1
|
Jyotirmaya SS, Rath S, Dandapat J. Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156380. [PMID: 39827814 DOI: 10.1016/j.phymed.2025.156380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs. Various bioactive phytocompounds used in alternative therapies including Traditional Chinese Medicines (TCM) regulate redox balance and epigenetic phenomena linked to CVDs. Phytocompound-based medications are in the limelight for the development of cost-effective drugs with the least side effects, which will have immense therapeutic applications. PURPOSE This review comprehends certain risk factors associated with CVDs and triggered by oxidative stress-driven epigenetic remodelling. Further, it critically evaluates the pharmacological efficacy of phytocompounds as inhibitors of HAT/HDAC and DNMTs as well as miRNAs regulator that lowers the incidence of CVDs, aiming for new candidates as prospective epidrugs. METHODS PRISMA flow approach has been adopted for systematic literature review. Different Journals, computational databases, search engines such as Google Scholar, PubMed, Science Direct, Scopus, and ResearchGate were used to collect online information for literature survey. Statistical information collected from the World Health Organization (WHO) site (https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)) and the American Heart Association of Heart Disease and Stroke reported the international and national status of CVDs. RESULTS The meta-analysis of various studies is elucidated in the literature, shedding light on major risk factors such as socioeconomic parameters, which contribute highly to redox imbalance, epigenetic modulations, and CVDs. Going forward, redox imbalance driven epigenetic regulations include changes in DNA methylation status, histone modifications and non-coding RNAs expression pattern which further regulates global as well as promoter modification of various transcription factors leading to the onset of CVDs. Further, the role of various bioactive compounds used in herbal medicine, including TCM for redox regulation and epigenetic modifications are discussed. Pharmacological safety doses and different phases of clinical trials of these phytocompounds are elaborated on, which shed light on the acceptance of these phytocompounds as prospective drugs. CONCLUSION This review suggests a strong linkage between therapeutic and preventive measures against CVDs by targeting redox imbalance-driven epigenetic reprogramming using phytocompounds as prospective epidrugs. Future in-depth research is required to evaluate the possible molecular mechanisms behind the phytocompound-mediated epigenetic reprogramming and oxidative stress management during CVD progression.
Collapse
Affiliation(s)
| | - Suvasmita Rath
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar,751004, Odisha, India
| | - Jagneshwar Dandapat
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India..
| |
Collapse
|
2
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
4
|
Chen Y, Shen YQ. Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal 2024; 125:111502. [PMID: 39521028 DOI: 10.1016/j.cellsig.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) originate from diverse sources and regulate multiple signaling pathways within the cellular environment. Their generation is intricately controlled, and disruptions in their signaling or atypical levels can precipitate pathological conditions. Epigenetics, the examination of heritable alterations in gene expression independent of changes in the genetic code, has been implicated in the pathogenesis of various diseases through aberrant epigenetic modifications. The significant contribution of epigenetic modifications to disease progression underscores their potential as crucial therapeutic targets for a wide array of medical conditions. This study begins by providing an overview of ROS and epigenetics, followed by a discussion on the mechanisms of epigenetic modifications such as DNA methylation, histone modification, and RNA modification-mediated regulation. Subsequently, a detailed examination of the interaction between ROS and epigenetic modifications is presented, offering new perspectives and avenues for exploring the mechanisms underlying specific epigenetic diseases and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yutong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
5
|
Manjarres-Suarez A, Bozack A, Cardenas A, Olivero-Verbel J. DNA methylation is associated with hair trace elements in female adolescents from two vulnerable populations in the Colombian Caribbean. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae008. [PMID: 39525284 PMCID: PMC11548963 DOI: 10.1093/eep/dvae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024]
Abstract
Exposure to trace elements (TEs) influences DNA methylation patterns, which may be associated with disease development. Vulnerable populations, such as adolescents undergoing maturity, are susceptible to the effects of TE exposure. The aim of this study was to analyze the association of hair TE concentration with DNA methylation in a sample from female adolescents living in two communities in the Colombian Caribbean coast. Hair and blood samples were obtained from 45 females, between 13 and 16 years of age. Seventeen TEs were quantified in hair samples. DNA methylation was measured in leukocytes using the Infinium MethylationEPIC BeadChip. Linear models were employed to identify differentially methylated positions (DMPs) adjusting for age, body mass index, mother's education, and cell type composition. Among the tested elements, vanadium, chromium, nickel, copper, zinc, yttrium, tin, and barium were significantly associated with DMPs (false discovery rate < 0.05), registering 225, 1, 2, 184, 1, 209 189, and 104 hits, respectively. Most of the DMPs were positively associated with TEs and located in open sea regions. The greatest number of DMPs was annotated to the HOXA3 and FOXO3 genes, related to regulation of gene expression and oxidative stress, respectively. These findings suggest that DNA methylation may be involved in linking exposure to TEs among female adolescents to downstream health risks.
Collapse
Affiliation(s)
- Alejandra Manjarres-Suarez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
6
|
Salvadori M, Rosso G. Update on the gut microbiome in health and diseases. World J Methodol 2024; 14:89196. [PMID: 38577200 PMCID: PMC10989414 DOI: 10.5662/wjm.v14.i1.89196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
The Human Microbiome Project, Earth Microbiome Project, and next-generation sequencing have advanced novel genome association, host genetic linkages, and pathogen identification. The microbiome is the sum of the microbes, their genetic information, and their ecological niche. This study will describe how millions of bacteria in the gut affect the human body in health and disease. The gut microbiome changes in relation with age, with an increase in Bacteroidetes and Firmicutes. Host and environmental factors affecting the gut microbiome are diet, drugs, age, smoking, exercise, and host genetics. In addition, changes in the gut microbiome may affect the local gut immune system and systemic immune system. In this study, we discuss how the microbiome may affect the metabolism of healthy subjects or may affect the pathogenesis of metabolism-generating metabolic diseases. Due to the high number of publications on the argument, from a methodologically point of view, we decided to select the best papers published in referred journals in the last 3 years. Then we selected the previously published papers. The major goals of our study were to elucidate which microbiome and by which pathways are related to healthy and disease conditions.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
7
|
Lee JD, Won W, Kimball K, Wang Y, Yeboah F, Evitts KM, Neiswanger C, Schattauer S, Rappleye M, Bremner SB, Chun C, Smith N, Mack DL, Young JE, Lee CJ, Chavkin C, Berndt A. Structure-guided engineering of a fast genetically encoded sensor for real-time H 2O 2 monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578117. [PMID: 38352381 PMCID: PMC10862829 DOI: 10.1101/2024.01.31.578117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aβ-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.
Collapse
Affiliation(s)
- Justin Daho Lee
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Neuroscience of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kandace Kimball
- Center for Neuroscience of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Yihan Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Fred Yeboah
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kira M Evitts
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Carlie Neiswanger
- Center for Neuroscience of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Selena Schattauer
- Center for Neuroscience of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Michael Rappleye
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Samantha B Bremner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Netta Smith
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David L Mack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jessica E Young
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Charles Chavkin
- Center for Neuroscience of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Andre Berndt
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Neuroscience of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Yu W, Yang B, Xu S, Gao Y, Huang Y, Wang Z. Diabetic Retinopathy and Cardiovascular Disease: A Literature Review. Diabetes Metab Syndr Obes 2023; 16:4247-4261. [PMID: 38164419 PMCID: PMC10758178 DOI: 10.2147/dmso.s438111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic complications can be divided into macrovascular complications such as cardiovascular disease and cerebrovascular disease and microvascular complications such as diabetic retinopathy, diabetic nephropathy and diabetic neuropathy. Among them, cardiovascular disease (CVD) is an important cause of death in diabetic patients. Diabetes retinopathy (DR) is one of the main reasons for the increasing disability rate of diabetes. In recent years, some studies have found that because DR and CVD have a common pathophysiological basis, the occurrence of DR and CVD are inseparable, and to a certain extent, DR can predict the occurrence of CVD. With the development of technology, the fundus parameters of DR can be quantitatively analyzed as an independent risk factor of CVD. In addition, the cytokines related to DR can also be used for early screening of DR. Although many advances have been made in the treatment of CVD, its situation of prevention and treatment is still not optimistic. This review hopes to discuss the feasibility of DR in predicting CVD from the common pathophysiological mechanism of DR and CVD, the new progress of diagnostic techniques for DR, and the biomarkers for early screening of DR.
Collapse
Affiliation(s)
- Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
9
|
Tando Y, Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad008. [PMID: 38094661 PMCID: PMC10719065 DOI: 10.1093/eep/dvad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 03/08/2024]
Abstract
Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
10
|
Zhang X, Ma L, Wang J. Cross-Regulation Between Redox and Epigenetic Systems in Tumorigenesis: Molecular Mechanisms and Clinical Applications. Antioxid Redox Signal 2023; 39:445-471. [PMID: 37265163 DOI: 10.1089/ars.2023.0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Significance: Redox and epigenetics are two important regulatory processes of cell physiological functions. The cross-regulation between these processes has critical effects on the occurrence and development of various types of tumors. Recent Advances: The core factor that influences redox balance is reactive oxygen species (ROS) generation. The ROS functions as a double-edged sword in tumors: Low levels of ROS promote tumors, whereas excessive ROS induces various forms of tumor cell death, including apoptosis and ferroptosis as well as necroptosis and pyroptosis. Many studies have shown that the redox balance is influenced by epigenetic mechanisms such as DNA methylation, histone modification, chromatin remodeling, non-coding RNAs (microRNA, long non-coding RNA, and circular RNA), and RNA N6-methyladenosine modification. Several oxidizing or reducing substances also affect the epigenetic state. Critical Issues: In this review, we summarize research on the cross-regulation between redox and epigenetics in cancer and discuss the relevant molecular mechanisms. We also discuss the current research on the clinical applications. Future Directions: Future research can use high-throughput methods to analyze the molecular mechanisms of the cross-regulation between redox and epigenetics using both in vitro and in vivo models in more detail, elucidate regulatory mechanisms, and provide guidance for clinical treatment. Antioxid. Redox Signal. 39, 445-471.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiayi Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
11
|
Chaumond E, Peron S, Daniel N, Le Gouar Y, Guédon É, Williams DL, Le Loir Y, Jan G, Berkova N. Development of innate immune memory by non-immune cells during Staphylococcus aureus infection depends on reactive oxygen species. Front Immunol 2023; 14:1138539. [PMID: 37325649 PMCID: PMC10264681 DOI: 10.3389/fimmu.2023.1138539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The mechanisms underlying innate immune memory (trained immunity) comprise epigenetic reprogramming of transcriptional pathways associated with alterations of intracellular metabolism. While the mechanisms of innate immune memory carried out by immune cells are well characterized, such processes in non-immune cells, are poorly understood. The opportunistic pathogen, Staphylococcus aureus, is responsible for a multitude of human diseases, including pneumonia, endocarditis and osteomyelitis, as well as animal infections, including chronic cattle mastitis that are extremely difficult to treat. An induction of innate immune memory may be considered as a therapeutic alternative to fight S. aureus infection. Methods In the current work, we demonstrated the development of innate immune memory in non-immune cells during S. aureus infection employing a combination of techniques including Enzyme-linked immunosorbent assay (ELISA), microscopic analysis, and cytometry. Results We observed that training of human osteoblast-like MG-63 cells and lung epithelial A549 cells with β-glucan increased IL-6 and IL-8 production upon a stimulation with S. aureus, concomitant with histones modifications. IL-6 and IL-8 production was positively correlated with an acetylation of histone 3 at lysine 27 (H3K27), thus suggesting epigenetic reprogramming in these cells. An addition of the ROS scavenger N-Acetylcysteine, NAC, prior to β-glucan pretreatment followed by an exposure to S. aureus, resulted in decreased IL-6 and IL-8 production, thereby supporting the involvement of ROS in the induction of innate immune memory. Exposure of cells to Lactococcus lactis resulted in increased IL-6 and IL-8 production by MG-63 and A549 cells upon a stimulation with S. aureus that was correlated with H3K27 acetylation, suggesting the ability of this beneficial bacterium to induce innate immune memory. Discussion This work improves our understanding of innate immune memory in non-immune cells in the context of S. aureus infection. In addition to known inducers, probiotics may represent good candidates for the induction of innate immune memory. Our findings may help the development of alternative therapeutic approaches for the prevention of S. aureus infection.
Collapse
Affiliation(s)
- Emmanuel Chaumond
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - Sandrine Peron
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - Nathalie Daniel
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - Yann Le Gouar
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - Éric Guédon
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - David L. Williams
- Department of Surgery and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Yves Le Loir
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - Gwénaël Jan
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| | - Nadia Berkova
- l'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l'Oeuf (STLO), Rennes, France
| |
Collapse
|
12
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
13
|
Daks A, Shuvalov O, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Methyltransferase Set7/9 as a Multifaceted Regulator of ROS Response. Int J Biol Sci 2023; 19:2304-2318. [PMID: 37215983 PMCID: PMC10197882 DOI: 10.7150/ijbs.83158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Reactive oxygen species (ROS) induce multiple signaling cascades in the cell and hence play an important role in the regulation of the cell's fate. ROS can cause irreversible damage to DNA and proteins resulting in cell death. Therefore, finely tuned regulatory mechanisms exist in evolutionarily diverse organisms that are aimed at the neutralization of ROS and its consequences with respect to cellular damage. The SET domain-containing lysine methyltransferase Set7/9 (KMT7, SETD7, SET7, SET9) post-translationally modifies several histones and non-histone proteins via monomethylation of the target lysines in a sequence-specific manner. In cellulo, the Set7/9-directed covalent modification of its substrates affects gene expression, cell cycle, energy metabolism, apoptosis, ROS, and DNA damage response. However, the in vivo role of Set7/9 remains enigmatic. In this review, we summarize the currently available information regarding the role of methyltransferase Set7/9 in the regulation of ROS-inducible molecular cascades in response to oxidative stress. We also highlight the in vivo importance of Set7/9 in ROS-related diseases.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russian Federation
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | - Nickolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russian Federation
- School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan
| |
Collapse
|
14
|
Wu X, Shi X, Chen X, Yin Z. Advanced glycation end products regulate the receptor of AGEs epigenetically. Front Cell Dev Biol 2023; 11:1062229. [PMID: 36866277 PMCID: PMC9971228 DOI: 10.3389/fcell.2023.1062229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) can boost their receptor of AGE (RAGE) expression through the downstream signaling pathway to facilitate AGE-RAGE interaction. In this regulation process, the primary signaling pathways are NF-κB and STAT3. However, the inhibition of these transcription factors cannot completely block the upregulation of RAGE, which indicates AGEs may also impact RAGE expression via other pathways. In this study, we revealed that AGEs can exhibit epigenetic impacts on RAGE expression. Here, we used carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL) to treat liver cells and discovered that AGEs can promote the demethylation of the RAGE promoter region. To verify this epigenetic modification, we employed dCAS9-DNMT3a with sgRNA to specifically modify the RAGE promoter region against the effect of carboxymethyl-lysine and carboxyethyl-lysine. The elevated RAGE expressions were partially repressed after AGE-induced hypomethylation statuses were reversed. Additionally, TET1 were also upregulated in AGE-treated cells, indicating AGEs may epigenetically modulate RAGE through the elevating TET1 level.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| | - Xuanren Shi
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen, China
| | - Xiaoyong Chen
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Zhanhai Yin,
| |
Collapse
|
15
|
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022; 13:999001. [PMID: 36225386 PMCID: PMC9549250 DOI: 10.3389/fmicb.2022.999001] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut possesses millions of microbes that define a complex microbial community. The gut microbiota has been characterized as a vital organ forming its multidirectional connecting axis with other organs. This gut microbiota axis is responsible for host-microbe interactions and works by communicating with the neural, endocrinal, humoral, immunological, and metabolic pathways. The human gut microorganisms (mostly non-pathogenic) have symbiotic host relationships and are usually associated with the host’s immunity to defend against pathogenic invasion. The dysbiosis of the gut microbiota is therefore linked to various human diseases, such as anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes, inflammatory bowel disease, and cancer. The mechanism leading to the disease development has a crucial correlation with gut microbiota, metabolic products, and host immune response in humans. The understanding of mechanisms over gut microbiota exerts its positive or harmful impacts remains largely undefined. However, many recent clinical studies conducted worldwide are demonstrating the relation of specific microbial species and eubiosis in health and disease. A comprehensive understanding of gut microbiota interactions, its role in health and disease, and recent updates on the subject are the striking topics of the current review. We have also addressed the daunting challenges that must be brought under control to maintain health and treat diseases.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Afzaal,
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Faculdade de Ciências de Ourense, Universidade de Vigo, Ourense, Spain
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Rana Muhammad Aadil,
| |
Collapse
|
16
|
Batalha ADDSJ, Souza DCDM, Ubiera RD, Chaves FCM, Monteiro WM, da Silva FMA, Koolen HHF, Boechat AL, Sartim MA. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022; 12:biom12091208. [PMID: 36139047 PMCID: PMC9496332 DOI: 10.3390/biom12091208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.
Collapse
Affiliation(s)
| | - Damy Caroline de Melo Souza
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rosmery Duran Ubiera
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | | | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Tropical Medicine Foundation Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Hector Henrique Ferreira Koolen
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research Group in Metabolomics and Mass Spectrometry, Amazonas State University, Manaus 690065-130, Brazil
| | - Antônio Luiz Boechat
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Laboratory of Innovative Therapies, Department of Parasitology, Amazonas State University—UEA, Manaus 69080-900, Brazil
| | - Marco Aurélio Sartim
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Brazil
- Correspondence:
| |
Collapse
|
17
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
18
|
Binsaleh NK, Eltayeb R, Qanash H, Aziz MA, Albaradie R, Khan MWA. Presence of Circulatory Autoantibodies Against ROS-Modified Histone H1 Protein in Lymphoma Patients. Front Genet 2022; 13:909903. [PMID: 35692834 PMCID: PMC9174583 DOI: 10.3389/fgene.2022.909903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphoma is a chronic inflammatory disease in which the immune system is highly affected. Increased oxidative stress is one of the common conditions of cancer and affects macromolecules. Histone modifications affect the chromatin structure and functions. In this study, histone H1 (His-H1) protein was modified by reactive oxygen species (ROS), and structural and chemical changes were studied. Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) patients were selected, and oxidative stress markers, inflammatory cytokines, and serum autoantibodies were analyzed using biochemical and immunological assays. Furthermore, the formation of antigen-antibody immune complexes was assessed by the Langmuir plot. ROS-modified His-H1 (ROS-His-H1) showed substantial structural perturbation in protein (UV-hyperchromicity and increased intrinsic fluorescence) compared to the native His-H1 protein. A possible explanation for the changes is suggested by the exposure of the aromatic chromophore to the solvent. In-depth structural analysis by circular dichroism (CD) exhibited major changes in α-helix (−21.43%) and turns (+33%), reflecting changes in the secondary structure of histone H1 protein after ROS exposure. ELISA and competitive ELISA findings revealed high recognitions of serum autoantibodies to ROS-His-H1 from NHL, followed by HL subjects. Healthy controls showed negligible binding. Non-modified His-H1 did not show any binding with serum samples from either cohort. High apparent association constants (ACCs) were calculated for ROS-His-H1 using purified IgGs from NHL (1.46 × 10–6 M) compared to HL (1.33 × 10–6 M) patients. Non-modified His-H1 exhibited a hundred times less ACC for NHL (2.38 × 10–8 M) and HL (2.46 × 10–8 M) patients. Thus, ROS modifications of histone H1 cause structural changes and expose cryptic neo-epitopes on the protein against which autoantibodies were generated. These perturbations might affect the histone DNA interaction dynamics and potentially be correlated with gene dysregulation. These subtle molecular changes with an immune imbalance might further aggravate the disease.
Collapse
Affiliation(s)
- Naif K. Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Reem Eltayeb
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Raid Albaradie
- Applied Medical Sciences College, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
- *Correspondence: Mohd Wajid Ali Khan,
| |
Collapse
|
19
|
Dinić S, Arambašić Jovanović J, Uskoković A, Mihailović M, Grdović N, Tolić A, Rajić J, Đorđević M, Vidaković M. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management. Front Endocrinol (Lausanne) 2022; 13:1006376. [PMID: 36246880 PMCID: PMC9554708 DOI: 10.3389/fendo.2022.1006376] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
The biggest drawback of a current diabetes therapy is the treatment of the consequences not the cause of the disease. Regardless of the diabetes type, preservation and recovery of functional pancreatic beta cells stands as the biggest challenge in the treatment of diabetes. Free radicals and oxidative stress are among the major mediators of autoimmune destruction of beta cells in type 1 diabetes (T1D) or beta cell malfunction and death provoked by glucotoxicity and insulin resistance in type 2 diabetes (T2D). Additionally, oxidative stress reduces functionality of beta cells in T2D by stimulating their de-/trans-differentiation through the loss of transcription factors critical for beta cell development, maturity and regeneration. This review summarizes up to date clarified redox-related mechanisms involved in regulating beta cell identity and death, underlining similarities and differences between T1D and T2D. The protective effects of natural antioxidants on the oxidative stress-induced beta cell failure were also discussed. Considering that oxidative stress affects epigenetic regulatory mechanisms involved in the regulation of pancreatic beta cell survival and insulin secretion, this review highlighted huge potential of epigenetic therapy. Special attention was paid on application of the state-of-the-art CRISPR/Cas9 technology, based on targeted epigenome editing with the purpose of changing the differentiation state of different cell types, making them insulin-producing with ability to attenuate diabetes. Clarification of the above-mentioned mechanisms could provide better insight into diabetes etiology and pathogenesis, which would allow development of novel, potentially more efficient therapeutic strategies for the prevention or reversion of beta cell loss.
Collapse
|
20
|
Singh E, Matada GSP, Abbas N, Dhiwar PS, Ghara A, Das A. Management of COVID-19-induced cytokine storm by Keap1-Nrf2 system: a review. Inflammopharmacology 2021; 29:1347-1355. [PMID: 34373972 PMCID: PMC8352144 DOI: 10.1007/s10787-021-00860-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Ekta Singh
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | | | - Nahid Abbas
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Prasad Sanjay Dhiwar
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Arka Das
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| |
Collapse
|
21
|
Tando Y, Hiura H, Takehara A, Ito-Matsuoka Y, Arima T, Matsui Y. Epi-mutations for spermatogenic defects by maternal exposure to di(2-ethylhexyl) phthalate. eLife 2021; 10:70322. [PMID: 34319233 PMCID: PMC8318585 DOI: 10.7554/elife.70322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to environmental factors during fetal development may lead to epigenomic modifications in fetal germ cells, altering gene expression and promoting diseases in successive generations. In mouse, maternal exposure to di(2-ethylhexyl) phthalate (DEHP) is known to induce defects in spermatogenesis in successive generations, but the mechanism(s) of impaired spermatogenesis are unclear. Here, we showed that maternal DEHP exposure results in DNA hypermethylation of promoters of spermatogenesis-related genes in fetal testicular germ cells in F1 mice, and hypermethylation of Hist1h2ba, Sycp1, and Taf7l, which are crucial for spermatogenesis, persisted from fetal testicular cells to adult spermatogonia, resulting in the downregulation of expression of these genes. Forced methylation of these gene promoters silenced expression of these loci in a reporter assay. These results suggested that maternal DEHP exposure-induced hypermethylation of Hist1h2ba, Sycp1, and Taf7l results in downregulation of these genes in spermatogonia and subsequent defects in spermatogenesis, at least in the F1 generation.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoshi Hiura
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Mechanisms of Ataxia Telangiectasia Mutated (ATM) Control in the DNA Damage Response to Oxidative Stress, Epigenetic Regulation, and Persistent Innate Immune Suppression Following Sepsis. Antioxidants (Basel) 2021; 10:antiox10071146. [PMID: 34356379 PMCID: PMC8301080 DOI: 10.3390/antiox10071146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.
Collapse
|
23
|
Laqqan MM, Yassin MM. Potential effect of tobacco cigarettes smoking on global DNA methylation status and protamines transcripts in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Epigenetics refers to an alteration in gene expression without alteration in the sequence of DNA and this process may be affected by environmental factors and lifestyle like cigarette smoking. This study was designed to evaluate the potential effect of cigarette smoking on the global DNA methylation status and the transcription level of protamine 1 and protamine 2 in human spermatozoa. A total of 188 semen samples were collected from men with a mean age of 34.9 ± 5.8 years old (98 heavy smokers and 90 non-smokers). The DNA and RNA were isolated from purified spermatozoa, then the status of global DNA methylation and the transcription level of protamine 1 and protamine 2 were evaluated using ELISA and qPCR, respectively. The chromatin non-condensation and DNA fragmentation in human spermatozoa were evaluated using chromomycin A3 staining and TUNEL assay, respectively.
Results
A significant increase has been found in the status of global DNA methylation in spermatozoa of heavy smokers compared to non-smokers (7.69 ± 0.69 ng/μl vs. 4.90 ± 0.40 ng/μl, P < 0.001). Additionally, a significant reduction has been found in transcription level of protamine 1 (25.49 ± 0.31 vs. 23.94 ± 0.40, P < 0.001) and protamine 2 (28.27 ± 0.39 vs. 23.45 ± 0.30, P < 0.001) in heavy smokers. A downregulation has been found in the transcription level of protamine 1 and protamine 2 with a fold change of 0.497 and 0.047, respectively. A significant increase has been shown in the level of DNA fragmentation and chromatin non-condensation in heavy smokers compared to non-smokers (P < 0.001). On the other hand, a significant positive correlation has been found between sperm chromatin non-condensation, sperm DNA fragmentation, transcription level of protamine 1, transcription level of protamine 2, and global DNA methylation status (r = 0.304, P < 0.001; r = 0.399, P < 0.001; r = 0.216, P = 0.003; r = 0.494, P < 0.001, respectively).
Conclusion
Tobacco cigarette smoking has a potential influence on the global DNA methylation and the transcription level of protamine genes in human spermatozoa, and consequently, affect negatively on the semen parameters.
Collapse
|
24
|
DNA Methylation Is Correlated with Oxidative Stress in Myelodysplastic Syndrome-Relevance as Complementary Prognostic Biomarkers. Cancers (Basel) 2021; 13:cancers13133138. [PMID: 34201739 PMCID: PMC8268426 DOI: 10.3390/cancers13133138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a hematological malignancy with a high propensity to evolve to acute myeloid leukemia. Oxidative stress and abnormal DNA methylation are important in this neoplasia’s development and progression. We investigate whether oxidative stress parameters were correlated with localized and global DNA methylations in the peripheral blood of patients with MDS. We found that oxidative stress was positively correlated with DNA methylation and associated with worse overall survival. Biologically, these facts suggest a relationship between oxidative stress and DNA methylation, two common pathogenic mechanisms involved in MDS. Clinically, our findings can improve an MDS patient’s management if used as complementary prognostic biomarkers. Abstract Oxidative stress and abnormal DNA methylation have been implicated in cancer, including myelodysplastic syndromes (MDSs). This fact leads us to investigate whether oxidative stress is correlated with localized and global DNA methylations in the peripheral blood of MDS patients. Sixty-six MDS patients and 26 healthy individuals were analyzed. Several oxidative stress and macromolecule damage parameters were analyzed. Localized (gene promotor) and global DNA methylations (5-mC and 5-hmC levels; LINE-1 methylation) were assessed. MDS patients had lower levels of reduced glutathione and total antioxidant status (TAS) and higher levels of peroxides, nitric oxide, peroxides/TAS, and 8-hydroxy-2-deoxyguanosine compared with controls. These patients had higher 5-mC levels and lower 5-hmC/5-mC ratio and LINE-1 methylation and increased methylation frequency of at least one methylated gene. Peroxide levels and peroxide/TAS ratio were higher in patients with methylated genes than those without methylation and negatively correlated with LINE-1 methylation and positively with 5-mC levels. The 5-hmC/5-mC ratio was significantly associated with progression to acute leukemia and peroxide/TAS ratio with overall survival. This study points to a relationship between oxidative stress and DNA methylation, two common pathogenic mechanisms involved in MDS, and suggests the relevance of 5-hmC/5-mC and peroxide/TAS ratios as complementary prognostic biomarkers.
Collapse
|
25
|
Mustafa S, Pawar JS, Ghosh I. Fucoidan induces ROS-dependent epigenetic modulation in cervical cancer HeLa cell. Int J Biol Macromol 2021; 181:180-192. [PMID: 33771548 DOI: 10.1016/j.ijbiomac.2021.03.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Fucoidan is a sulfated polysaccharide obtained from marine algae and known for various pharmacological activities. In this study, we investigated the effect of Fucoidan on cell viability, redox balance, cytoskeletal component F-actin, HDAC inhibition, autophagy, and senescence phenomenon in human cervical cancer HeLa cell line in comparison to positive control suberoylanilide hydroxamic acid by flow cytometry, fluorescence microscopy, and western blotting. Our observations revealed that Fucoidan exposure induces cytotoxicity in HeLa cells via ROS and mitochondrial superoxide generation and loss of ATP. Colorimetrical studies suggested that Fucoidan impairs the function of HDAC expression. Fucoidan treatment also contributes to the change in the granularity of cells, senescence-associated heterochromatin foci formation that leads to senescence in HeLa cells. Moreover, we visualize that Fucoidan exhibits autophagosomes formation with monodansylcadaverine, and flow cytometry analysis by acridine orange further substantiates that Fucoidan triggers autophagy in HeLa cells. Additionally, the changes in the expression of proteins p21, p16, BECN1, and HDAC1 were seen as markers of senescence, autophagy, and HDAC inhibition by FACS and immunoblotting. Molecular docking study validates Fucoidan-HDAC1 association in corroboration with the experimental data. Collectively, these mechanistic studies demonstrated that Fucoidan could be a therapeutic molecule for targeting HDACs in cervical cancer.
Collapse
Affiliation(s)
- Saad Mustafa
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jogendra Singh Pawar
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
26
|
Soubry A, Murphy SK, Vansant G, He Y, Price TM, Hoyo C. Opposing Epigenetic Signatures in Human Sperm by Intake of Fast Food Versus Healthy Food. Front Endocrinol (Lausanne) 2021; 12:625204. [PMID: 33967953 PMCID: PMC8103543 DOI: 10.3389/fendo.2021.625204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Animal experiments have demonstrated that diets high in fats create a harmful environment for developing sperm cells, contributing to impaired reproductive health and induced risk for chronic diseases in the next generation. Changes at the level of the epigenome have been suggested to underlie these observations. Human data are limited to verify this hypothesis. While we earlier demonstrated a link between male obesity and DNA methylation changes at imprinted genes in mature sperm cells and newborns, it is currently unknown if -or how- a paternal eating pattern (related to obesity) is related to indices for epigenetic inheritance. We here aim to examine a yet unexplored link between consumption of healthy (rich in vitamins and fibers) or unhealthy ("fast") foods and methylation at imprint regulatory regions in DNA of sperm. We obtained semen and data from 67 men, as part of a North Carolina-based study: The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study. Dietary data included intake of fruits/nuts, vegetables/soups, whole grain bread, meat, seafood/fish, and fatty or processed food items. Multiple regression models were used to explore the association between dietary habits and clinical sperm parameters as well as DNA methylation levels, quantified using bisulfite pyrosequencing at 12 differentially methylated regions (DMRs) of the following imprinted genes: GRB10, IGF2, H19, MEG3, NDN, NNAT, PEG1/MEST, PEG3, PLAGL1, SNRPN, and SGCE/PEG10. After adjusting for age, obesity status and recruitment method, we found that Total Motile Count (TMC) was significantly higher if men consumed fruits/nuts (β=+6.9, SE=1.9, p=0.0005) and vegetables (β=+5.4, SE=1.9, p=0.006), whereas consumption of fries was associated with lower TMC (β=-20.2, SE=8.7, p=0.024). Semen volume was also higher if vegetables or fruits/nuts were frequently consumed (β=+0.06, SE=0.03, p=0.03). Similarly, our sperm epigenetic analyses showed opposing associations for healthy versus fast food items. Frequent consumption of fries was related to a higher chance of sperm being methylated at the MEG3-IG CpG4 site (OR=1.073, 95%CI: 1.035-1.112), and high consumption of vegetables was associated with a lower risk of DNA methylation at the NNAT CpG3 site (OR=0.941, 95%CI: 0.914-0.968). These results remained significant after adjusting for multiple testing. We conclude that dietary habits are linked to sperm epigenetic outcomes. If carried into the next generation paternal unhealthy dietary patterns may result in adverse metabolic conditions and increased risk for chronic diseases in offspring.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven—University, Leuven, Belgium
- *Correspondence: Adelheid Soubry,
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, NC, United States
- Duke University School of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Greet Vansant
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven—University, Leuven, Belgium
| | - Yang He
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven—University, Leuven, Belgium
| | - Thomas M. Price
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
|
28
|
Okechukwu C. Targeting epigenetic alterations in the treatment of glioma. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Khan A, Fahad TM, Akther T, Zaman T, Hasan MF, Islam Khan MR, Islam MS, Kishi S. Carbofuran accelerates the cellular senescence and declines the life span of spns1 mutant zebrafish. J Cell Mol Med 2020; 25:1048-1059. [PMID: 33277797 PMCID: PMC7812278 DOI: 10.1111/jcmm.16171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Carbofuran is a carbamate pesticide, widely used in agricultural practices to increase crop productivity. In mammals, carbofuran is known to cause several untoward effects, such as apoptosis in the hippocampal neuron, oxidative stress, loss of memory and chromosomal anomalies. Most of these effects are implicated with cellular senescence. Therefore, the present study aimed to determine the effect of carbofuran on cellular senescence and biological ageing. Spinster homolog 1 (Spns1) is a transmembrane transporter, regulates autolysosomal biogenesis and plays a role in cellular senescence and survival. Using senescence‐associated β‐galactosidase staining, we found that carbofuran accelerates the cellular senescence in spns1 mutant zebrafish. The yolk opaqueness, a premature ageing phenotype in zebrafish embryos, was accelerated by carbofuran treatment. In the survival study, carbofuran shortened the life span of spns1 mutant zebrafish. Autophagy is the cellular lysosomal degradation, usually up‐regulated in the senescent cells. To know the impact of carbofuran exposure on autophagy progress, we established a double‐transgenic zebrafish line, harbouring EGFP‐tagged LC3‐II and mCherry‐tagged Lamp1 on spns1 mutant background, whereas we found, carbofuran exposure synergistically accelerates autolysosome formation with insufficient lysosome‐mediated degradation. Our data collectively suggest that carbofuran exposure synergistically accelerates the cellular senescence and affects biological ageing in spns1 defective animals.
Collapse
Affiliation(s)
- Alam Khan
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Tanjima Akther
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Tanjeena Zaman
- Department of Fisheries, University of Rajshahi, Rajshahi, Bangladesh.,Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Md Faruk Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | | | - Shuji Kishi
- S&J Kishi Research Corporation, Jupiter, FL, USA
| |
Collapse
|
30
|
Alhayaza R, Haque E, Karbasiafshar C, Sellke FW, Abid MR. The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Front Chem 2020; 8:592688. [PMID: 33330380 PMCID: PMC7732658 DOI: 10.3389/fchem.2020.592688] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) has been the leading cause of death for many decades, highlighting the importance of new research and treatments in the field. The role of hypoxia and subsequent free radical production [reactive oxygen species (ROS)] have become an area of particular interest in CVD. Interestingly, our laboratory and other laboratories have recently reported positive roles of subcellular ROS in modulating endothelial cell (EC) metabolism, proliferation, and angiogenesis. This bidirectional relationship between ROS and EC metabolism, as well as functional changes, continues to be an area of active research. Interestingly, ECs have been shown to rely on anaerobic processes for ATP generation, despite their direct access to oxygen. This paradox has proven to be beneficial as the major reliance on glycolysis produces ATP faster, preserves oxygen, and results in reduced ROS levels in contrast to oxidative phosphorylation. This review will address the relationship between ROS and carbohydrate, lipid, and nitrogen metabolism in ECs, and their effects on EC phenotype such as sprouting angiogenesis.
Collapse
Affiliation(s)
- Raid Alhayaza
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Emaan Haque
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
31
|
Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H 2O 2- production. Nat Neurosci 2020; 23:1555-1566. [PMID: 33199896 DOI: 10.1038/s41593-020-00735-y] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
Although the pathological contributions of reactive astrocytes have been implicated in Alzheimer's disease (AD), their in vivo functions remain elusive due to the lack of appropriate experimental models and precise molecular mechanisms. Here, we show the importance of astrocytic reactivity on the pathogenesis of AD using GiD, a newly developed animal model of reactive astrocytes, where the reactivity of astrocytes can be manipulated as mild (GiDm) or severe (GiDs). Mechanistically, excessive hydrogen peroxide (H2O2) originated from monoamine oxidase B in severe reactive astrocytes causes glial activation, tauopathy, neuronal death, brain atrophy, cognitive impairment and eventual death, which are significantly prevented by AAD-2004, a potent H2O2 scavenger. These H2O2--induced pathological features of AD in GiDs are consistently recapitulated in a three-dimensional culture AD model, virus-infected APP/PS1 mice and the brains of patients with AD. Our study identifies H2O2 from severe but not mild reactive astrocytes as a key determinant of neurodegeneration in AD.
Collapse
|
32
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 542] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
33
|
Han C, Wang Z, Xu Y, Chen S, Han Y, Li L, Wang M, Jin X. Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1269624. [PMID: 33062666 PMCID: PMC7538255 DOI: 10.1155/2020/1269624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa), known as a heterogenous disease, has a high incidence and mortality rate around the world and seriously threatens public health. As an inevitable by-product of cellular metabolism, reactive oxygen species (ROS) exhibit beneficial effects by regulating signaling cascades and homeostasis. More and more evidence highlights that PCa is closely associated with age, and high levels of ROS are driven through activation of several signaling pathways with age, which facilitate the initiation, development, and progression of PCa. Nevertheless, excessive amounts of ROS result in harmful effects, such as genotoxicity and cell death. On the other hand, PCa cells adaptively upregulate antioxidant genes to detoxify from ROS, suggesting that a subtle balance of intracellular ROS levels is required for cancer cell functions. The current review discusses the generation and biological roles of ROS in PCa and provides new strategies based on the regulation of ROS for the treatment of PCa.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lin Li
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
34
|
Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Curr Oncol Rep 2020; 22:115. [PMID: 32827112 PMCID: PMC7442549 DOI: 10.1007/s11912-020-00977-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of Review Recognize which are the elements that predict why a person is aging faster or slower and which intervention we can arrange to slow down the process, which permits to prevent or delay the progression of multimorbidity and disability. Recent Findings Aging is a complex process that leads to changes in all the systems of the body and all the functions of the person; however, aging develops at different rates in different people, and chronological age is not always consistent with biological age. Summary Gerontologists are focused not only on finding the best theory able to explain aging but also on identifying one or more markers, which are able to describe aging processes. These biomarkers are necessary to better define the aging-related pathologies, manage multimorbidity, and improve the quality of life. The aim of this paper is to review the most recent evidence on aging biomarkers and the clusters related to them for personalization of treatments.
Collapse
|
35
|
Oxidative stress in alcohol-related liver disease. World J Hepatol 2020. [DOI: 10.4254/wjh.v12.i7.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver disease. World J Hepatol 2020; 12:332-349. [PMID: 32821333 PMCID: PMC7407918 DOI: 10.4254/wjh.v12.i7.332] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is one of the leading causes of the global burden of disease and results in high healthcare and economic costs. Heavy alcohol misuse leads to alcohol-related liver disease, which is responsible for a significant proportion of alcohol-attributable deaths globally. Other than reducing alcohol consumption, there are currently no effective treatments for alcohol-related liver disease. Oxidative stress refers to an imbalance in the production and elimination of reactive oxygen species and antioxidants. It plays important roles in several aspects of alcohol-related liver disease pathogenesis. Here, we review how chronic alcohol use results in oxidative stress through increased metabolism via the cytochrome P450 2E1 system producing reactive oxygen species, acetaldehyde and protein and DNA adducts. These trigger inflammatory signaling pathways within the liver leading to expression of pro-inflammatory mediators causing hepatocyte apoptosis and necrosis. Reactive oxygen species exposure also results in mitochondrial stress within hepatocytes causing structural and functional dysregulation of mitochondria and upregulating apoptotic signaling. There is also evidence that oxidative stress as well as the direct effect of alcohol influences epigenetic regulation. Increased global histone methylation and acetylation and specific histone acetylation inhibits antioxidant responses and promotes expression of key pro-inflammatory genes. This review highlights aspects of the role of oxidative stress in disease pathogenesis that warrant further study including mitochondrial stress and epigenetic regulation. Improved understanding of these processes may identify novel targets for therapy.
Collapse
Affiliation(s)
- Huey K Tan
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| | - Euan Yates
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
| | - Kristen Lilly
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Department of Clinical Immunology, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| | - Ashwin D Dhanda
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| |
Collapse
|
37
|
The Premature Senescence in Breast Cancer Treatment Strategy. Cancers (Basel) 2020; 12:cancers12071815. [PMID: 32640718 PMCID: PMC7408867 DOI: 10.3390/cancers12071815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent blockade of cell proliferation. In response to therapy-induced stress, cancer cells undergo apoptosis or premature senescence. In apoptosis-resistant cancer cells or at lower doses of anticancer drugs, therapy-induced stress leads to premature senescence. The role of this senescence in cancer treatment is discussable. First of all, the senescent cells lose the ability to proliferate, migrate, and invade. In addition, the senescent cells secrete a set of proteins (inflammatory cytokines, chemokines, growth factors) known as the senescence-associated secretory phenotype (SASP), which influences non-senescent normal cells and non-senescent cancer cells in the tumor microenvironment and triggers tumor promotion and recurrence. Recently, many studies have examined senescence induction through breast cancer therapy and potentially using this phenomenon to treat this cancer. This review summarizes the recent in vitro, in vivo, and clinical studies investigating senescence in breast cancer treatments. Senescence inductors, senolytics, as well as their action mechanism are discussed herein. Potential SASP-modulating treatment strategies are also described.
Collapse
|
38
|
Houri K, Mori T, Onodera Y, Tsujimoto T, Takehara T, Nakao S, Teramura T, Fukuda K. miR-142 induces accumulation of reactive oxygen species (ROS) by inhibiting pexophagy in aged bone marrow mesenchymal stem cells. Sci Rep 2020; 10:3735. [PMID: 32111926 PMCID: PMC7048811 DOI: 10.1038/s41598-020-60346-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/06/2020] [Indexed: 12/26/2022] Open
Abstract
Elevation of the levels of reactive oxygen species (ROS) is a major tissue-degenerative phenomenon involved in aging and aging-related diseases. The detailed mechanisms underlying aging-related ROS generation remain unclear. Presently, the expression of microRNA (miR)-142-5p was significantly upregulated in bone marrow mesenchymal stem cells (BMMSCs) of aged mice. Overexpression of miR-142 and subsequent observation revealed that miR-142 involved ROS accumulation through the disruption of selective autophagy for peroxisomes (pexophagy). Mechanistically, attenuation of acetyltransferase Ep300 triggered the upregulation of miR-142 in aged BMMSCs, and miR-142 targeted endothelial PAS domain protein 1 (Epas1) was identified as a regulatory protein of pexophagy. These findings support a novel molecular mechanism relating aging-associated ROS generation and organelle degradation in BMMSCs, and suggest a potential therapeutic target for aging-associated disorders that are accompanied by stem cell degeneration.
Collapse
Affiliation(s)
- Kei Houri
- Department of Anesthesiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tatsufumi Mori
- Kindai University Life Science Research Institute, Kindai University, Osaka, Japan
| | - Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takatoshi Tsujimoto
- Department of Anesthesiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan.
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
39
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
40
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
41
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
42
|
Thimmulappa RK, Chattopadhyay I, Rajasekaran S. Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7120104 DOI: 10.1007/978-981-32-9366-3_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globally, respiratory diseases are major cause of disability and mortality, and more alarmingly, it disproportionately affects developing countries, which is largely attributed to poor quality of air. Tobacco smoke and emissions from combustion of fossil fuel and biomass fuel are the major airborne pollutants affecting human lung health. Oxidative stress is the dominant driving force by which the airborne pollutants exert their toxicity in lungs and cause respiratory diseases. Most airborne pollutants are associated with intrinsic oxidative potential and, additionally, stimulate endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate redox signals and cause irreversible damage to critical biomolecules (lipids, proteins and DNA) and initiate various pathogenic cellular process. This chapter provides an insight into oxidative stress-linked pathogenic cellular process such as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, epigenetic changes, profibrotic signals and mucus hypersecretion, which drive the development and progression of lung diseases. Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic acid, uric acid, vitamin E) antioxidant defences. However, sustained production of free radicals due to continuous exposures to airborne pollutants overwhelms lung antioxidant defences and causes oxidative injury. Preclinical studies have demonstrated the critical roles and therapeutic potential of upregulating lung antioxidants for intervention of respiratory diseases; however, so far clinical benefits in antioxidant supplementation trials have been minimal and conflicting. Antioxidants alone may not be effective in treatment of respiratory diseases; however it could be a promising adjunctive therapy.
Collapse
|
43
|
Pan CH, Chen CJ, Shih CM, Wang MF, Wang JY, Wu CH. Oxidative stress-induced cellular senescence desensitizes cell growth and migration of vascular smooth muscle cells through down-regulation of platelet-derived growth factor receptor-beta. Aging (Albany NY) 2019; 11:8085-8102. [PMID: 31584878 PMCID: PMC6814625 DOI: 10.18632/aging.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
The relationship between aging and restenosis are unclear. The purposes of this study were to investigate the possible pathological role and mechanism of aging on formation of restenosis. Our data indicated that cell proliferation and migration of the oxidative stress-induced senescent vascular smooth muscle cells were obviously desensitized to stimulation by platelet-derived growth factor (PDGF)-BB, which may have been caused by suppression of promoter activity, transcription, translation, and activation levels of PDGF receptor (PDGFR)-β. The analyzed data obtained from the binding array of transcription factors (TFs) showed that binding levels of eighteen TFs on the PDGFR-β promoter region (-523 to -1) were significantly lower in senescent cells compared to those of non-senescent cells. Among these TFs, the bioinformatics prediction suggested that the putative binding sites of ten TFs were found in this promoter region. Of these, transcriptional levels of seven TFs were markedly reduced in senescent cells. The clinical data showed that the proportion of restenosis was relatively lower in the older group than that in the younger group. Our study results suggested that a PDGFR-β-mediated pathway was suppressed in aging cells, and our clinical data showed that age and the vascular status were slightly negatively correlated in overall participants.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Jui Chen
- Department of Pharmacy, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan
| | - Jie-Yu Wang
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
44
|
Teerawattanapong N, Udomsinprasert W, Ngarmukos S, Tanavalee A, Honsawek S. Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis. Heliyon 2019; 5:e01774. [PMID: 31193532 PMCID: PMC6536726 DOI: 10.1016/j.heliyon.2019.e01774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023] Open
Abstract
Aim Joints inflammation is one of the most pathologic processes leading to the development of osteoarthritis (OA), possibly leading to genomic instability. LINE-1 is transposable elements, and alterations in LINE-1 methylation induced by 8-hydroxy-2′-deoxyguanosine (8-OHdG) can cause genomic instability contributing to OA development. Herein, the present study examined associations between LINE-1 methylation, 8-OHdG, and knee OA severity. Methods LINE-1 methylation levels were measured in 104 knee OA patients and 96 healthy controls by quantitative combined bisulfite restriction analysis. 8–OHdG was investigated by ELISA. The knee OA severity was appraised by questionnaires (VAS, WOMAC, KOOS, and lequesne index) and radiological severity based on the grading of Kellgren and Lawrence (KL) standard criteria. Key findings Blood leukocyte LINE-1 methylation levels were significantly lower in knee OA patients than in healthy controls. Interestingly, individuals with LINE-1 hypomethylation were significantly associated with an elevated risk of knee OA. Linear regression analysis revealed that LINE-1 methylation was independently associated with KL grading of knee OA. Furthermore, plasma 8–OHdG levels in OA cases were not significantly different from those in healthy volunteers, whereas synovial fluid 8–OHdG values were considerably higher than in paired plasma specimens of the OA subjects. Significance This study demonstrated that LINE-1 hypomethylation in blood leukocytes was associated with increased risk and radiographic severity of knee OA, and increased synovial fluid 8–OHdG levels were observed in knee OA patients. Collectively, LINE-1 hypomethylation and elevated 8–OHdG could emerge as biomarkers indicating the severity of knee OA and may take a possible part in the pathological process of knee OA.
Collapse
Affiliation(s)
- Nipaporn Teerawattanapong
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | - Srihatach Ngarmukos
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aree Tanavalee
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
45
|
Manganese oxide nanoparticles induce genotoxicity and DNA hypomethylation in the moss Physcomitrella patens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:146-157. [DOI: 10.1016/j.mrgentox.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
|
46
|
Investigation on potential associations of oxidatively generated DNA/RNA damage with lung, colorectal, breast, prostate and total cancer incidence. Sci Rep 2019; 9:7109. [PMID: 31068619 PMCID: PMC6506483 DOI: 10.1038/s41598-019-42596-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been linked to cancer development in previous studies. However, the association between pre-diagnostic oxidatively generated DNA/RNA damage levels and incident cancer has rarely been investigated. Urinary oxidized guanine/guanosine (OxGua) concentrations, including 8-hydroxy-2′-deoxyguanosine, were assessed in 8,793 older adults in a population-based German cohort. 1,540 incident cancer cases, including 207 lung, 196 colorectal, 218 breast and 245 prostate cancer cases were diagnosed during over 14 years of follow-up. Associations of OxGua levels with cancer outcomes were not observed in the total population in multi-variable adjusted Cox regression models. However, in subgroup analyses, colorectal cancer incidence increased by 8%, 9% and 8% with one standard deviation increase in OxGua levels among current non-smokers, female and non-obese participants, respectively. Additionally, among non-smokers, overall and prostate cancer incidences statistically significantly increased by 5% and 13% per 1 standard deviation increase in OxGua levels, respectively. In contrast, OxGua levels were inversely associated with the risk of prostate cancer among current smokers. However, none of the subgroup analyses had p-values below a threshold for statistical significance after correction for multiple testing. Thus, results need to be validated in further studies. There might be a pattern that oxidatively generated DNA/RNA damage is a weak cancer risk factor in the absence of other strong risk factors, such as smoking, obesity and male sex.
Collapse
|
47
|
Mayorga L, Salassa BN, Marzese DM, Loos MA, Eiroa HD, Lubieniecki F, García Samartino C, Romano PS, Roqué M. Mitochondrial stress triggers a pro-survival response through epigenetic modifications of nuclear DNA. Cell Mol Life Sci 2019; 76:1397-1417. [PMID: 30673822 PMCID: PMC11105675 DOI: 10.1007/s00018-019-03008-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction represents an important cellular stressor and when intense and persistent cells must unleash an adaptive response to prevent their extinction. Furthermore, mitochondria can induce nuclear transcriptional changes and DNA methylation can modulate cellular responses to stress. We hypothesized that mitochondrial dysfunction could trigger an epigenetically mediated adaptive response through a distinct DNA methylation patterning. We studied cellular stress responses (i.e., apoptosis and autophagy) in mitochondrial dysfunction models. In addition, we explored nuclear DNA methylation in response to this stressor and its relevance in cell survival. Experiments in cultured human myoblasts revealed that intense mitochondrial dysfunction triggered a methylation-dependent pro-survival response. Assays done on mitochondrial disease patient tissues showed increased autophagy and enhanced DNA methylation of tumor suppressor genes and pathways involved in cell survival regulation. In conclusion, mitochondrial dysfunction leads to a "pro-survival" adaptive state that seems to be triggered by the differential methylation of nuclear genes.
Collapse
Affiliation(s)
- Lía Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina.
| | - Betiana N Salassa
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
- Facultad de Odontología, Univeridad Nacional de Cuyo- Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| | - Diego M Marzese
- John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA, 90404, USA
| | - Mariana A Loos
- Hospital de Pediatría J.P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - Hernán D Eiroa
- Hospital de Pediatría J.P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Hospital de Pediatría J.P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - Clara García Samartino
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| | - Patricia S Romano
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| | - María Roqué
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| |
Collapse
|
48
|
Reactive oxygen species and cancer: A complex interaction. Cancer Lett 2019; 452:132-143. [PMID: 30905813 DOI: 10.1016/j.canlet.2019.03.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Elevated levels of Reactive Oxygen Species (ROS), increased antioxidant ability and the maintenance of redox homeostasis can cumulatively contribute to tumor progression and metastasis. The sources and the role of ROS in a heterogeneous tumor microenvironment can vary at different stages of tumor: initiation, development, and progression, thus making it a complex subject. In this review, we have summarized the sources of ROS generation in cancer cells, its role in the tumor microenvironment, the possible functions of ROS and its important scavenger systems in tumor progression with special emphasis on solid tumors.
Collapse
|
49
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
50
|
Gào X, Zhang Y, Burwinkel B, Xuan Y, Holleczek B, Brenner H, Schöttker B. The associations of DNA methylation alterations in oxidative stress-related genes with cancer incidence and mortality outcomes: a population-based cohort study. Clin Epigenetics 2019; 11:14. [PMID: 30678711 PMCID: PMC6346508 DOI: 10.1186/s13148-018-0604-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Reactive oxygen species may be involved in epigenetic gene activation or silencing. We aimed to identify CpG sites, at which DNA methylation is related to urinary 8-isoprostane levels (biomarker of lipid peroxidation) and cancer or mortality outcomes. This investigation was based on a German, population-based cohort with linkage to cancer and mortality registry data (2000–2016). Results Blood DNA methylation in promoter regions of 519 genes, known to be involved in pathways from oxidative stress (OS) to cancer, was obtained at the cohort's baseline examination. Inverse associations of DNA methylation at cg25365794 (ALOXE3) and cg08862778 (MTOR) with 8-isoprostane levels were observed in a derivation set (n = 1000) and validated in two independent subsets of the cohort (n = 548 and n = 741). Multivariate regression models were used to evaluate the associations of DNA methylation at the two CpG sites with lung, colorectal, prostate, breast, and overall cancer incidence as well as CVD, cancer, and all-cause mortality. DNA methylation at cg25365794 (ALOXE3) was inversely associated with lung and prostate cancer incidence. DNA methylation at cg08862778 (MTOR) was associated with a 43% lower breast cancer incidence in the top vs. bottom tertile. Conclusion The finding for ALOXE3 may not be causal. As ALOXE3 is mainly expressed in skin tissue, the observed association might reflect the fact that both DNA methylation at the ALOXE3 gene and urinary 8-isoprostane concentrations depend on the level of OS in tissues. Contrarily, the finding for the MTOR gene and breast cancer is biologically plausible because the MTOR protein plays an important role in PI3K/Akt signaling, which is a pathway related to cancer development and cell senescence. Electronic supplementary material The online version of this article (10.1186/s13148-018-0604-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Division Molecular Biology of Breast Cancer, University Women's Clinic, Heidelberg University, Voßstraße 9, 69115, Heidelberg, Germany
| | - Yang Xuan
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Krebsregister Saarland, Präsident-Baltz-Straße 5, 66119, Saarbrücken, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany.
| |
Collapse
|