1
|
Yesilyurt-Dirican ZE, Qi C, Wang YC, Simm A, Deelen L, Hafiz Abbas Gasim A, Lewis-McDougall F, Ellison-Hughes GM. SGLT2 inhibitors as a novel senotherapeutic approach. NPJ AGING 2025; 11:35. [PMID: 40348751 PMCID: PMC12065912 DOI: 10.1038/s41514-025-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Cellular senescence is the permanent cessation of cell proliferation and growth. Senescent cells accumulating in tissues and organs with aging contribute to many chronic diseases, mainly through the secretion of a pro-inflammatory senescence-associated secretory phenotype (SASP). Senotherapeutic (senolytic or senomorphic) strategies targeting senescent cells or/and their SASP are being developed to prolong healthy lifespan and treat age-related pathologies. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of anti-diabetic drugs that promote the renal excretion of glucose, resulting in lower blood glucose levels. Beyond their glucose-lowering effects, SGLT2 inhibitors have demonstrated protective effects against cardiovascular and renal events. Moreover, SGLT2 inhibitors have recently been associated with the inhibition of cell senescence, making them a promising therapeutic approach for targeting senescence and aging. This review examines the latest research on the senotherapeutic potential of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Zeynep Elif Yesilyurt-Dirican
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Ce Qi
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Yi-Chian Wang
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Annika Simm
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Laura Deelen
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alia Hafiz Abbas Gasim
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fiona Lewis-McDougall
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Georgina M Ellison-Hughes
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
2
|
Kloza M, Krzyżewska A, Kozłowska H, Budziak S, Baranowska-Kuczko M. Empagliflozin Plays Vasoprotective Role in Spontaneously Hypertensive Rats via Activation of the SIRT1/AMPK Pathway. Cells 2025; 14:507. [PMID: 40214461 PMCID: PMC11987869 DOI: 10.3390/cells14070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, prevents endothelial dysfunction, but its effects on vascular tone in hypertension remain unclear. This study investigated whether EMPA modulates vasomotor tone via sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) pathways in spontaneously hypertensive rats (SHR) and controls (Wistar Kyoto rats, WKY). Functional (wire myography, organ bath) and biochemical (Western blot) studies were conducted on the third-order of the superior mesenteric arteries (sMAs) and/or aortas. EMPA induced concentration-dependent relaxation of preconstricted sMAs in both groups. In SHR, EMPA enhanced acetylcholine (Ach)-induced relaxation in sMAs and aortas and reduced constriction induced by phenylephrine (Phe) and U46619 in sMAs. The SIRT1 inhibitor (EX527) abolished EMPA's effects on Ach-mediated relaxation and U46619-induced vasoconstriction, while AMPK inhibition reduced Ach-mediated relaxation and Phe-induced vasoconstriction. SHR showed increased SGLT2 and SIRT1 expression and decreased pAMPK/AMPK levels in sMAs. In conclusion, EMPA might exert vasoprotective effects in hypertension by enhancing endothelium-dependent relaxation and reducing constriction via AMPK/SIRT1 pathways. These properties could improve vascular health in patients with hypertension and related conditions. Further studies are needed to explore new indications for SGLT2 inhibitors.
Collapse
Affiliation(s)
- Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Sandra Budziak
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (A.K.); (H.K.); (S.B.)
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
3
|
Zhang JJ, Ye XR, Liu XS, Zhang HL, Qiao Q. Impact of sodium-glucose cotransporter-2 inhibitors on pulmonary vascular cell function and arterial remodeling. World J Cardiol 2025; 17:101491. [PMID: 39866213 PMCID: PMC11755123 DOI: 10.4330/wjc.v17.i1.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling. Specifically, these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function, suppressing pulmonary smooth muscle cell proliferation and migration, reversing pulmonary arterial remodeling, and maintaining hemodynamic equilibrium. This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling, thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Rui Ye
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Song Liu
- Department of Biochemistry, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Qian Qiao
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China.
| |
Collapse
|
4
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
5
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2678-2691. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
6
|
Melzer T, Graf V, Kronseder A, Karrasch S, Kerschner M, Vogelmeier CF, Bals R, Alter P, Watz H, Fähndrich S, Behr J, Waschki B, Trudzinski FC, Jörres RA, Kahnert K. Skin Markers of Premature Ageing in Patients with COPD: Results Form COSYCONET. J Clin Med 2024; 13:6972. [PMID: 39598116 PMCID: PMC11595569 DOI: 10.3390/jcm13226972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is commonly associated with ageing, with the prevalence and severity increasing by age. Smoking-induced premature ageing is thought to contribute to COPD, particularly lung emphysema. This study aimed to explore the relationship between lung function impairment and skin texture, as a marker of biological or premature ageing, in COPD patients. Methods: A subcohort from the COSYCONET COPD-study was analyzed, where skin-relief replicas of the eye's outer corner and mid-lower inner arm were collected, along with semi-quantitative facial photographs. We examined the correlation between skin parameters and lung function, particularly the diffusing capacity (TLCO) as an indicator of emphysema. Results: Among 46 COPD patients (69 ± 8 years, 52% female), skin texture from the inner forearm, but not from the eye corner, was significantly associated with TLCO% predicted, with a higher skin roughness correlating with a lower TLCO (p = 0.015). This relationship persisted after adjusting for age, BMI, sex, pack years, and smoking status. No significant associations were found with facial photographs. Conclusions: These findings suggest that systemic ageing, reflected in inner arm skin texture, is linked to lung emphysema. Skin ageing markers may be valuable in future interventional studies involving anti-ageing treatments.
Collapse
Affiliation(s)
- Thomas Melzer
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany; (V.G.); (J.B.); (K.K.)
| | - Veronika Graf
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany; (V.G.); (J.B.); (K.K.)
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Angelika Kronseder
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), 35392 Munich, Germany; (A.K.); (S.K.); (R.A.J.)
| | - Stefan Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), 35392 Munich, Germany; (A.K.); (S.K.); (R.A.J.)
| | - Martina Kerschner
- Division of Cosmetic Science, Department of Chemistry, University of Hamburg, 20148 Hamburg, Germany;
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, German Center for Lung Research (DZL), 35392 Marburg, Germany;
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology, Critical Care Care Medicine, Saarland University Hospital, 66421 Homburg, Germany;
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg (UMR), 35037 Marburg, Germany;
| | - Henrik Watz
- Pulmonary Research Institute, Lungen Clinic Grosshansdorf, 22927 Grosshansdorf, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Woehrendamm 80, 22927 Grosshansdorf, Germany;
| | - Sebastian Fähndrich
- Department of Pneumology, University Medical Centre Freiburg, 79106 Freiburg, Germany;
| | - Jürgen Behr
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany; (V.G.); (J.B.); (K.K.)
| | - Benjamin Waschki
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Woehrendamm 80, 22927 Grosshansdorf, Germany;
- Department of Pneumology, Itzehoe Hospital, 25524 Itzehoe, Germany
| | - Franziska Christina Trudzinski
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), University of Heidelberg, 69117 Heidelberg, Germany;
| | - Rudolf A. Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), 35392 Munich, Germany; (A.K.); (S.K.); (R.A.J.)
| | - Kathrin Kahnert
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany; (V.G.); (J.B.); (K.K.)
- MediCenter Germering, 82110 Germering, Germany
| |
Collapse
|
7
|
Li L, Liu H, Chai Q, Wei J, Qin Y, Yang J, Liu H, Qi J, Guo C, Lu Z. Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells. Cell Mol Life Sci 2024; 81:448. [PMID: 39520538 PMCID: PMC11550308 DOI: 10.1007/s00018-024-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD+/NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification.
Collapse
MESH Headings
- Glucosides/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Cell Transdifferentiation/drug effects
- Animals
- Benzhydryl Compounds/pharmacology
- Osteogenesis/drug effects
- Signal Transduction/drug effects
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/drug therapy
- Sodium-Glucose Transporter 2/metabolism
- Sodium-Glucose Transporter 2/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Humans
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Mice
- Male
- Mice, Inbred C57BL
- Cells, Cultured
- Glucose/metabolism
Collapse
Affiliation(s)
- Long Li
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huimin Liu
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Quanyou Chai
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Junyi Wei
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqiao Qin
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingyao Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - He Liu
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Guo
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhaoyang Lu
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, Duque-Ossman JJ, Abreu-Lomba A. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs 2024; 24:707-718. [PMID: 39179723 DOI: 10.1007/s40256-024-00673-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group's mechanism of action.
Collapse
Affiliation(s)
- David Aristizábal-Colorado
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico
| | - Martín Ocampo-Posada
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Faculty of Health, Pontificia Universidad Javeriana, Cali, Colombia
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Universidad Javeriana, Cali, Colombia
| | - Wilfredo Antonio Rivera-Martínez
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Department of Endocrinology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - David Corredor-Rengifo
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
| | - Jorge Rico-Fontalvo
- Department of Nephrology. Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
- Latin American Society of Nephrology and Arterial Hypertension (SLANH), Panama City, Panamá
| | - Juan Esteban Gómez-Mesa
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico.
- Cardiology Department, Fundación Valle del Lili, Cali, Colombia.
- Department of Health Sciences, Universidad Icesi, Cali, Colombia.
| | - John Jairo Duque-Ossman
- Universidad Del Quindío, Armenia, Colombia
- Latin American Federation of Endocrinology (FELAEN), Armenia, Colombia
| | - Alin Abreu-Lomba
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Endocrinology Department, Clínica Imbanaco, Cali, Colombia
| |
Collapse
|
9
|
Radić J, Vučković M, Đogaš H, Gelemanović A, Belančić A, Radić M. Is Arterial Stiffness Interconnected with Cardiovascular Drug Prescription Patterns, Body Composition Parameters, and the Quality of Blood Pressure Regulation in Hypertensive Patients? Biomedicines 2024; 12:2062. [PMID: 39335575 PMCID: PMC11429216 DOI: 10.3390/biomedicines12092062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Arterial hypertension (AH) is a significant risk factor for cardiovascular disease and is associated with increased arterial stiffness, particularly as measured by pulse wave velocity (PWV). This study aims to explore the relationships between age groups, antihypertensive and new oral antidiabetic drugs, body composition, and arterial stiffness parameters in hypertensive patients. METHODS A single-center cross-sectional study was conducted including 584 participants who underwent 24 h ambulatory blood pressure monitoring (including central blood pressure (BP) and PWV measurement), body composition analysis, and provided medical history and current pharmacotherapy data. RESULTS The study found that PWV was significantly higher in patients with poorly regulated BP in those aged 65 years and older. Significant PWV predictors included systolic BP, heart rate, peripheral mean arterial pressure, peripheral pulse pressure, augmentation index, calcium channel blockers, moxonidine, sodium-glucose co-transporter 2 inhibitors, urapidil, and statin prescription. Also, statistically significant negative correlations were found between PWV and visceral fat level, fat-free mass, and the percentage of muscle mass. CONCLUSIONS The findings suggest that arterial stiffness is interconnected with peripheral and central blood pressure parameters, body composition parameters, and prescribed hypertensive and new antidiabetic drugs.
Collapse
Affiliation(s)
- Josipa Radić
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Marijana Vučković
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia
| | - Hana Đogaš
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology with Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Mislav Radić
- School of Medicine, University of Split, 21000 Split, Croatia
- Department of Internal Medicine, Division of Rheumatology, Allergology and Clinical Immunology, University Hospital of Split, 21000 Split, Croatia
| |
Collapse
|
10
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Chen D, Wang Y, Yang J, Ou W, Lin G, Zeng Z, Lu X, Chen Z, Zou L, Tian Y, Wu A, Keating SE, Yang Q, Lin C, Liang Y. Shenling Baizhu San ameliorates non-alcoholic fatty liver disease in mice by modulating gut microbiota and metabolites. Front Pharmacol 2024; 15:1343755. [PMID: 38720776 PMCID: PMC11076757 DOI: 10.3389/fphar.2024.1343755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.
Collapse
Affiliation(s)
- Dongliang Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuanfei Wang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Jianmei Yang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Wanyi Ou
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Guiru Lin
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze Zeng
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaomin Lu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Zumin Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Lili Zou
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Yaling Tian
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Aiping Wu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Shelley E. Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qinhe Yang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Chenli Lin
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Yinji Liang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Song J, Li X, Ni J. A Role for Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Chronic Kidney Disease: A Mini Review. Kidney Blood Press Res 2023; 48:599-610. [PMID: 37717569 PMCID: PMC10614480 DOI: 10.1159/000534174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransport protein 2 (SGLT2) inhibitors, a new type of glucose-lowering drug, have been well proved in several clinical studies for their glucose-lowering and nephroprotective effects, and the nephroprotective effects include both indirect effects of metabolic improvement and direct effects, independent of glucose-lowering effects. SUMMARY In patients with diabetic kidney disease (DKD), several studies have demonstrated the potential nephroprotective mechanisms of SGLT2 inhibitors, and evidence of nephroprotective mechanisms in the non-DKD population is accumulating. Although the nephroprotective mechanism of SGLT2 inhibitors has not been fully elucidated, several laboratory studies have illustrated the mechanism underlying the effects of SGLT2 inhibitors at various aspects. KEY MESSAGES The purpose of this article is to review the mechanism of nephroprotective effect of SGLT2 inhibitors and to look forward to promising research in the future.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xia Li
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, Wuxi, China
| | - Jiang Ni
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, Wuxi, China
| |
Collapse
|
15
|
Schönberger E, Mihaljević V, Steiner K, Šarić S, Kurevija T, Majnarić LT, Bilić Ćurčić I, Canecki-Varžić S. Immunomodulatory Effects of SGLT2 Inhibitors-Targeting Inflammation and Oxidative Stress in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6671. [PMID: 37681811 PMCID: PMC10487537 DOI: 10.3390/ijerph20176671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Given that the increase in the aging population has grown into one of the largest public health issues, inflammation and oxidative stress, which are closely associated with the aging process, became a focus of recent research. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, a group of drugs initially developed as oral antidiabetics, have shown many beneficial effects over time, including improvement in renal function and cardioprotective effects. It has been shown that SGLT2 inhibitors, as a drug class, have an immunomodulatory and antioxidative effect, affecting endothelial function as well as metabolic parameters. Therefore, it is not surprising that various studies have investigated the potential mechanisms of action of SGLT2 inhibitors in age-related diseases. The proposed mechanisms by which SGLT2 inhibitors can achieve their anti-inflammatory effects include influence on AMPK/SIRT1/PGC-1α signaling, various cytokines, and the NLRP3 inflammasome. The antioxidative effect is related to their action on mitochondria and their influence on the signaling pathways of transforming growth factor β and nuclear erythroid 2-related factor 2/antioxidant response element. Also, SGLT2 inhibitors achieve their anti-inflammatory and antioxidative effects by affecting metabolic parameters, such as uric acid reduction, stimulation of ketogenesis, reduction of body weight, lipolysis, and epicardial fat tissue. Finally, SGLT2 inhibitors display anti-atherosclerotic effects that modulate inflammatory reactions, potentially resulting in improvement in endothelial function. This narrative review offers a complete and comprehensive overview of the possible pathophysiologic mechanisms of the SGLT2 inhibitors involved in the aging process and development of age-related disease. However, in order to use SGLT2 inhibitor drugs as an anti-aging therapy, further basic and clinical research is needed to elucidate the potential effects and complex mechanisms they have on inflammation processes.
Collapse
Affiliation(s)
- Ema Schönberger
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljević
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Kristina Steiner
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
| | - Sandra Šarić
- Department for Cardiovascular Disease, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Internal Medicine and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Tomislav Kurevija
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
- Health Center Osjecko-Baranjska County, 31000 Osijek, Croatia
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
| | - Ines Bilić Ćurčić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Silvija Canecki-Varžić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pathophysiology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
16
|
Li A, Yan J, Zhao Y, Yu Z, Tian S, Khan AH, Zhu Y, Wu A, Zhang C, Tian XL. Vascular Aging: Assessment and Intervention. Clin Interv Aging 2023; 18:1373-1395. [PMID: 37609042 PMCID: PMC10441648 DOI: 10.2147/cia.s423373] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
Vascular aging represents a collection of structural and functional changes in a blood vessel with advancing age, including increased stiffness, vascular wall remodeling, loss of angiogenic ability, and endothelium-dependent vasodilation dysfunction. These age-related alterations may occur earlier in those who are at risk for or have cardiovascular diseases, therefore, are defined as early or premature vascular aging. Vascular aging contributes independently to cardio-cerebral vascular diseases (CCVDs). Thus, early diagnosis and interventions targeting vascular aging are of paramount importance in the delay or prevention of CCVDs. Here, we review the direct assessment of vascular aging by examining parameters that reflect changes in structure, function, or their compliance with age including arterial wall thickness and lumen diameter, endothelium-dependent vasodilation, arterial stiffness as well as indirect assessment through pathological studies of biomarkers including endothelial progenitor cell, lymphocytic telomeres, advanced glycation end-products, and C-reactive protein. Further, we evaluate how different types of interventions including lifestyle mediation, such as caloric restriction and salt intake, and treatments for hypertension, diabetes, and hyperlipidemia affect age-related vascular changes. As a single parameter or intervention targets only a certain vascular physiological change, it is recommended to use multiple parameters to evaluate and design intervention approaches accordingly to prevent systemic vascular aging in clinical practices or population-based studies.
Collapse
Affiliation(s)
- Ao Li
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Jinhua Yan
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Zhenping Yu
- Institute of Translational Medicine, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shane Tian
- Department of Biochemistry/Chemistry, Ohio State University, Columbus, OH, USA
| | - Abdul Haseeb Khan
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Yuanzheng Zhu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Cuntai Zhang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| |
Collapse
|
17
|
Dhakal B, Shiwakoti S, Park EY, Kang KW, Schini-Kerth VB, Park SH, Ji HY, Park JS, Ko JY, Oak MH. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci Rep 2023; 13:6256. [PMID: 37069192 PMCID: PMC10110533 DOI: 10.1038/s41598-023-33086-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Nano plastics (NPs) have been a significant threat to human health and are known to cause premature endothelial senescence. Endothelial senescence is considered one of the primary risk factors contributing to numerous cardiovascular disorders. Recent studies have suggested that inhibition of sodium glucose co-transporter (SGLT2) ameliorates endothelial senescence and dysfunction. Therefore, our study intends to explore the role of SGLT2 in NPs-induced endothelial senescence and dysfunction. Porcine coronary artery and its endothelial cells were treated with NPs in the presence or absence of Enavogliflozin (ENA), a SGLT2 inhibitor and then SGLTs expression, senescence markers and vascular function were evaluated. NPs significantly up-regulated SGLT2 and ENA significantly decreased NPs-induced senescence-associated-β-gal activity, cell-cycle arrest, and senescence markers p53 and p21 suggesting that inhibition of SGLT2 prevents NPs-induced endothelial senescence. In addition, ENA decreased the formation of reactive oxygen species with the downregulation of Nox2, and p22phox. Furthermore, SGLT2 inhibition also up regulated the endothelial nitric oxide synthase expression along with improving vascular function. In conclusion, premature endothelial senescence by NPs is, at least in part, associated with SGLT2 and it could be a potential therapeutic target for preventing and/or treating environmental pollutants-induced cardiovascular disorders mediated by endothelial senescence and dysfunction.
Collapse
Affiliation(s)
- Bikalpa Dhakal
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Sun-Hwa Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Hye-Young Ji
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Joon Seok Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
18
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
19
|
Sanz-Cánovas J, Ricci M, Cobos-Palacios L, López-Sampalo A, Hernández-Negrín H, Vázquez-Márquez M, Mancebo-Sevilla JJ, Álvarez-Recio E, López-Carmona MD, Pérez-Velasco MÁ, Pérez-Belmonte LM, Gómez-Huelgas R, Bernal-López MR. Effects of a New Group of Antidiabetic Drugs in Metabolic Diseases. Rev Cardiovasc Med 2023; 24:36. [PMID: 39077405 PMCID: PMC11273146 DOI: 10.31083/j.rcm2402036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 07/31/2024] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is rising in the general population. This increase leads to higher cardiovascular risk, with cardiovascular diseases being the main cause of death in diabetic patients. New therapeutic weapons for diabetes mellitus are now available. Sodium-glucose cotransporter type 2 (SGLT2) inhibitors are novel drugs that are widely used due to their strong benefit in preventing hospitalization for decompensated heart failure and renal protection, limiting the deterioration of the glomerular filtration rate, independently of the presence of diabetes mellitus. These drugs have also shown benefit in the prevention of atherosclerotic cardiovascular events and cardiovascular mortality in diabetic patients with established cardiovascular disease. On the other hand, patients with T2DM usually present a high burden of associated comorbidities. Some of these entities are arterial hypertension, dyslipidemia, hyperuricemia, obesity, non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), vascular aging, respiratory diseases, or osteoporosis and fractures. Healthcare professionals should treat these patients from an integral point of view, and not manage each pathology separately. Therefore, as potential mechanisms of SGLT2 inhibitors in metabolic diseases have not been fully reviewed, we conducted this review to know the current evidence of the use and effect of SGLT2 inhibitors on these metabolic diseases.
Collapse
Affiliation(s)
- Jaime Sanz-Cánovas
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Michele Ricci
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Lidia Cobos-Palacios
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Almudena López-Sampalo
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Halbert Hernández-Negrín
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - María Vázquez-Márquez
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Juan José Mancebo-Sevilla
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Elena Álvarez-Recio
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - María Dolores López-Carmona
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Miguel Ángel Pérez-Velasco
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Luis Miguel Pérez-Belmonte
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Rosa Bernal-López
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Cai Z, Wu C, Xu Y, Cai J, Zhao M, Zu L. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies. Aging Dis 2023; 14:46-62. [PMID: 36818566 PMCID: PMC9937694 DOI: 10.14336/ad.2022.0523] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for almost half of all heart failure (HF) cases worldwide. Unfortunately, its incidence is expected to continue to rise, and effective therapy to improve clinical outcomes is lacking. Numerous efforts currently directed towards the pathophysiology of human HFpEF are uncovering signal transduction pathways and novel therapeutic targets. The nitric oxide-cyclic guanosine phosphate-protein kinase G (NO-cGMP-PKG) axis has been described as an important regulator of cardiac function. Suppression of the NO-cGMP-PKG signalling pathway is involved in the progression of HFpEF. Therefore, the NO-cGMP-PKG signalling pathway is a potential therapeutic target for HFpEF. In this review, we aim to explore the mechanism of NO-cGMP-PKG in the progression of HFpEF and to summarize potential therapeutic drugs that target this signalling pathway.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Cencen Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Yuan Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Jiageng Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Lingyun Zu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
21
|
Maltese G, Koufakis T, Kotsa K, Karalliedde J. Can sodium-glucose cotransporter 2 inhibitors 'spin the thread of life'? Trends Endocrinol Metab 2023; 34:1-4. [PMID: 36357309 DOI: 10.1016/j.tem.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were first used as antidiabetic agents that lower the blood glucose levels by promoting glycosuria. In recent years, randomised clinical trials have demonstrated that SGLT2i reduce cardiovascular-renal events and all-cause mortality in people with and without diabetes. The cardio-renal benefits observed are independent of glucose lowering effect and multiple mechanisms have been proposed for these results. SGLT2i can exert anti-ageing effects on the vasculature and other body organs through several signalling pathways including the activation of the nuclear factor erythroid-2-related factor 2 and the induction of antioxidant enzymes. We speculate that the pro-longevity effects of the SGLT2i are mediated by soluble Klotho, an anti-ageing kidney-derived hormone and an emerging therapeutic target for cardio-renal diseases.
Collapse
Affiliation(s)
- Giuseppe Maltese
- School of Cardiovascular Medicine and Sciences, King's College London, London, UK; Department of Diabetes and Endocrinology, Epsom and St Helier University Hospitals, Surrey, UK.
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Janaka Karalliedde
- School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| |
Collapse
|
22
|
Pan X, Yu Y, Chen Y, Wang Y, Fu G. Cathepsin L was involved in vascular aging by mediating phenotypic transformation of vascular cells. Arch Gerontol Geriatr 2023; 104:104828. [PMID: 36206719 DOI: 10.1016/j.archger.2022.104828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Vascular media and adventitia-induced remodeling plays an important role in vascular aging. However, the mechanism remains unclear. This study aims to investigate the mechanisms underlying vascular aging. Transcriptome analysis revealed that the expression of cathepsin L (CTSL) significantly decreased in arteries of old mice (24 months old) compared with that in arteries of young mice (4 months old), which was confirmed by immunohistochemistry and Western blot. The expression of CTSL in adventitia fibroblasts (AFs) and vascular smooth muscle cells (VSMCs) of aged mice was lower than that of young mice. Compared with wild-type control mice, CTSL knockout (CTSL - /-) mice had increased collagen deposition (fibrosis) and decreased telomerase activity and LC3Ⅱ/ LC3Ⅰratio. The expression of mammalian target of rapamycin (mTOR) and osteopontin (OPN) increased in aortas of CTSL-/-mice compared with that in aortas of wild-type control mice. In vitro, lentivirus-mediated CTSL knockdown induced VSMCs senescence and AFs transformed into myofibroblasts (MFs). Rapamycin, a mTOR inhibitor, inhibited CTSL deficiency induced VSMCs senescence, osteopontin (OPN) secretion and AFs migration. In conclusion, the decreased level of CTSL with age may participate in vascular aging by promoting the phenotypic transformation of vascular cells.
Collapse
Affiliation(s)
- Xin Pan
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Yanping Yu
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Yuxing Chen
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Yanru Wang
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Guoxiang Fu
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| |
Collapse
|
23
|
Karalliedde J, Fountoulakis N, Stathi D, Corcillo A, Flaquer M, Panagiotou A, Maltese G, Mangelis A, Ayis S, Gnudi L. Does Dapagliflozin influence arterial stiffness and levels of circulating anti-aging hormone soluble Klotho in people with type 2 diabetes and kidney disease? Results of a randomized parallel group clinical trial. Front Cardiovasc Med 2022; 9:992327. [PMID: 36247425 PMCID: PMC9562264 DOI: 10.3389/fcvm.2022.992327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The mechanisms that explain the cardio-renal benefits of sodium glucose co-transporter 2 (SGLT-2) inhibitors are unknown. The effect of SGLT-2 inhibitors on arterial aging, measured by Aortic Pulse Wave Velocity (Ao-PWV) and Soluble Klotho (s-Klotho), a circulating anti-aging biomarker of arterial health are also unclear. Design/Setting A 24-week single center randomized controlled trial (registry number/ EudraCT Number: 2013-004042-42) comparing Dapagliflozin and Ramipril (D+R) versus Ramipril (R) on the primary endpoint of urine albumin excretion rate (AER) and pre-specified secondary endpoints of Ao-PWV and biomarkers of arterial aging [s-Klotho and Fibroblast Growth Factor 23 (FGF-23)]. People with type 2 diabetes who had estimated glomerular filtration rate (eGFR) > 60 ml/min and residual microalbuminuria on maximum tolerated renin angiotensin system (RAS) inhibition were included in this study. Results In total, 33 participants (male 73%) were randomized to either D+R (n = 17) or R (n = 16) arms. After 24 weeks of treatment, Ao-PWV (mean ± SD) did not change significantly from baseline D +R [9.06 ± 1.91 m/s to 9.13 ± 2.03 m/s], and R [9.88 ± 2.12 m/s to 10.0 ± 1.84 m/s]. AER fell significantly by 43.5% (95% CI: −57.36%, −29.56%; p < 0.01) in people in the D+ R arm only. We do not observe any significant changes in FGF-23 or s-Klotho. HbA1c and Angiotensin 1–7 fell significantly only in D + R arm. Conclusions The combination of Dapagliflozin and Ramipril had no effects on Ao-PWV and s-Klotho which are biomarkers of arterial aging and cardio-renal risk. Our data suggest that the early cardio-renal benefits observed with SGLT-2 inhibitors are unlikely to be related to an improvement in arterial aging.
Collapse
Affiliation(s)
- Janaka Karalliedde
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
- *Correspondence: Janaka Karalliedde
| | - Nikos Fountoulakis
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Dimitra Stathi
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Antonella Corcillo
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Maria Flaquer
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Angeliki Panagiotou
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Giuseppe Maltese
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Anastasios Mangelis
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Salma Ayis
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Sørensen IMH, Bjergfelt SS, Hjortkjær HØ, Kofoed KF, Lange T, Feldt-Rasmussen B, Christoffersen C, Bro S. Coronary and extra-coronary artery calcium scores as predictors of cardiovascular events and mortality in chronic kidney disease stages 1-5: a prospective cohort study. Nephrol Dial Transplant 2022; 38:1227-1239. [PMID: 36066908 DOI: 10.1093/ndt/gfac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vascular calcification is a known risk factor for cardiovascular events and mortality in patients with chronic kidney disease (CKD). However, since there is a lack of studies examining several arterial regions at a time, we aimed to evaluate the risk of major adverse cardiovascular events (MACE) and all-cause mortality according to calcium scores in five major arterial sites. METHODS This was a prospective study of 580 patients from the Copenhagen CKD Cohort. Multidetector computed tomography of the coronary and carotid arteries, the thoracic aorta, the abdominal aorta, and the iliac arteries was used to determine vascular calcification at baseline. Calcium scores were divided into categories: 0, 1-100, 101-400, and > 400. RESULTS During the follow-up period of 4.1 years a total of 59 cardiovascular events and 64 all-cause deaths occurred. In Cox proportional hazards models adjusted for age, sex, eGFR, hypertension, diabetes mellitus, hypercholesterolemia, and smoking, only the coronary and carotid arteries, and the thoracic aorta were independent predictors of the designated endpoints. When examining the potential of calcification in the five arterial sites for predicting MACE, the difference in C-statistic was also most pronounced in these three sites, 0.21 (95% CI 0.16%-0.26%, P < 0.001), 0.26 (95% CI 0.22%-0.3%, P < 0.001), and 0.20 (95% CI 0.16%-0.24%, P < 0.001), respectively. This trend also applied to all-cause mortality. CONCLUSIONS The overall results, including data on specificity, suggest that calcium scores of the coronary and carotid arteries have the most potential for identifying patients with CKD at high cardiovascular risk and for evaluating new therapies.
Collapse
Affiliation(s)
- Ida M H Sørensen
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Sasha S Bjergfelt
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Henrik Ø Hjortkjær
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Clinical Medicine, University of Copenhagen, Denmark.,Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Theis Lange
- Department of Public Health (Biostatistics), University of Copenhagen, Denmark
| | - Bo Feldt-Rasmussen
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, Denmark.,Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Susanne Bro
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Empagliflozin Improves Outcomes in Patients With Heart Failure and Preserved Ejection Fraction Irrespective of Age. J Am Coll Cardiol 2022; 80:1-18. [PMID: 35772911 DOI: 10.1016/j.jacc.2022.04.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Empagliflozin reduces cardiovascular death (CVD) or heart failure (HF) hospitalization (HFH) in patients with HF and preserved ejection fraction. Treatment effects and safety in relation to age have not been studied. OBJECTIVES The purpose of this study was to evaluate the interplay of age and empagliflozin effects in EMPEROR-Preserved (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Preserved Ejection Fraction). METHODS We grouped patients (n = 5,988) according to their baseline age (<65 years [n = 1,199], 65-74 years [n = 2,214], 75-79 years [n = 1,276], ≥80 years [n = 1,299]). We explored the influence of age on empagliflozin effects on CVD or HFH (primary outcome), total HFH, rate of decline in estimated glomerular filtration rate, health-related quality of life with the Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score, and frequency of adverse events. RESULTS Considering only patients on placebo, the incidence of primary outcomes (P trend = 0.02) and CVD (P trend = 0.003) increased with age. Empagliflozin reduced primary outcomes (P trend = 0.33), first HFH (P trend = 0.22), and first and recurrent HFH (P trend = 0.11) across all age groups with an effect being similar at ≥75 years (P interaction = 0.22) or >80 years (P interaction = 0.51). Empagliflozin improved Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score at week 52 and attenuated the decline of estimated glomerular filtration rate without age interaction (P = 0.48 and P = 0.32, respectively). There were no clinically relevant differences in adverse events between empagliflozin and placebo across the age groups. CONCLUSIONS Empagliflozin reduced primary outcomes and first and recurrent HFH and improved symptoms across a broad age spectrum. High age was not associated with reduced efficacy or meaningful intolerability. (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Preserved Ejection Fraction [EMPEROR-Preserved]; NCT0305951).
Collapse
|
26
|
Kurata Y, Nangaku M. Dapagliflozin for the treatment of chronic kidney disease. Expert Rev Endocrinol Metab 2022; 17:275-291. [PMID: 35822873 DOI: 10.1080/17446651.2022.2099373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Sodium-dependent glucose cotransporter 2 (SGLT2) is a glucose transporter expressed on the proximal tubular cells, where it reabsorbs glucose from the glomerular filtrate. SGLT2 inhibitors (SGLT2is), initially developed as an antidiabetic drug, have recently attracted considerable attention because they have cardiorenal protective effects. Among SGLT2is, dapagliflozin was the first to demonstrate the renoprotective effect in patients with and without diabetes and has been approved for chronic kidney disease (CKD) treatment. AREAS COVERED This review covers the pharmacological characteristics and the clinical efficacy and safety profiles of dapagliflozin, including comparison with other SGLT2is and risk modification strategies. EXPERT OPINION In DAPA-CKD, dapagliflozin reduced the primary outcome (≥50% estimated glomerular filtration rate [eGFR] decline, end-stage kidney disease [ESKD], or renal or cardiovascular [CV] death) by 39% in CKD patients. This beneficial effect was consistent across prespecified subgroups, including those based on the presence of diabetes. Dapagliflozin also decreased the CV composite outcome and all-cause death by 29% and 31%, respectively. Although an increased risk of adverse events such as ketoacidosis and volume depletion has been reported, the robust renal and CV benefits of dapagliflozin are expected to outweigh potential risks. SGLT2is, including dapagliflozin, will constitute the mainstay of CKD treatment.
Collapse
Affiliation(s)
- Yu Kurata
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Japan
| |
Collapse
|
27
|
Adam CA, Anghel R, Marcu DTM, Mitu O, Roca M, Mitu F. Impact of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors on Arterial Stiffness and Vascular Aging-What Do We Know So Far? (A Narrative Review). Life (Basel) 2022; 12:803. [PMID: 35743834 PMCID: PMC9224553 DOI: 10.3390/life12060803] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular aging, early vascular aging or supernormal vascular aging are concepts used for estimating the cardiovascular risk at a certain age. From the famous line of Thomas Sydenham that "a man is as old as his arteries" to the present day, clinical studies in the field of molecular biology of the vasculature have demonstrated the active role of vascular endothelium in the onset of cardiovascular diseases. Arterial stiffness is an important cardiovascular risk factor associated with the occurrence of cardiovascular events and a high risk of morbidity and mortality, especially in the presence of diabetes. Sodium-glucose cotransporter 2 inhibitors decrease arterial stiffness and vascular resistance by decreasing endothelial cell activation, stimulating direct vasorelaxation and ameliorating endothelial dysfunction or expression of pro-atherogenic cells and molecules.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
| | - Razvan Anghel
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Dragos Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
- Sf. Spiridon Clinical Emergency Hospital, Independence Boulevard nr. 1, 700111 Iasi, Romania
| | - Mihai Roca
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Florin Mitu
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| |
Collapse
|
28
|
Abstract
Atherosclerotic vascular disease and its related complications are the major cause of mortality in Western societies. Atherosclerosis is a chronic inflammatory disease of the arterial wall triggered by traditional and nontraditional risk factors and mediated by inflammatory and immune responses. Recent clinical trials provided compelling evidence corroborating that atherosclerosis is an inflammatory disease and demonstrated efficacy of anti-inflammatory interventions in reducing cardiovascular events and mortality. Traditional risk factors drive vascular inflammation, further justifying the instrumental role of intensified risk factor management in attenuating and preventing atherosclerotic disease and complications. Promising therapeutic approaches specifically related to inhibition of inflammation span traditional anti-inflammatory drugs, specific immunomodulation, and development of vaccination against atherosclerotic disease. Here, we review the inflammatory component in atherogenesis, the available evidence from clinical trials evaluating efficacy of therapeutic anti-inflammatory interventions in patients with high cardiovascular risk, and discuss potential future targets for anti-inflammatory or immune modulatory treatment in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Heiko Bugger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Zirlik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Lin KJ, Wang TJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Chuang JH, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Two Birds One Stone: The Neuroprotective Effect of Antidiabetic Agents on Parkinson Disease-Focus on Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors. Antioxidants (Basel) 2021; 10:antiox10121935. [PMID: 34943038 PMCID: PMC8750793 DOI: 10.3390/antiox10121935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease affecting more than 1% of the population over 65 years old. The etiology of the disease is unknown and there are only symptomatic managements available with no known disease-modifying treatment. Aging, genes, and environmental factors contribute to PD development and key players involved in the pathophysiology of the disease include oxidative stress, mitochondrial dysfunction, autophagic-lysosomal imbalance, and neuroinflammation. Recent epidemiology studies have shown that type-2 diabetes (T2DM) not only increased the risk for PD, but also is associated with PD clinical severity. A higher rate of insulin resistance has been reported in PD patients and is suggested to be a pathologic driver in this disease. Oral diabetic drugs including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to provide neuroprotective effects in both PD patients and experimental models; additionally, antidiabetic drugs have been demonstrated to lower incidence rates of PD in DM patients. Among these, the most recently developed drugs, SGLT2 inhibitors may provide neuroprotective effects through improving mitochondrial function and antioxidative effects. In this article, we will discuss the involvement of mitochondrial-related oxidative stress in the development of PD and potential benefits provided by antidiabetic agents especially focusing on sglt2 inhibitors.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
30
|
Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. Int J Mol Sci 2021; 22:10822. [PMID: 34639160 PMCID: PMC8509708 DOI: 10.3390/ijms221910822] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) agonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R agonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.
Collapse
Affiliation(s)
- Agata Winiarska
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| | - Monika Knysak
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (K.N.); (J.G.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (K.N.); (J.G.)
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| |
Collapse
|