
|
Bai X, Sun X, Yu Y, Guo Y, Nian L, Cao C, Cheng S. Immobilization of α-galactosidase in polyvinyl alcohol-chitosan-glycidyl methacrylate hydrogels based on directional freezing-assisted salting-out strategy for hydrolysis of RFOs. Int J Biol Macromol 2023; 242:124808. [PMID: 37211074 DOI: 10.1016/j.ijbiomac.2023.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Raffinose family oligosaccharides (RFOs) in food are the main factors causing flatulence in Irritable Bowel Syndrome (IBS) patients and the development of effective approaches for reducing food-derived RFOs is of paramount importance. In this study, polyvinyl alcohol (PVA)-chitosan (CS)-glycidyl methacrylate (GMA) immobilized α-galactosidase was prepared by the directional freezing-assisted salting-out technique, aimed to hydrolyze RFOs. SEM, FTIR, XPS, fluorescence and UV characterization results demonstrated that α-galactosidase was successfully cross-linked in the PVA-CS-GMA hydrogels, forming a distinct porous stable network through the covalent bond between the enzyme and the carrier. Mechanical performance and swelling capacity analysis illustrated that α-gal @ PVA-CS-GMA not only had suitable strength and toughness for longer durability, but also exhibited high water content and swelling capacity for better retention of catalytic activity. The enzymatic properties of α-gal @ PVA-CS-GMA showed an improved Km value, pH and temperature tolerance range, anti-enzymatic inhibitor (melibiose) activity compared to the free α-galactosidase and its reusability was at least 12 times with prolonged storage stability. Finally, it was successfully applied in the hydrolysis of RFOs in soybeans. These findings provide a new strategy for the development of α-galactosidase immobilization system to biological transform the RFOs components in the food for diet intervention of IBS.
Collapse
Affiliation(s)
- Xixi Bai
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyang Sun
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuheng Guo
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Linyu Nian
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
13
|
Evaluations of the in vivo laxative effects of aqueous root extracts of Euclea racemosa L. in mice. Metabol Open 2022; 17:100222. [PMID: 36606022 PMCID: PMC9807816 DOI: 10.1016/j.metop.2022.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background Management of constipation with currently available modern medicines is costly and chances of side effects are high. This limits their clinical usefulness and remain to be solved, and calls for investigations of new and better compounds. The experimental plant, Euclea racemosa L. (E. racemosa L) is among plants, which are used for management of constipation traditionally but its effect is not yet experimentally validated. Therefore, the aim of the present study is to investigate the laxative effects of this plant. Methods The laxative effects of aqueous root extracts of E. racemosa L. were evaluated using gastrointestinal motility, laxative activity, and gastrointestinal secretion tests. Results In the laxative test, the 200 and 400 mg/kg doses of plant extract showed a significant increase in percent fecal water content. The plant extract also significantly accelerated the charcoal meal in gastrointestinal motility test of loperamide-constipated mice. Moreover, the experimental plant produced significant Gastrointestinal (GI) transit ratio at all doses but failed to produce a significantly higher fluid accumulation except 400 mg/kg doses of extract in gastrointestinal secretion test. The observed effect of the aqueous root extract might be due to the presence of secondary metabolites. The aqueous root extract of E. racemosa L. revealed the presence of terpenes, saponins, flavonoids and phenols when it was subjected to phytochemical screening. Conclusion The investigation obtained from this study suggested that E. racemosa L. has a beneficial effect in producing laxative effect and this substantiate the traditional use of the plant for its claimed indication.
Collapse
|
14
|
Xu YS, Wang YH, Liu Y, Sun X, Xu JS, Song Y, Jiang X, Xiong ZF, Tian ZB, Zhang CP. Alteration of the faecal microbiota composition in patients with constipation: evidence of American Gut Project. Benef Microbes 2022; 13:427-436. [PMID: 36377576 DOI: 10.3920/bm2022.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is limited information is known about the composition difference of the gut microbiota in patients with constipation and healthy controls. Here, the faecal 16S rRNA fastq sequence data of microbiota from the publicly available American Gut Project (AGP) were analysed. The tendency score matching (PSM) method was used to match in a 1:1 manner to control for confounding factors age, gender, body mass index (BMI), and country. A total of 524 participants including 262 patients with constipation and 262 healthy controls were included in this analysis. The richness and evenness of the gut microbiota in the constipation group were significantly lower than those in the control group. The dominant genera in the constipation group include Escherichia_Shigella, Pseudomonas, and Citrobacter. The dominant genera in the control group include Faecalibacterium, Prevotella, Roseburia, Clostridium_XlVa, and Blautia. The abundance of three butyrate production-related pathways were significantly higher in the constipation group than in the control groups. There was no significant difference in the diversity and gut microbiota composition in patients with constipation at different ages. In conclusion, patients with constipation showed gut microbiota and butyrate metabolism dysbiosis. This dysbiosis might provide a reference for the diagnosis and clinical therapy of diseases.
Collapse
Affiliation(s)
- Y S Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China P.R
| | - Y H Wang
- School of Mathematics, Shandong University, Jinan, China P.R
| | - Y Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China P.R
| | - X Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China P.R
| | - J S Xu
- Division of Nephrology, Jiaozhou Hospital of Tongji University DongFang Hospital, Jiaozhou, China P.R
| | - Y Song
- Division of Gastroenterology, Jiaozhou Hospital of Tongji University DongFang Hospital, Jiaozhou, China P.R
| | - X Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 400400 Wuhan, China P.R
| | - Z F Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 400400 Wuhan, China P.R
| | - Z B Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China P.R
| | - C P Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China P.R
| |
Collapse
|
15
|
Wang M, Cha R, Hao W, Du R, Zhang P, Hu Y, Jiang X. Nanocrystalline Cellulose Cures Constipation via Gut Microbiota Metabolism. ACS NANO 2022; 16:16481-16496. [PMID: 36129390 DOI: 10.1021/acsnano.2c05809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constipation can seriously affect the quality of life and increase the risk of colorectal cancer. The present strategies for constipation therapy have adverse effects, such as causing irreversible intestinal damage and affecting the absorption of nutrients. Nanocrystalline cellulose (NCC), which is from natural plants, has good biocompatibility and high safety. Herein, we used NCC to treat constipation assessed by the black stool, intestinal tissue sections, and serum biomarkers. We studied the effect of NCC on gut microbiota and discussed the correlation of gut microbiota and metabolites. We evaluated the long-term biosafety of NCC. NCC could effectively treat constipation through gut microbiota metabolism, which required a small dosage and did not affect the organs and intestines. NCC could be used as an alternative to medications and dietary fiber for constipation therapy.
Collapse
Affiliation(s)
- Mingzheng Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, People's Republic of China
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|