1
|
Wang H, Feng Y, Zhang S, Sun L, Yan P, Feng Y, Zhao Z. Phosphorylation of MdWRKY70L by MdMPK6/02G mediates reactive oxygen accumulation to regulate apple fruit senescence. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2386-2399. [PMID: 40127920 PMCID: PMC12120888 DOI: 10.1111/pbi.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Apple (Malus domestica Borkh.) is a globally significant crop and a vital dietary component worldwide. During ripening, apples exhibit a longitudinal gradient, ripening first at the stalk cavity and extending towards the calyx concave. When the fruit is harvested at the right time or later, the stalk cavity of many varieties often shows over-ripening, that is, premature senescence such as peel browning, which diminishes fruit quality. This study examines the natural senescence process in 6-year-old 'Ruixue' apples by screening transcriptome data to uncover senescence-related genes and validate their molecular functions. Our analysis of antioxidant capacity and reactive oxygen species (ROS) in different peel regions revealed that malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O 2 - ⋅ ) levels increased with senescence, where ROS-scavenging enzyme activity was notably reduced, especially in the stalk cavity (compared with the fruits in the stalk cavity at 120 days, the activities of SOD, POD, and CAT in stalk cavity of fruits at 205 days were significantly decreased in 65.4%, 82.7%, and 91.1%, respectively). Transcriptome clustering and enrichment analyses across developmental stages revealed MdWRKY70L, MdSAG101, and MdZAT12 as key regulators of peel senescence. MdWRKY70L could interact with MdSAG101/MdZAT12 both in vivo and in vitro, thereby mediating ROS accumulation in the peel and accelerating the fruit senescence process. Further in vitro and in vivo studies demonstrated that MdWRKY70L is phosphorylated at Ser199 by MdMPK6/02G, enhancing MdWRKY70L protein stability and promoting peel senescence. These findings offer insights for developing strategies to delay fruit senescence and improve postharvest quality control.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yuchen Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shuhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lulong Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Peng Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yifeng Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
2
|
Liu X, Xu Y, Zhang Y, Chen X, Li P. BrWRKY8: a key regulatory factor involved in delaying postharvest leaf senescence of Pakchoi ( Brassica rapa subsp. chinensis) by 2,4-epibrassinolide. HORTICULTURE RESEARCH 2025; 12:uhaf004. [PMID: 40078720 PMCID: PMC11896971 DOI: 10.1093/hr/uhaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
Brassinosteroids (BRs) are extensively distributed in plants and play crucial roles throughout all stages of plant growth. Nevertheless, the molecular mechanism through which BRs influence postharvest senescence in pakchoi remains elusive. Previous studies have demonstrated that the application of 1.5 μM of the BRs analog 2,4-epibrassinolide (EBR) delayed the leaf senescence in harvested pakchoi. In this study, we constructed the EBR-delayed senescence transcriptome in pakchoi leaves and discovered that EBR modulates the expression of genes involved in the chlorophyll (Chl) metabolism pathway and the BRs pathway in pakchoi. Notably, we identified and characterized an EBR-suppressed, nucleus-localized WRKY transcription factor called BrWRKY8. BrWRKY8 is a highly expressed transcriptional activator in senescent leaves, targeting the promoters of the Chl degradation-associated gene BrSGR2 and the BRs degradation-associated gene BrCHI2, thereby promoting their expression. Overexpression of the BrWRKY8 gene accelerated the senescence process in Arabidopsis leaves, while EBR treatment mitigated the leaf senescence phenotype induced by BrWRKY8 overexpression. Conversely, silencing of BrWRKY8 through the virus-induced gene silencing extended the postharvest storage period of pakchoi. In conclusion, the newly discovered BRs-BrWRKY8 regulatory model in this study provides novel insights into BRs-mediated leaf senescence in pakchoi.
Collapse
Affiliation(s)
- Xuesong Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
| | - Yinghao Xu
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
| | - Yujun Zhang
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
| | - Xiaofei Chen
- Department of Food Science, Nanjing Agricultural University, 666 Binjiang Road, Nanjing 211800, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, 50 Zhongling Road, Nanjing 210014, China
| |
Collapse
|
3
|
Wang L, Wang R, Cai X, Zheng H, Huang Y, Li Y, Cui M, Lin M, Tang H. A loss-of-function mutation in OsTZF5 confers sensitivity to low temperature and effects the growth and development in rice. PLANT MOLECULAR BIOLOGY 2024; 114:116. [PMID: 39438338 DOI: 10.1007/s11103-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Rice (Oryza sativa L.) is highly sensitive to low temperatures, which can significantly reduce its production. Cold tolerance in rice is a complex trait regulated by multiple mechanisms. OsTZF5, a member of the CCCH-type zinc finger gene family in rice, has been previously reported that overexpressing OsTZF5 under the stress-responsive promoter can confer drought resistance. In this study, we showed that the loss of function mutants of OsTZF5 decreased seed germination rate and chilling tolerance in rice, and influencing normal growth and development. OsTZF5 is expressed in various parts of the rice plant, including roots, stems, leaves and inflorescences, with the highest expression levels observed in leaves. Additionally, the expression of OsTZF5 gene was influenced by various stress conditions and hormone treatments. OsTZF5 knock-out mutants exhibited significantly lower survival rates compared to the wild type (Zhonghua11, ZH11) after cold stress, as well as fewer tillers, lower thousand-grain weight, and reduced grain yield under normal conditions. Transcriptomic analyses revealed that the expression of cold stress-related genes was significantly down-regulated in OsTZF5 knock-out mutants compared to ZH11 after cold stress. This down-regulation likely contributes to the reduced cold stress tolerance observed in OsTZF5 knock-out mutants. Our findings suggest that OsTZF5 is a multifunctional gene that plays a crucial role in regulating cold stress in rice.
Collapse
Affiliation(s)
- Limin Wang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ru Wang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Cai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Huiqi Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yuxing Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuechen Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mingyue Cui
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mingli Lin
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Huiwu Tang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
4
|
Kelimujiang K, Zhang W, Zhang X, Waili A, Tang X, Chen Y, Chen L. Genome-wide investigation of WRKY gene family in Lavandula angustifolia and potential role of LaWRKY57 and LaWRKY75 in the regulation of terpenoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1449299. [PMID: 39445139 PMCID: PMC11496791 DOI: 10.3389/fpls.2024.1449299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The WRKY transcription factors are integral to plant biology, serving essential functions in growth, development, stress responses, and the control of secondary metabolism. Through the use of bioinformatics techniques, this research has effectively characterized 207 members of the WRKY family (LaWRKY) present in the entire genome of Lavandula angustifolia. Phylogenetic analysis classified LaWRKYs into three distinct categories based on conserved domains. Collinearity analysis revealed tandem repeats, segmental duplications, and whole genome duplications in LaWRKYs, especially for segmental duplication playing a significant role in gene family expansion. LaWRKYs displayed distinct tissue-specific expression profiles across six different tissues of L. angustifolia. Particularly noteworthy were 12 genes exhibiting high expression in flower buds and calyx, the primary sites of volatile terpenoid production, indicating their potential role in terpenoid biosynthesis in L. angustifolia. RT-qPCR analysis revealed a notable increase in the expression levels of most examined LaWRKY genes in flower buds in response to both intense light and low-temperature conditions, whereas the majority of these genes in leaves were primarily induced by drought stress. However, all genes exhibited downregulation following GA treatment in both flower buds and leaves. Overexpression of LaWRKY57 (La13G01665) and LaWRKY75 (La16G00030) in tobacco led to a reduction in the density of glandular trichomes on leaf surfaces, resulting in changes to the volatile terpenoid composition in the leaves. Specifically, the content of Neophytadiene was significantly elevated compared to wild-type tobacco, while compounds such as eucalyptol, cis-3-Hexenyl iso-butyrate, and D-Limonene were produced, which were absent in the wild type. These findings provide a valuable reference for future investigations into the biological functions of the WRKY gene family in L. angustifolia.
Collapse
Affiliation(s)
- Kelaremu Kelimujiang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Wenying Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Aliya Waili
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Xinyue Tang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongkun Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Lingna Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
5
|
Chen D, Shi Y, Zhang P, Xie W, Li S, Xiao J, Yuan M. Deletion of the sugar importer gene OsSWEET1b accelerates sugar starvation-promoted leaf senescence in rice. PLANT PHYSIOLOGY 2024; 195:2176-2194. [PMID: 38423969 PMCID: PMC11213257 DOI: 10.1093/plphys/kiae098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Leaf senescence is a combined response of plant cells stimulated by internal and external signals. Sugars acting as signaling molecules or energy metabolites can influence the progression of leaf senescence. Both sugar starvation and accumulation can promote leaf senescence with diverse mechanisms that are reported in different species. Sugars Will Eventually be Exported Transporters (SWEETs) are proposed to play essential roles in sugar transport, but whether they have roles in senescence and the corresponding mechanism are unclear. Here, we functionally characterized a sugar transporter, OsSWEET1b, which transports sugar and promotes senescence in rice (Oryza sativa L.). OsSWEET1b could import glucose and galactose when heterologously expressed in Xenopus oocytes and translocate glucose and galactose from the extracellular apoplast into the intracellular cytosol in rice. Loss of function of OsSWEET1b decreased glucose and galactose accumulation in leaves. ossweet1b mutants showed accelerated leaf senescence under natural and dark-induced conditions. Exogenous application of glucose and galactose complemented the defect of OsSWEET1b deletion-promoted senescence. Moreover, the senescence-activated transcription factor OsWRKY53, acting as a transcriptional repressor, genetically functions upstream of OsSWEET1b to suppress its expression. OsWRKY53-overexpressing plants had attenuated sugar accumulation, exhibiting a similar phenotype as the ossweet1b mutants. Our findings demonstrate that OsWRKY53 downregulates OsSWEET1b to impair its influx transport activity, leading to compromised sugar accumulation in the cytosol of rice leaves where sugar starvation promotes leaf senescence.
Collapse
Affiliation(s)
- Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yarui Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Liu D, Cui W, Bo C, Wang R, Zhu Y, Duan Y, Wang D, Xue J, Xue T. PtWRKY2, a WRKY transcription factor from Pinellia ternata confers heat tolerance in Arabidopsis. Sci Rep 2024; 14:13807. [PMID: 38877055 PMCID: PMC11178784 DOI: 10.1038/s41598-024-64560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
High temperatures are a major stress factor that limit the growth of Pinellia ternata. WRKY proteins widely distribute in plants with the important roles in plant growth and stress responses. However, WRKY genes have not been identified in P. ternata thus far. In this study, five PtWRKYs with four functional subgroups were identified in P. ternata. One group III WRKY transcription factor, PtWRKY2, was strongly induced by high temperatures, whereas the other four PtWRKYs were suppressed. Analysis of transcription factor characteristics revealed that PtWRKY2 localized to the nucleus and specifically bound to W-box elements without transcriptional activation activity. Overexpression of PtWRKY2 increased the heat tolerance of Arabidopsis, as shown by the higher percentage of seed germination and survival rate, and the longer root length of transgenic lines under high temperatures compared to the wild-type. Moreover, PtWRKY2 overexpression significantly decreased reactive oxygen species accumulation by increasing the catalase, superoxide dismutase, and peroxidase activities. Furthermore, the selected heat shock-associated genes, including five transcription factors (HSFA1A, HSFA7A, bZIP28, DREB2A, and DREB2B), two heat shock proteins (HSP70 and HSP17.4), and three antioxidant enzymes (POD34, CAT1, and SOD1), were all upregulated in transgenic Arabidopsis. The study identifies that PtWRKY2 functions as a key transcriptional regulator in the heat tolerance of P. ternata, which might provide new insights into the genetic improvement of P. ternata.
Collapse
Affiliation(s)
- Dan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
| | - Wanning Cui
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China
| | - Chen Bo
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China
| | - Ru Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China
| | - Yanfang Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
| | - Yongbo Duan
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China
| | - Dexin Wang
- College of Agriculture and Engineering, Heze University, Heze, 274015, China.
| | - Jianping Xue
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China.
| | - Tao Xue
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, Huaibei, China.
| |
Collapse
|
7
|
Zhang Y, Wang N, He C, Gao Z, Chen G. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application. BMC PLANT BIOLOGY 2024; 24:419. [PMID: 38760728 PMCID: PMC11102181 DOI: 10.1186/s12870-024-05129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.
Collapse
Affiliation(s)
- Yafang Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ning Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chenggong He
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Kabange NR, Alibu S, Kwon Y, Lee SM, Oh KW, Lee JH. Genome-wide association study (GWAS) with high-throughput SNP chip DNA markers identified novel genetic factors for mesocotyl elongation and seedling emergence in rice ( Oryza sativa L.) using multiple GAPIT models. Front Genet 2023; 14:1282620. [PMID: 38054028 PMCID: PMC10694456 DOI: 10.3389/fgene.2023.1282620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
This study employed a joint strategy high-density SNP Chip DNA markers and multiple Genome Association and Prediction Integrated Tool (GAPIT) models [(Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), Fixed and random model Circulating Probability Uniform (FarmCPU), General Linear Model (GLM), and Settlement of Mixed Linear Model (MLM) Under Progressively Exclusive Relationship (SUPER)], to investigate novel genetic factors controlling mesocotyl elongation and seedling emergence for direct-seeded rice. Genotype data (230,526 SNP Chip DNA makers) of 117 doubled haploid lines (derived from a cross between 93-11 (Oryza sativa L. ssp. indica) and Milyang352 (O. sativa L. ssp. japonica) were used to perform a Genome-Wide Association Study (GWAS). Results revealed the association between five (5) topmost significant SNP markers, of which number two [AX-155741269, Chr2: 15422406 bp, and AX-155200917, Chr7: 23814085 bp, explaining 37.5% and 13.8% of the phenotypic variance explained (PVE)] are linked to the mesocotyl elongation loci, while three (AX-282097034 and AX-283652873, Chr9: 9882817 bp and 1023383 bp, PVE 64.5%, and 20.2%, respectively, and AX-154356231, Chr1: 17413989 bp, PVE 21.1%) are tightly linked to the loci controlling seedling emergence. The qMEL2-1 and qSEM9-1 are identified as major QTLs explaining 37.5% and 64.5% of the PVE for mesocotyl elongation and seedling emergence, respectively. The AX-282097034 (Chr9: 9882817 bp) was co-detected by four GAPIT models (BLINK, FarmCPU, SUPER, and GLM), while AX-155741269 was co-detected by BLINK and SUPER. Furthermore, a high estimated heritability (Mesocotyl elongation: h2 = 0.955; seedling emergence: h2 = 0.863; shoot length: h2 = 0.707) was observed. Genes harbored by qMEL2-1 and qSEM9-1 have interesting annotated molecular functions that could be investigated through functional studies to uncover their roles during mesocotyl elongation and seedling emergence events in rice. Furthermore, the presence of genes encoding transcription factors, growth- and stress response, or signaling-related genes would suggest that mesocotyl elongation and seedling emergence from deep direct-seeded rice might involve an active signaling cascade and transport of molecules, which could be elucidated through functional analysis. Likewise, genomic selection analysis suggested markers useful for downstream marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Simon Alibu
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organisation (NARO), Entebbe, Uganda
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ki-Won Oh
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| |
Collapse
|
9
|
Gao Y, Shi X, Chang Y, Li Y, Xiong X, Liu H, Li M, Li W, Zhang X, Fu Z, Xue Y, Tang J. Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis. PLANT CELL REPORTS 2023; 42:1651-1663. [PMID: 37498331 DOI: 10.1007/s00299-023-03051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
KEY MESSAGES Narrowing down to a single putative target gene behind a leaf senescence mutant and constructing the regulation network by proteomic method. Leaf senescence mutant is an important resource for exploring molecular mechanism of aging. To dig for potential modulation networks during maize leaf aging process, we delimited the gene responsible for a premature leaf senescence mutant els5 to a 1.1 Mb interval in the B73 reference genome using a BC1F1 population with 40,000 plants, and analyzed the leaf proteomics of the mutant and its near-isogenic wild type line. A total of 1355 differentially accumulated proteins (DAP) were mainly enriched in regulation pathways such as "photosynthesis", "ribosome", and "porphyrin and chlorophyll metabolism" by the KEGG pathway analysis. The interaction networks constructed by incorporation of transcriptome data showed that ZmELS5 likely repaired several key factors in the photosynthesis system. The putative candidate proteins for els5 were proposed based on DAPs in the fined QTL mapping interval. These results provide fundamental basis for cloning and functional research of the els5 gene, and new insights into the molecular mechanism of leaf senescence in maize.
Collapse
Affiliation(s)
- Yong Gao
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyuan Chang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yingbo Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehang Xiong
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Xue
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Zhang XW, Xu RR, Liu Y, You CX, An JP. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1599-1618. [PMID: 37277961 DOI: 10.1111/tpj.16341] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Yankai Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
11
|
Jiang X, Hong WJ, Lee SK, Jung KH. Genome-Wide Identification and Analysis of Collar Region-Preferential Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2959. [PMID: 37631170 PMCID: PMC10458737 DOI: 10.3390/plants12162959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The collar region plays a crucial role in leaf angle formation and plant architecture, which is important for improving crop yield given the challenges of diminishing arable land and changing environmental conditions. To determine collar region-preferential genes (CRPGs) affecting plant architecture and crop yield, we conducted genome-wide transcriptomic analysis. By integrating our RNA sequencing data with public rice anatomical expression data, we identified 657 CRPGs. Verification involved testing six randomly selected CRPGs, all of which exhibited collar-preferential expression. The functional significance of CRPGs was assessed via Gene Ontology enrichment analysis, utilizing MapMan and KEGG, and literature analysis provided additional information for characterized CRPGs. Our findings revealed links between manipulating leaf angle and phytohormone-related pathways and stress responses. Moreover, based on the CRPGs, five transcription factors downstream of the liguleless 1 (LG1) gene were identified. Overall, the identified CRPGs provide potential targets for further research and breeding applications aimed at improving crop productivity by manipulating leaf architecture.
Collapse
Affiliation(s)
- Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (X.J.); (S.-K.L.)
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Su-Kyoung Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (X.J.); (S.-K.L.)
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (X.J.); (S.-K.L.)
| |
Collapse
|
12
|
Purwestri YA, Nurbaiti S, Putri SPM, Wahyuni IM, Yulyani SR, Sebastian A, Nuringtyas TR, Yamaguchi N. Seed Halopriming: A Promising Strategy to Induce Salt Tolerance in Indonesian Pigmented Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2879. [PMID: 37571030 PMCID: PMC10420915 DOI: 10.3390/plants12152879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Unfavorable environmental conditions and climate change impose stress on plants, causing yield losses worldwide. The Indonesian pigmented rice (Oryza sativa L.) cultivars Cempo Ireng Pendek (black rice) and Merah Kalimantan Selatan (red rice) are becoming popular functional foods due to their high anthocyanin contents and have great potential for widespread cultivation. However, their ability to grow on marginal, high-salinity lands is limited. In this study, we investigated whether seed halopriming enhances salt tolerance in the two pigmented rice cultivars. The non-pigmented cultivars IR64, a salt-stress-sensitive cultivar, and INPARI 35, a salt tolerant, were used as control. We pre-treated seeds with a halopriming solution before germination and then exposed the plants to a salt stress of 150 mM NaCl at 21 days after germination using a hydroponic system in a greenhouse. Halopriming was able to mitigate the negative effects of salinity on plant growth, including suppressing reactive oxygen species accumulation, increasing the membrane stability index (up to two-fold), and maintaining photosynthetic pigment contents. Halopriming had different effects on the accumulation of proline, in different rice varieties: the proline content increased in IR64 and Cempo Ireng Pendek but decreased in INPARI 35 and Merah Kalimantan Selatan. Halopriming also had disparate effects in the expression of stress-related genes: OsMYB91 expression was positively correlated with salt treatment, whereas OsWRKY42 and OsWRKY70 expression was negatively correlated with this treatment. These findings highlighted the potential benefits of halopriming in salt-affected agro-ecosystems.
Collapse
Affiliation(s)
- Yekti Asih Purwestri
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.N.); (T.R.N.)
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Siti Nurbaiti
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.N.); (T.R.N.)
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sekar Pelangi Manik Putri
- Biotechnology Master Program, The Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.P.M.P.); (I.M.W.); (S.R.Y.)
| | - Ignasia Margi Wahyuni
- Biotechnology Master Program, The Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.P.M.P.); (I.M.W.); (S.R.Y.)
| | - Siti Roswiyah Yulyani
- Biotechnology Master Program, The Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.P.M.P.); (I.M.W.); (S.R.Y.)
| | - Alfino Sebastian
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan;
| | - Tri Rini Nuringtyas
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.N.); (T.R.N.)
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nobutoshi Yamaguchi
- Plant Stem Cell Regulation and Floral Patterning Laboratory, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan;
| |
Collapse
|
13
|
Cao J, Liu H, Tan S, Li Z. Transcription Factors-Regulated Leaf Senescence: Current Knowledge, Challenges and Approaches. Int J Mol Sci 2023; 24:9245. [PMID: 37298196 PMCID: PMC10253112 DOI: 10.3390/ijms24119245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress made in understanding the regulatory roles of these families in leaf senescence in Arabidopsis and various crops such as wheat, maize, sorghum, and rice. Additionally, we review the regulatory functions of other families, such as ERF, bHLH, bZIP, and MYB. Unraveling the mechanisms of leaf senescence regulated by TFs has the potential to improve crop yield and quality through molecular breeding. While significant progress has been made in leaf senescence research in recent years, our understanding of the molecular regulatory mechanisms underlying this process is still incomplete. This review also discusses the challenges and opportunities in leaf senescence research, with suggestions for possible strategies to address them.
Collapse
Affiliation(s)
| | | | | | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.C.); (H.L.); (S.T.)
| |
Collapse
|
14
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Zhang C, Li N, Hu Z, Liu H, Hu Y, Tan Y, Sun Q, Liu X, Xiao L, Wang W, Wang R. Mutation of Leaf Senescence 1 Encoding a C2H2 Zinc Finger Protein Induces ROS Accumulation and Accelerates Leaf Senescence in Rice. Int J Mol Sci 2022; 23:ijms232214464. [PMID: 36430940 PMCID: PMC9696409 DOI: 10.3390/ijms232214464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Premature senescence of leaves causes a reduced yield and quality of rice by affecting plant growth and development. The regulatory mechanisms underlying early leaf senescence are still unclear. The Leaf senescence 1 (LS1) gene encodes a C2H2-type zinc finger protein that is localized to both the nucleus and cytoplasm. In this study, we constructed a rice mutant named leaf senescence 1 (ls1) with a premature leaf senescence phenotype using CRISPR/Cas9-mediated editing of the LS1 gene. The ls1 mutants exhibited premature leaf senescence and reduced chlorophyll content. The expression levels of LS1 were higher in mature or senescent leaves than that in young leaves. The contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were significantly increased and catalase (CAT) activity was remarkably reduced in the ls1 plants. Furthermore, a faster decrease in pigment content was detected in mutants than that in WT upon induction of complete darkness. TUNEL and staining experiments indicated severe DNA degradation and programmed cell death in the ls1 mutants, which suggested that excessive ROS may lead to leaf senescence and cell death in ls1 plants. Additionally, an RT-qPCR analysis revealed that most senescence-associated and ROS-scavenging genes were upregulated in the ls1 mutants compared with the WT. Collectively, our findings revealed that LS1 might regulate leaf development and function, and that disruption of LS1 function promotes ROS accumulation and accelerates leaf senescence and cell death in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhongxiao Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Qiannan Sun
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiqin Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Correspondence: (W.W.); (R.W.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (W.W.); (R.W.)
| |
Collapse
|
16
|
Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, Alshegaihi RM, Meng Q, Ali M, Zaman W, Brohi RD, Liu F, Manghwar H. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039329. [PMID: 36426143 PMCID: PMC9679293 DOI: 10.3389/fpls.2022.1039329] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Department of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Qinglin Meng
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Rahim Dad Brohi
- Department of Animal Reproduction/Theriogenology, Faculty of Veterinary Science, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| |
Collapse
|
17
|
Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lia VV, Heinz RA, Fernández P, Trupkin SA. Characterization and expression analysis of WRKY genes during leaf and corolla senescence of Petunia hybrida plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1765-1784. [PMID: 36387973 PMCID: PMC9636358 DOI: 10.1007/s12298-022-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Several families of transcription factors (TFs) control the progression of senescence. Many key TFs belonging to the WRKY family have been described to play crucial roles in the regulation of leaf senescence, mainly in Arabidopsis thaliana. However, little is known about senescence-associated WRKY members in floricultural species. Delay of senescence in leaves and petals of Petunia hybrida, a worldwide ornamental crop are highly appreciated traits. In this work, starting from 28 differentially expressed WRKY genes of A. thaliana during the progression of leaf senescence, we identified the orthologous in P. hybrida and explored the expression profiles of 20 PhWRKY genes during the progression of natural (age-related) leaf and corolla senescence as well as in the corollas of flowers undergoing pollination-induced senescence. Simultaneous visualization showed consistent and similar expression profiles of PhWRKYs during natural leaf and corolla senescence, although weak expression changes were observed during pollination-induced senescence. Comparable expression trends between PhWRKYs and the corresponding genes of A. thaliana were observed during leaf senescence, although more divergence was found in petals of pollinated petunia flowers. Integration of expression data with phylogenetics, conserved motif and cis-regulatory element analyses were used to establish a list of candidates that could regulate more than one senescence process. Our results suggest that several members of the WRKY family of TFs are tightly linked to the regulation of senescence in P. hybrida. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01243-y.
Collapse
Affiliation(s)
- Francisco H. Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Amilcar H. Baigorria
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Martín N. García
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Verónica C. Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Sergio A. González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
| | - Mariana C. Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, 4142 Tucumán, Argentina
| | - Verónica V. Lia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
- Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Ruth A. Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Paula Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Santiago A. Trupkin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| |
Collapse
|
18
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
19
|
Hong WJ, Lee SK, Kim SH, Kim YJ, Moon S, Kim EJ, Silva J, Jung KH. Comparative transcriptome analysis of pollen and anther wall reveals novel insights into the regulatory mechanisms underlying anther wall development and its dehiscence in rice. PLANT CELL REPORTS 2022; 41:1229-1242. [PMID: 35249124 DOI: 10.1007/s00299-022-02852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/15/2022] [Indexed: 05/25/2023]
Abstract
To further understand the regulatory mechanism for anther dehiscence in rice, we carried out transcriptome analysis for the following two tissues: the anther wall and pollen at the anthesis stage. With the anatomical meta-expression data, in addition to these tissues, the differentially expressed genes (DEGs) between the two tissues were further refined to identify 1,717 pollen-preferred genes and 534 anther wall-preferred genes. A GUS transgenic line and RT-qPCR analysis for anther wall-preferred genes supported the fidelity of our gene candidates for further analysis. The refined DEGs were functionally classified through Gene Ontology (GO) enrichment and MapMan analyses. Through the analysis of cis-acting elements and alternative splicing variants, we also suggest the feature of regulatory sequences in promoter regions for anther wall-preferred expression and provide information of the unique splicing variants in anther wall. Subsequently, it was found that hormone signaling and the resulting transcriptional regulation pathways may play an important role in anther dehiscence and anther wall development. Our results could provide useful insights into future research to broaden the molecular mechanism of anther dehiscence or anther wall development in rice.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Su Kyoung Lee
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Seok-Hui Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Jeniffer Silva
- Department of Research and Development, The Bridge Biofoundry, Ciudad del Saber, Clayton, 0843-03081, Panama
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
20
|
Wang Z, Wang S, Liu P, Yang X, He X, Xie X, Luo Z, Wu M, Wang C, Yang J. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111154. [PMID: 35067314 DOI: 10.1016/j.plantsci.2021.111154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Phenylpropanoids are important secondary metabolites that have multifaceted effects on plant growth, development, and environmental adaptation. WRKY41 has been shown to repress anthocyanins synthesis in Arabidopsis, but its full roles in regulating plant phenylpropanoids metabolism still remains to be further studied. Here, we cloned two NtWRKY41 genes from N. tabacum genome, and NtWRKY41a showed higher expression levels than NtWRKY41b genes in all the tobacco tissues examined. Overexpression and knock-out of NtWRKY41a gene revealed that NtWRKY41a promoted the biosynthesis of Chlorogenic acid (CGA) and lignin, but repressed the accumulation of scopoletin and flavonoids in tobacco. Transcriptome analysis found 7 phenylpropanoids related differentially expressed genes (DEGs) between WT and NtWRKY41a-OE plants, among which the transcription of NtCCoAOMT and NtHST was significantly induced by posttranslational activation of NtWRKY41a, while those of NtF6'H1 and NtGT3 was significantly repressed by NtWRKY41a. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtWRKY41a could bind to the promoter regions of these four genes to regulate their transcription. Moreover, ectopic expression of NtWRKY41a also promoted the transcription of several NtLOX and NtHPL genes, which encode key enzymes involved in the oxylipin pathway. Our findings revealed new functions of NtWRKY41a in modulating the distribution of metabolism flux in phenylpropanoids pathway, and provided a promising target for manipulating phenylpropanoids contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shuaibin Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xiaonian Yang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Xie W, Li X, Wang S, Yuan M. OsWRKY53 Promotes Abscisic Acid Accumulation to Accelerate Leaf Senescence and Inhibit Seed Germination by Downregulating Abscisic Acid Catabolic Genes in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:816156. [PMID: 35154213 PMCID: PMC8828546 DOI: 10.3389/fpls.2021.816156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 05/29/2023]
Abstract
Abscisic acid (ABA) largely promotes leaf senescence and inhibits seed germination in plants. Endogenous ABA content is finely tuned by many transcription factors. In this study, we showed that OsWRKY53 is a positive regulator of leaf senescence and a negative regulator of seed germination in rice. OsWRKY53 expression was induced in leaves under aging, dark, and ABA treatment. The OsWRKY53-overexpressing (OsWRKY53-oe) plants showed early yellowing leaves, while the OsWRKY53 (oswrky53) knockout mutants maintained green leaves than the wild type under natural, dark-induced, and ABA-induced senescence conditions. Transcriptional analysis revealed that ABA catabolic genes, namely, OsABA8ox1 and OsABA8ox2, two key genes participating in ABA catabolism harboring ABA 8'-hydroxylase activity, were markedly downregulated in OsWRKY53-oe leaves. Chromatin immunoprecipitation and protoplast transient assays revealed that OsWRKY53 directly bound to the promoters of OsABA8ox1 and OsABA8ox2 to repress their transcription, resulting in elevated endogenous ABA contents that promoted premature leaf senescence in the OsWRKY53-oe plants. It indicates that OsWRKY53 is a positive regulator through regulating ABA accumulation to promote leaf senescence. In addition, accumulated ABA simultaneously inhibited seed germination and post-germination growth in OsWRKY53-oe plants. Taken together, OsWRKY53 suppresses the transcript of ABA catabolic genes to promote ABA accumulation to modulate ABA-induced leaf senescence and ABA-mediated inhibition of seed germination.
Collapse
|
22
|
Yu X, Zhu Y, Xie Y, Li L, Jin Z, Shi Y, Luo C, Wei Y, Cai Q, He W, Zheng Y, Xie H, Zhang J. Ubiquitylomes and proteomes analyses provide a new interpretation of the molecular mechanisms of rice leaf senescence. PLANTA 2022; 255:43. [PMID: 35044566 DOI: 10.1007/s00425-021-03793-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
We identified a typical rice premature senescence leaf mutant 86 (psl86) and exhibited the first global ubiquitination data during rice leaf senescence. Premature leaf senescence affects the yield and quality of rice, causing irreparable agricultural economic losses. In this study, we reported a rice premature senescence leaf mutant 86 (psl86) in the population lines of rice (Oryza sativa) japonica cultivar 'Yunyin' (YY) mutagenized using ethyl methane sulfonate (EMS) treatment. Immunoblotting analysis revealed that a higher ubiquitination level in the psl86 mutant compared with YY. Thus, we performed the proteome and ubiquitylome analyses to identify the differential abundance proteins and ubiquitinated proteins (sites) related to leaf senescence. Among 885 quantified lysine ubiquitination (Kub) sites in 492 proteins, 116 sites in 94 proteins were classified as up-regulated targets and seven sites in six proteins were classified as down-regulated targets at a threshold of 1.5. Proteins with up-regulated Kub sites were mainly enriched in the carbon fixation in photosynthetic organisms, glycolysis/gluconeogenesis and the pentose phosphate pathway. Notably, 14 up-regulated Kub sites in 11 proteins were enriched in the carbon fixation in photosynthetic organism pathway, and seven proteins (rbcL, PGK, GAPA, FBA5, ALDP, CFBP1 and GGAT) were down-regulated, indicating this pathway is tightly regulated by ubiquitination during leaf senescence. To our knowledge, we present the first global data on ubiquitination during rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yongsheng Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yunjie Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Lele Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Ziyi Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yunrui Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Cuiqin Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yanmei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Huaan Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China.
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China.
| |
Collapse
|
23
|
Cheng Z, Luan Y, Meng J, Sun J, Tao J, Zhao D. WRKY Transcription Factor Response to High-Temperature Stress. PLANTS 2021; 10:plants10102211. [PMID: 34686020 PMCID: PMC8541500 DOI: 10.3390/plants10102211] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.
Collapse
Affiliation(s)
- Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Yuting Luan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
- Correspondence: ; Tel.: +86-514-87997219; Fax: +86-514-87347537
| |
Collapse
|
24
|
Wei X, Zhou H, Xie D, Li J, Yang M, Chang T, Wang D, Hu L, Xie G, Wang J, Wang L. Genome-Wide Association Study in Rice Revealed a Novel Gene in Determining Plant Height and Stem Development, by Encoding a WRKY Transcription Factor. Int J Mol Sci 2021; 22:ijms22158192. [PMID: 34360958 PMCID: PMC8347446 DOI: 10.3390/ijms22158192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 11/27/2022] Open
Abstract
Semi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN) for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III WRKY transcription factor OsWRKY21 (LOC_Os01g60640). Interestingly, further haplotype analysis showed that C/T difference only existed in the indica group but not in the japonica group, resulting in significant differences in plant height among the different indica rice varieties. OsWRKY21 was expressed in embryo, radicle, shoots, leaves, and stems. Most notably, overexpressing OsWRKY21 resulted in the semi-dwarf phenotype, early heading date and short internodes compared to the wild type, while the knockout mutant plants by CRISPR/Cas9 technology yielded the opposite. The overexpressing lines exhibited the decreased length of the cells near sclerenchyma epidermis, accompanied with the lower levels of indole-3-acetic acid (IAA) and gibberellin 3 (GA3), but increased levels of the abscisic acid (ABA) and salicylic acid (SA) in the internodes at heading stage. Moreover, the semi-dwarf phenotype could be fully rescued by exogenous GA3 application at seedling stage. The RNA-seq and qRT-PCR analysis confirmed the differential expression levels of genes in development and the stress responses in rice, including GA metabolism (GA20ox2, GA2ox6, and YABY1) and cell wall biosynthesis (CesA4, 7, and 9) and regulation (MYB103L). These data suggest the essential role of OsWRKY21 in regulation of internode elongation and plant height in rice.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Hailian Zhou
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Deying Xie
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
| | - Jianguo Li
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
| | - Mingchong Yang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Tianli Chang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Dongxin Wang
- College of Life Science & Technology, Guangxi University, Nanning 530004, China; (D.W.); (L.H.)
| | - Lihua Hu
- College of Life Science & Technology, Guangxi University, Nanning 530004, China; (D.W.); (L.H.)
| | - Guosheng Xie
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
| | - Jihong Wang
- Department of Life Science, Tangshan Normal University, Tangshan 063000, China;
| | - Lingqiang Wang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
- Correspondence:
| |
Collapse
|
25
|
Xue C, Gao Y, Qu B, Tai P, Guo C, Chang W, Zhao G. Hybridization With an Invasive Plant of Xanthium strumarium Improves the Tolerance of Its Native Congener X. sibiricum to Cadmium. FRONTIERS IN PLANT SCIENCE 2021; 12:696687. [PMID: 34394149 PMCID: PMC8358311 DOI: 10.3389/fpls.2021.696687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Hybridization is one of the important factors influencing the adaptive evolution of invasive plants. According to previous studies, hybridization with an invasive plant reduces the adaptability of its native congener to environment. However, in this study, the hybridization with an invasive plant of Xanthium strumarium (LT) improves the tolerance and accumulation of its native congener Xanthium sibiricum (CR) to cadmium (Cd). Under Cd stress, X. sibiricum♀ × X. strumarium♂ (ZCR) showed higher biomass and Cd accumulation. Compared with CR, ZCR has longer vegetative and reproductive growth time. Moreover, ZCR adopted more reasonable biomass allocation strategy. ZCR increased the proportion of reproductive allocation and ensured its own survival with the increase of Cd stress. Furthermore, ZCR increased the translocation of Cd to aboveground parts and changed the distribution of Cd. A large amount of Cd is stored in senescent leaves and eliminated from the plant when the leaves fall off, which not only reduces the Cd content in the plant, but also reduces the toxicity of Cd in the normal leaves. Transcriptome analysis shows a total of 2055 (1060 up and 995 down) differentially expressed genes (DEGs) were detected in the leaves of Cd-stressed ZCR compared with CR, while only 792 (521 up and 271 down) were detected in X. strumarium♀ × X. sibiricum♂ (ZLT) compared with LT. A large number of DGEs in ZCR and ZLT are involved in abscisic acid (ABA) synthesis and signal transduction. The genes induced by ABA in ZCR, including CNGC5/20, CPK1/28, CML, PTI1-like tyrosine-protein kinase 3, respiratory burst oxidase homolog protein C, and WRKY transcription factor 33 were found differentially expressed compared CR. carotenoid cleavage dioxygenase 4, NCED1/2, phytoene synthase 2, and CYP707A involved in ABA synthesis and decomposition in ZLT were found differentially expressed compared LT. We speculated that ABA played an important role in Cd transportation of hybrids and Cd distribution in senescent and normal leaves. The results demonstrate that hybridization with an invasive plant improves the adaptability of the hybrid to Cd stress and may enhance the extinction risk of native congener in pollution environment.
Collapse
Affiliation(s)
- Chenyang Xue
- College of Biological Technology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yingmei Gao
- College of Biological Technology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- College of Biological Technology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Cheng Guo
- Liaoning Shihua University, Fushun, China
| | - Wenyue Chang
- Shenyang Academy of Environmental Sciences, Shenyang, China
| | - Guanghui Zhao
- Shenyang Academy of Environmental Sciences, Shenyang, China
| |
Collapse
|
26
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
27
|
Li Y, Liao S, Mei P, Pan Y, Zhang Y, Zheng X, Xie Y, Miao Y. OsWRKY93 Dually Functions Between Leaf Senescence and in Response to Biotic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:643011. [PMID: 33828575 PMCID: PMC8019945 DOI: 10.3389/fpls.2021.643011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
Cross talking between natural senescence and cell death in response to pathogen attack is an interesting topic; however, its action mechanism is kept open. In this study, 33 OsWRKY genes were obtained by screening with leaf aging procedure through RNA-seq dataset, and 11 of them were confirmed a significant altered expression level in the flag leaves during aging by using the reverse transcript quantitative PCR (RT-qPCR). Among them, the OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69, and OsWRKY93 members exhibited short-term alteration in transcriptional levels in response to Magnaporthe grisea infection. The CRISPR/Cas9-edited mutants of five genes were developed and confirmed, and a significant sensitivity to M. oryzae infection was observed in CRISPR OsWRKY93-edited lines; on the other hand, a significant resistance to M. oryzae infection was shown in the enhanced expression OsWRKY93 plants compared to mock plants; however, enhanced expression of other four genes have no significant affection. Interestingly, ROS accumulation was also increased in OsWRKY93 enhanced plants after flg22 treatment, compared with the controls, suggesting that OsWRKY93 is involved in PAMP-triggered immune response in rice. It indicated that OsWRKY93 was involved in both flag leaf senescence and in response to fungi attack.
Collapse
Affiliation(s)
- Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuting Liao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueyun Pan
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzi Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Shim JS, Park SH, Lee DK, Kim YS, Park SC, Redillas MCFR, Seo JS, Kim JK. The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes. RICE (NEW YORK, N.Y.) 2021; 14:31. [PMID: 33742286 PMCID: PMC7979854 DOI: 10.1186/s12284-021-00473-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant glycine-rich proteins are categorized into several classes based on their protein structures. The glycine-rich RNA binding proteins (GRPs) are members of class IV subfamily possessing N-terminus RNA-recognition motifs (RRMs) and proposed to be involved in post-transcriptional regulation of its target transcripts. GRPs are involved in developmental process and cellular stress responses, but the molecular mechanisms underlying these regulations are still elusive. RESULTS Here, we report the functional characterization of rice GLYCINE-RICH PROTEIN 3 (OsGRP3) and its physiological roles in drought stress response. Both drought stress and ABA induce the expression of OsGRP3. Transgenic plants overexpressing OsGRP3 (OsGRP3OE) exhibited tolerance while knock-down plants (OsGRP3KD) were susceptible to drought compared to the non-transgenic control. In vivo, subcellular localization analysis revealed that OsGRP3-GFP was transported from cytoplasm/nucleus into cytoplasmic foci following exposure to ABA and mannitol treatments. Comparative transcriptomic analysis between OsGRP3OE and OsGRP3KD plants suggests that OsGRP3 is involved in the regulation of the ROS related genes. RNA-immunoprecipitation analysis revealed the associations of OsGRP3 with PATHOGENESIS RELATED GENE 5 (PR5), METALLOTHIONEIN 1d (MT1d), 4,5-DOPA-DIOXYGENASE (DOPA), and LIPOXYGENASE (LOX) transcripts. The half-life analysis showed that PR5 transcripts decayed slower in OsGRP3OE but faster in OsGRP3KD, while MT1d and LOX transcripts decayed faster in OsGRP3OE but slower in OsGRP3KD plants. H2O2 accumulation was reduced in OsGRP3OE and increased in OsGRP3KD plants compared to non-transgenic plants (NT) under drought stress. CONCLUSION OsGRP3 plays a positive regulator in rice drought tolerance and modulates the transcript level and mRNA stability of stress-responsive genes, including ROS-related genes. Moreover, OsGRP3 contributes to the reduction of ROS accumulation during drought stress. Our results suggested that OsGRP3 alleviates ROS accumulation by regulating ROS-related genes' mRNA stability under drought stress, which confers drought tolerance.
Collapse
Affiliation(s)
- Jae Sung Shim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Hyun Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Dong-Keun Lee
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- E GREEN GLOBAL, Gunpo, 15843, South Korea
| | - Youn Shic Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soo-Chul Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, South Korea
| | | | - Jun Sung Seo
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
29
|
Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:788996. [PMID: 34938309 PMCID: PMC8685244 DOI: 10.3389/fpls.2021.788996] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengru Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|
30
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
31
|
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1072-1085. [PMID: 32609938 DOI: 10.1111/plb.13155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is a complex and precise regulatory process that is correlated with numerous internal and environmental factors. Leaf senescence is tightly related to the redistribution of nutrients, which significantly affects productivity and quality, especially in crops. Evidence shows that the mediation of transcriptional regulation by WRKY transcription factors is vital for the fine-tuning of leaf senescence. However, the underlying mechanisms of the involvement of WRKY in leaf senescence are still unclear in wheat. Using RNA sequencing data, we isolated a novel WRKY transcription factor, TaWRKY40-D, which localizes in the nucleus and is basically induced by the progression of leaf senescence. TaWRKY40-D is a promoter of natural and dark-induced leaf senescence in transgenic Arabidopsis thaliana and wheat. We also demonstrated a positive response of TaWRKY40-D in wheat upon jasmonic acid (JA) and abscisic acid (ABA) treatment. Consistent with this, the detached leaves of TaWRKY40-D VIGS (virus-induced gene silencing) wheat plants showed a stay-green phenotype, while TaWRKY40-D overexpressing Arabidopsis plants showed premature leaf senescence after JA and ABA treatment. Moreover, our results revealed that TaWRKY40-D positively regulates leaf senescence, possibly by altering the biosynthesis and signalling of JA and ABA pathway genes. Together, our results suggest a new regulator of JA- and ABA-related leaf senescence, as well as a new candidate gene that can be used for molecular breeding in wheat.
Collapse
Affiliation(s)
- L Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - W Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Q Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Y Xuan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - K Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - L Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - H Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - G Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - C Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
32
|
Lan J, Lin Q, Zhou C, Ren Y, Liu X, Miao R, Jing R, Mou C, Nguyen T, Zhu X, Wang Q, Zhang X, Guo X, Liu S, Jiang L, Wan J. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice. PLANT MOLECULAR BIOLOGY 2020; 104:429-450. [PMID: 32808190 DOI: 10.1007/s11103-020-01049-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/06/2020] [Indexed: 05/29/2023]
Abstract
OsWRKY36 represses plant height and grain size by inhibiting gibberellin signaling. Plant height and grain size are important agronomic traits affecting yield in cereals, including rice. Gibberellins (GAs) are plant hormones that promote plant growth and developmental processions such as stem elongation and grain size. WRKYs are transcription factors that regulate stress tolerance and plant development including height and grain size. However, the relationship between GA signaling and WRKY genes is still poorly understood. Here, we characterized a small grain and semi-dwarf 3 (sgsd3) mutant in rice cv. Hwayoung (WT). A T-DNA insertion in the 5'-UTR of OsWRKY36 induced overexpression of OsWRKY36 in the sgsd3 mutant, likely leading to the mutant phenotype. This was confirmed by the finding that overexpression of OsWRKY36 caused a similar small grain and semi-dwarf phenotype to the sgsd3 mutant whereas knock down and knock out caused larger grain phenotypes. The sgsd3 mutant was also hyposensitive to GA and accumulated higher mRNA and protein levels of SLR1 (a GA signaling DELLA-like inhibitor) compared with the WT. Further assays showed that OsWRKY36 enhanced SLR1 transcription by directly binding to its promoter. In addition, we found that OsWRKY36 can protect SLR1 from GA-mediated degradation. We thus identified a new GA signaling repressor OsWRKY36 that represses GA signaling through stabilizing the expression of SLR1.
Collapse
Affiliation(s)
- Jie Lan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunlei Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yakun Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Miao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Xingjie Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
33
|
Yang S, Fang G, Zhang A, Ruan B, Jiang H, Ding S, Liu C, Zhang Y, Jaha N, Hu P, Xu Z, Gao Z, Wang J, Qian Q. Rice EARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. BMC PLANT BIOLOGY 2020; 20:393. [PMID: 32847519 PMCID: PMC7449006 DOI: 10.1186/s12870-020-02610-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. RESULTS In this study, an early senescence 2 (es2) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. CONCLUSIONS The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.
Collapse
Affiliation(s)
- Shenglong Yang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Guonan Fang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Anpeng Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Noushin Jaha
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Zhengjin Xu
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Jiayu Wang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
34
|
Yang J, Wang Q, Luo H, He C, An B. HbWRKY40 plays an important role in the regulation of pathogen resistance in Hevea brasiliensis. PLANT CELL REPORTS 2020; 39:1095-1107. [PMID: 32399673 DOI: 10.1007/s00299-020-02551-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/02/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE Overexpression of HbWRKY40 induces ROS burst in tobacco and increases disease resistance in Arabidopsis; RNA-seq and ChIP assays revealed the regulatory network of HbWRKY40 in plant defense. WRKY, a family of plant transcription factors, are involved in the regulation of numerous biological processes. In rubber tree Hevea brasiliensis, the roles of WRKYs remain poorly understood. In the present study, a total of 111 genes encoding putative HbWRKY proteins were identified in the H. brasiliensis genome. Among these genes, HbWRKY40 transcripts were significantly induced by Colletotrichum gloeosporioides and salicylic acid. To assess its roles in plant defense, HbWRKY40 was over-expressed in Nicotiana benthamiana and Arabidopsis thaliana. The results showed that HbWRKY40 significantly induced reactive oxygen species burst in N. benthamiana and increased resistance of Arabidopsis against Botrytis cinerea. Transient expression in mesophyll cell protoplasts of H. brasiliensis showed that HbWRKY40 localizes at nuclei. In addition, transcripts of 145 genes were significantly up-regulated and 6 genes were down-regulated in the protoplasts over-expressing HbWRKY40 based on the RNA-seq analysis. Among these potential downstream targets, 12 genes contain potential WRKY-binding sites at the promoter regions. Further analysis through chromatin immunoprecipitation revealed that 10 of these 12 genes were the downstream targets of HbWRKY40. Taken together, our findings indicate that HbWRKY40 plays an important role in the disease resistance by regulating defense-associated genes in H. brasiliensis.
Collapse
Affiliation(s)
- Jie Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
35
|
Jiang G, Yin D, Shi Y, Zhou Z, Li C, Liu P, Jia Y, Wang Y, Liu Z, Yu M, Wu X, Zhai W, Zhu L. OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight. Sci Rep 2020; 10:6313. [PMID: 32286394 PMCID: PMC7156675 DOI: 10.1038/s41598-020-63059-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Salicylic acid (SA) is a key natural component that mediates local and systemic resistance to pathogens in many dicotyledonous species. However, its function is controversial in disease resistance in rice plants. Here, we show that the SA signaling is involved in both pathogen-associated-molecular-patterns triggered immunity (PTI) and effector triggered immunity (ETI) to Xanthomonas oryzae pv. Oryzae (Xoo) mediated by the recessive gene xa5, in which OsNPR3.3 plays an important role through interacting with TGAL11. Rice plants containing homozygous xa5 gene respond positively to exogenous SA, and their endogenous SA levels are also especially induced upon infection by the Xoo strain, PXO86. Depletion of endogenous SA can significantly attenuate plant resistance to PXO86, even to 86∆HrpXG (mutant PXO86 with a damaged type III secretion system). These results indicated that SA plays an important role in disease resistance in rice plants, which can be clouded by high levels of endogenous SA and the use of particular rice varieties.
Collapse
Affiliation(s)
- Guanghuai Jiang
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Shi
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunrong Li
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengcheng Liu
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanfeng Jia
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyan Wang
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenzhen Liu
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minxiang Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianghong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxue Zhai
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
Zentgraf U, Doll J. Arabidopsis WRKY53, a Node of Multi-Layer Regulation in the Network of Senescence. PLANTS (BASEL, SWITZERLAND) 2019; 8:E578. [PMID: 31817659 PMCID: PMC6963213 DOI: 10.3390/plants8120578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany;
| | | |
Collapse
|
37
|
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. PHYTOPATHOLOGY RESEARCH 2019; 1:13. [PMID: 0 DOI: 10.1186/s42483-019-0022-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 05/25/2023]
|
38
|
Zhou S, Cheng X, Li F, Feng P, Hu G, Chen G, Xie Q, Hu Z. Overexpression of SlOFP20 in Tomato Affects Plant Growth, Chlorophyll Accumulation, and Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2019; 10:1510. [PMID: 31850017 PMCID: PMC6896838 DOI: 10.3389/fpls.2019.01510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that OVATE family proteins (OFPs) participate in various aspects of plant growth and development. How OFPs affect leaf chlorophyll accumulation and leaf senescence has not been reported yet. Here, we found that overexpression of SlOFP20 in tomato not only impacted plant architecture but also enhanced the leaf chlorophyll accumulation and retarded leaf senescence. Gene expression analysis of SlGLK1, SlGLK2, and HY5, encoding transcription factors that are putatively involved in chloroplast development and chlorophyll levels, were significantly up-regulated in SlOFP20-OE lines. Both chlorophyll biosynthesis and degradation genes were distinctly regulated in transgenic plants. Moreover, SlOFP20-OE plants accumulated more starch and soluble sugar than wild-type plants, indicating that an increased chlorophyll content conferred some higher photosynthetic performance in SlOFP20-OE plants. Furthermore, The levels of leaf senescence-related indexes, such as hydrogen peroxide, malondialdehyde, and antioxidant enzymes activities, were differently altered, too. SlOFP20 overexpression repressed the expression of senescence-related genes, SAG12, RAV1, and WRKY53. Moreover, abscisic acid and ethylene synthesis genes were down-regulated in transgenic lines. These results provide new insights into how SlOFP20 regulates chlorophyll accumulation and leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiaoli Xie
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| | - Zongli Hu
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| |
Collapse
|
39
|
OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway. Int J Mol Sci 2019; 20:ijms20184437. [PMID: 31505875 PMCID: PMC6770167 DOI: 10.3390/ijms20184437] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 01/31/2023] Open
Abstract
The onset of leaf senescence is triggered by external cues and internal factors such as phytohormones and signaling pathways involving transcription factors (TFs). Abscisic acid (ABA) strongly induces senescence and endogenous ABA levels are finely tuned by many senescence-associated TFs. Here, we report on the regulatory function of the senescence-induced TF OsWRKY5 TF in rice (Oryza sativa). OsWRKY5 expression was rapidly upregulated in senescing leaves, especially in yellowing sectors initiated by aging or dark treatment. A T-DNA insertion activation-tagged OsWRKY5-overexpressing mutant (termed oswrky5-D) promoted leaf senescence under natural and dark-induced senescence (DIS) conditions. By contrast, a T-DNA insertion oswrky5-knockdown mutant (termed oswrky5) retained leaf greenness during DIS. Reverse-transcription quantitative PCR (RT-qPCR) showed that OsWRKY5 upregulates the expression of genes controlling chlorophyll degradation and leaf senescence. Furthermore, RT-qPCR and yeast one-hybrid analysis demonstrated that OsWRKY5 indirectly upregulates the expression of senescence-associated NAM/ATAF1/2/CUC2 (NAC) genes including OsNAP and OsNAC2. Precocious leaf yellowing in the oswrky5-D mutant might be caused by elevated endogenous ABA concentrations resulting from upregulated expression of ABA biosynthesis genes OsNCED3, OsNCED4, and OsNCED5, indicating that OsWRKY is a positive regulator of ABA biosynthesis during leaf senescence. Furthermore, OsWRKY5 expression was suppressed by ABA treatment. Taken together, OsWRKY5 is a positive regulator of leaf senescence that upregulates senescence-induced NAC, ABA biosynthesis, and chlorophyll degradation genes.
Collapse
|
40
|
Yu T, Lu X, Bai Y, Mei X, Guo Z, Liu C, Cai Y. Overexpression of the maize transcription factor ZmVQ52 accelerates leaf senescence in Arabidopsis. PLoS One 2019; 14:e0221949. [PMID: 31469881 PMCID: PMC6716648 DOI: 10.1371/journal.pone.0221949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
Leaf senescence plays an important role in the improvement of maize kernel yields. However, the underlying regulatory mechanisms of leaf senescence in maize are largely unknown. We isolated ZmVQ52 and studied the function of ZmVQ52 which encoded, a VQ family transcription factor. ZmVQ52 is constitutively expressed in maize tissues, and mainly expressed in the leaf; it is located in the nucleus of maize protoplasts. Four WRKY family proteins-ZmWRKY20, ZmWRKY36, ZmWRKY50, and ZmWRKY71-were identified as interacting with ZmVQ52. The overexpression of ZmVQ52 in Arabidopsis accelerated premature leaf senescence. The leaf of the ZmVQ52-overexpression line showed a lower chlorophyll content and higher senescence rate than the WT. A number of leaf senescence regulating genes were up-regulated in the ZmVQ52-overexpression line. Additionally, hormone treatments revealed that the leaf of the ZmVQ52-overexpressed line was more sensitive to salicylic acid (SA) and jasmonic acid (JA), and had an enhanced tolerance to abscisic acid (ABA). Moreover, a transcriptome analysis of the ZmVQ52-overexpression line revealed that ZmVQ52 is mainly involved in the circadian pathway and photosynthetic pathways.
Collapse
Affiliation(s)
- Tingting Yu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xuefeng Lu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Bai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiupeng Mei
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhifeng Guo
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chaoxian Liu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yilin Cai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
41
|
Subedi SR, Sandhu N, Singh VK, Sinha P, Kumar S, Singh SP, Ghimire SK, Pandey M, Yadaw RB, Varshney RK, Kumar A. Genome-wide association study reveals significant genomic regions for improving yield, adaptability of rice under dry direct seeded cultivation condition. BMC Genomics 2019; 20:471. [PMID: 31182016 PMCID: PMC6558851 DOI: 10.1186/s12864-019-5840-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Puddled transplanted system of rice cultivation despite having several benefits, is a highly labor, water and energy intensive system. In the face of changing climatic conditions, a successful transition from puddled to dry direct seeded rice (DDSR) cultivation system looks must in future. Genome-wide association study was performed for traits including, roots and nutrient uptake (14 traits), plant-morphological (5 traits), lodging-resistance (4 traits) and yield and yield attributing traits (7 traits) with the aim to identify significant marker-trait associations (MTAs) for traits enhancing rice adaptability to dry direct-seeded rice (DDSR) system. RESULTS Study identified a total of 37 highly significant MTAs for 20 traits. The false discovery rate (FDR) ranged from 0.264 to 3.69 × 10- 4, 0.0330 to 1.25 × 10- 4, and 0.0534 to 4.60 × 10- 6 in 2015WS, 2016DS and combined analysis, respectively. The percent phenotypic variance (PV) explained by SNPs ranged from 9 to 92%. Among the identified significant MTAs, 15 MTAs associated with the traits including nodal root, root hair length, root length density, stem and culm diameter, plant height and grain yield were reported to be located in the proximity of earlier identified candidate gene. The significant positive correlation of grain-yield with seedling establishment traits, root morphological and nutrient-uptake related traits and grain yield attributing traits pointing towards combining target traits to increase rice yield and adaptability under DDSR. Seven promising progenies with better root morphology, nutrient-uptake and higher grain yield were identified that can further be used in genomics assisted breeding for DDSR varietal development. CONCLUSIONS Once validated, the identified MTAs and the SNPs linked with trait of interest could be of direct use in genomic assisted breeding (GAB) to improve grain yield and adaptability of rice under DDSR.
Collapse
Affiliation(s)
- Sushil Raj Subedi
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Agriculture and Forestry University, Rampur, Chitwan Nepal
- National Rice Research Program, Hardinath, Nepal
| | - Nitika Sandhu
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Punjab Agricultural University, Ludhiana, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Pallavi Sinha
- Center of Excellence in Genomics and System Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Santosh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar India
| | - S. P. Singh
- Bihar Agricultural University, Sabour, Bihar India
| | | | - Madhav Pandey
- Agriculture and Forestry University, Rampur, Chitwan Nepal
| | | | - Rajeev K. Varshney
- Center of Excellence in Genomics and System Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Arvind Kumar
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
42
|
Zheng X, Jehanzeb M, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC PLANT BIOLOGY 2019; 19:174. [PMID: 31046677 PMCID: PMC6498481 DOI: 10.1186/s12870-019-1767-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Senescence affects the quality and yield of plants by regulating different traits of plants. A few members of S40 gene family, the barley HvS40 and the Arabidopsis AtS40-3, have been shown to play a role in leaf senescence in Barley and Arabidopsis. Although we previously reported that S40 family exist in most of plants, up to now, no more function of S40 members in plant has been demonstrated. The aim of this study was to provide the senescence related information of S40 gene family in rice as rice is a major crop that feeds about half of the human population in the world. RESULTS A total of 16 OsS40 genes were identified from the genome database of Oryza sativa L. japonica by bioinformatics analysis. Phylogenetic analysis reveals that the 16 OsS40 proteins are classified into five groups, and 4 of the 16 members belong to group I to which also the HvS40 and AtS40-3 is assigned. S40 genes of rice show high structural similarities, as 13 out of the 16 genes have no intron and the other 3 genes have only 1 or 2 introns. The expression patterns of OsS40 genes were analyzed during natural as well as stress-induced leaf senescence in correspondence with senescence marker genes. We found that 6 of them displayed differential but clearly up-regulated transcript profiles under diverse situations of senescence, including darkness, nitrogen deficiency, hormone treatments as well as pathogen infection. Furthermore, three OsS40 proteins were identified as nuclear located proteins by transient protoplast transformation assay. CONCLUSIONS Taking all findings together, we concluded that OsS40-1, OsS40-2, OsS40-12 and OsS40-14 genes have potential regulatory function of crosstalk among abiotic, biotic and developmental senescence in rice. Our results provide valuable baseline for functional validation studies of the rice S40 genes in rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Jehanzeb
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Li Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
43
|
Gong P, Luo Y, Huang F, Chen Y, Zhao C, Wu X, Li K, Yang X, Cheng F, Xiang X, Wu C, Pan G. Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice. PLANT MOLECULAR BIOLOGY 2019; 100:133-149. [PMID: 30843130 DOI: 10.1007/s11103-019-00848-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
The OsPLS2 locus was isolated and cloned by map-based cloning that encodes a Upf1-like helicase. Disruption of OsPLS2 accelerated light-dependent leaf senescence in the rice mutant of ospls2. Leaf senescence is a very complex physiological process controlled by both genetic and environmental factors, however its underlying molecular mechanisms remain elusive. In this study, we report a novel Oryza sativa premature leaf senescence mutant (ospls2). Through map-based cloning, a G-to-A substitution was determined at the 1st nucleotide of the 13th intron in the OsPLS2 gene that encodes a Upf1-like helicase. This mutation prompts aberrant splicing of OsPLS2 messenger and consequent disruption of its full-length protein translation, suggesting a negative role of OsPLS2 in regulating leaf senescence. Wild-type rice accordingly displayed a progressive drop of OsPSL2 protein levels with age-dependent leaf senescence. Shading and light filtration studies showed that the ospls2 phenotype, which was characteristic of photo-oxidative stress and reactive oxygen species (ROS) accumulation, was an effect of irritation by light. When continuously exposed to far-red light, exogenous H2O2 and/or abscisic acid (ABA), the ospls2 mutant sustained hypersensitive leaf senescence. In consistence, light and ROS signal pathways in ospls2 were activated by down-regulation of phytochrome genes, and up-regulation of PHYTOCHROME-INTERACTING FACTORS (PIFs) and WRKY genes, all promoting leaf senescence. Together, these data indicated that OsPLS2 played an essential role in leaf senescence and its disruption triggered light-dependent leaf senescence in rice.
Collapse
Affiliation(s)
- Pan Gong
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Yanmin Luo
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yaodong Chen
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Chaoyue Zhao
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xin Wu
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Kunyu Li
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xi Yang
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Fangmin Cheng
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xun Xiang
- Experimental Teaching Center, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Chunyan Wu
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Gang Pan
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
44
|
Akhter D, Qin R, Nath UK, Eshag J, Jin X, Shi C. Transcriptional Profile Corroborates that bml Mutant Plays likely Role in Premature Leaf Senescence of Rice ( Oryza sativa L.). Int J Mol Sci 2019; 20:ijms20071708. [PMID: 30959810 PMCID: PMC6480502 DOI: 10.3390/ijms20071708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Leaf senescence is the last period of leaf growth and a dynamic procedure associated with its death. The adaptability of the plants to changing environments occurs thanks to leaf senescence. Hence, transcriptional profiling is important to figure out the exact mechanisms of inducing leaf senescence in a particular crop, such as rice. From this perspective, leaf samples of two different rice genotypes, the brown midrib leaf (bml) mutant and its wild type (WT) were sampled for transcriptional profiling to identify differentially-expressed genes (DEGs). We identified 2670 DEGs, among which 1657 genes were up- and 1013 genes were down-regulated. These DEGs were enriched in binding and catalytic activity, followed by the single organism process and metabolic process through gene ontology (GO), while the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were related to the plant hormone signal transduction and photosynthetic pathway enrichment. The expression pattern and the clustering of DEGs revealed that the WRKY and NAC family, as well as zinc finger transcription factors, had greater effects on early-senescence of leaf compared to other transcription factors. These findings will help to elucidate the precise functional role of bml rice mutant in the early-leaf senescence.
Collapse
Affiliation(s)
- Delara Akhter
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Ran Qin
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Jamal Eshag
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| | - Xiaoli Jin
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| | - Chunhai Shi
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
45
|
Gu L, Dou L, Guo Y, Wang H, Li L, Wang C, Ma L, Wei H, Yu S. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2019; 19:116. [PMID: 30922232 PMCID: PMC6440019 DOI: 10.1186/s12870-019-1688-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Premature senescence can reduce the yield and quality of crops. WRKY transcription factors (TFs) play important roles during leaf senescence, but little is known about their ageing mechanisms in cotton. RESULTS In this study, a group III WRKY TF, GhWRKY27, was isolated and characterized. The expression of GhWRKY27 was induced by leaf senescence and was higher in an early-ageing cotton variety than in a non-early-ageing cotton variety. Overexpression of GhWRKY27 in Arabidopsis promoted leaf senescence, as determined by reduced chlorophyll content and elevated expression of senescence-associated genes (SAGs). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that GhWRKY27 interacted with an MYB TF, GhTT2. Putative target genes of GhWRKY27 were identified via chromatin immunoprecipitation followed by sequencing (ChIP-seq). Yeast one-hybrid (Y1H) assay and electrophoretic mobility shift assay (EMSA) revealed that GhWRKY27 binds directly to the promoters of cytochrome P450 94C1 (GhCYP94C1) and ripening-related protein 2 (GhRipen2-2). In addition, the expression patterns of GhTT2, GhCYP94C1 and GhRipen2-2 were identified during leaf senescence. Transient dual-luciferase reporter assay indicated that GhWRKY27 could activate the expression of GhCYP94C1 and GhRipen2-2. CONCLUSIONS Our work lays the foundation for further study of the functional roles of WRKY genes during leaf senescence in cotton. In addition, our data provide new insights into the senescence-associated mechanisms of WRKY genes in cotton.
Collapse
Affiliation(s)
- Lijiao Gu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Lingling Dou
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yaning Guo
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Congcong Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| |
Collapse
|
46
|
Zhu D, Hou L, Xiao P, Guo Y, Deyholos MK, Liu X. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:132-142. [PMID: 30823991 DOI: 10.1016/j.plantsci.2018.03.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/13/2018] [Accepted: 03/18/2018] [Indexed: 05/03/2023]
Abstract
High salinity severely inhibits the growth and productivity of grape plants. However, knowledge of salt-stress regulation remains limited in WRKY members of grapes. Here, we isolated a novel VvWRKY30 gene from Vitis vinifera L. and studied its role in salt-stress resistance. The VvWRKY30 protein fused with green fluorescent protein localized to the nucleus and the transcriptional activation activity of VvWRKY30 was confirmed in yeast. Moreover, VvWRKY30 showed key transcriptional activity domain at the N-terminal and specifically binds to the W-BOX. VvWRKY30 showed the highest expression in the shoot tip and functional leaves of grape plants. VvWRKY30 expression was induced by salt as well as stress signaling molecules H2S and H2O2. Overexpression of VvWRKY30 in Arabidopsis increased its resistance to salt stress at different stages of growth. Under salinity stress, VvWRKY30 overexpressing lines had higher antioxidant activities and lower reactive oxygen species contents. Soluble sugar and proline concentrations also increased in VvWRKY30 overexpressing lines in the presence of NaCl. In addition, the transcription of genes related to antioxidant biosynthesis, glyco-metabolism and proline biosynthesis increased in the VvWRKY30 overexpressing lines. Taken together, this study confirmed the important role of VvWRKY30 in increasing salt stress resistance by regulating reactive oxygen species-scavenging and the accumulation of osmoticum.
Collapse
Affiliation(s)
- Dan Zhu
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Lixia Hou
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Peilian Xiao
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Guo
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Michael K Deyholos
- IK Barber School of Arts & Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Xin Liu
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
47
|
Pillai SE, Kumar C, Patel HK, Sonti RV. Overexpression of a cell wall damage induced transcription factor, OsWRKY42, leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection. BMC PLANT BIOLOGY 2018; 18:177. [PMID: 30176792 PMCID: PMC6122458 DOI: 10.1186/s12870-018-1391-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Members of the WRKY gene family play important roles in regulating plant responses to abiotic and biotic stresses. Treatment with either one of the two different cell wall degrading enzymes (CWDEs), LipaseA and CellulaseA, induces immune responses and enhances the expression of OsWRKY42 in rice. However, the role of OsWRKY42 in CWDE induced immune responses is not known. RESULTS Expression of the rice transcription factor OsWRKY42 is induced upon treatment of rice leaves with CWDEs, wounding and salt. Overexpression of OsWRKY42 leads to enhanced callose deposition in rice and Arabidopsis but this does not enhance tolerance to bacterial infection. Upon treatment with NaCl, Arabidopsis transgenic plants expressing OsWRKY42 exhibited high levels of anthocyanin and displayed enhanced tolerance to salt stress. Treatment with either cellulase or salt induced the expression of several genes involved in JA biosynthesis and response in Arabidopsis. Ectopic expression of OsWRKY42 results in reduced expression of cell wall damage and salt stress induced jasmonic acid biosynthesis and response genes. OsWRKY42 expressing Arabidopsis lines exhibited enhanced tolerance to methyl jasmonate mediated growth inhibition. CONCLUSION The results presented here suggest that OsWRKY42 regulates plant responses to either cell wall damage or salinity stress by acting as a negative regulator of jasmonic acid mediated responses.
Collapse
Affiliation(s)
- Shakuntala E. Pillai
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Chandan Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- National Institute of Plant Genome Research, New Delhi, 110067 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- National Institute of Plant Genome Research, New Delhi, 110067 India
| |
Collapse
|
48
|
Sun Y, Li Y, Wang M, Wang C, Ling N, Mur LAJ, Shen Q, Guo S. Redox imbalance contributed differently to membrane damage of cucumber leaves under water stress and Fusarium infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:171-180. [PMID: 30080601 DOI: 10.1016/j.plantsci.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 05/29/2023]
Abstract
Redox-associated events are important in plant development and responses to environmental stresses. In this study, we investigated spatial redox responses of cucumber (Cucumis sativus L.) leaves to biotic stress (Fusarium infection) or abiotic stress (water stress). Plants were grown under hydroponic conditions and either treated with polyethylene glycol to simulate drought or infected with Fusarium oxysporum f. sp. cucumerinum. Both water stress and Fusarium infection restricted cucumber growth and were associated with cellular plasma-membrane damage, reactive oxygen species accumulation, and changes in antioxidants; however, the responses to each stress were distinctive. Under water stress, H2O2 generation at the leaf edge increased 29.7% compared with that at the centre but with Fusarium infection there was a relative 10.4% decrease at the edge. These changes correlated with changes in antioxidants and linked enzyme activities. The key sources of variation in oxidative events were defined by principal component analysis of all of the data and redox balance evaluations. We suggest that these spatial differences under water stress and Fusarium infection arise from discrete regulatory mechanisms, reflecting either developmental effect over the leaf regions or systemic anti-oxidative events occurred following infection.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yingrui Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chengzi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Gu L, Wei H, Wang H, Su J, Yu S. Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutum L.). BMC Genet 2018; 19:48. [PMID: 30060731 PMCID: PMC6065155 DOI: 10.1186/s12863-018-0653-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/11/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND WRKY transcription factors (TFs) participate in various physiological processes of plants. Although WRKY genes have been well studied in model plants, knowledge of the functional roles of these genes is still extremely limited in cotton. RESULTS In this study, a group IId WRKY gene from cotton, GhWRKY42, was isolated and characterized. Our data showed that GhWRKY42 localized to the nucleus. A transactivation assay in yeast demonstrated that GhWRKY42 was not a transcriptional activator. A β-glucuronidase (GUS) activity assay revealed that the promoter of GhWRKY42 showed fragment deletion activity in Nicotiana tabacum and was mainly expressed in the roots, stems and leaves of ProGhWRKY42::GUS transgenic Arabidopsis plants. Quantitative real-time PCR (qRT-PCR) analysis indicated that GhWRKY42 was up-regulated during leaf senescence and was induced after exposure to abiotic stresses. Constitutive expression of GhWRKY42 in Arabidopsis led to a premature aging phenotype, which was correlated with an increased number of senescent leaves, reduced chlorophyll content and elevated expression of senescence-associated genes (SAGs). In addition, virus-induced gene silencing (VIGS) was used to silence the endogenous GhWRKY42 gene in cotton, and this silencing reduced plant height. CONCLUSIONS Our findings indicate that GhWRKY42 is involved in abiotic stress responses, premature leaf senescence and stem development. This work establishes a solid foundation for further functional analysis of the GhWRKY42 gene in cotton.
Collapse
Affiliation(s)
- Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China.
| |
Collapse
|
50
|
Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, Lee S, Hwang DJ. Rice WRKY11 Plays a Role in Pathogen Defense and Drought Tolerance. RICE (NEW YORK, N.Y.) 2018; 11:5. [PMID: 29330772 PMCID: PMC5766476 DOI: 10.1186/s12284-018-0199-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/02/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are frequently subjected to abiotic and biotic stresses, and WRKY proteins play a pivotal role in the response to such stress. OsWRKY11 is induced by pathogens, drought, and heat, suggesting a function in biotic and abiotic stress responses. RESULTS This study identified OsWRKY11, a member of WRKY group IIc. It is a transcriptional activator that localized to the nucleus. Ectopic expression of OsWRKY11 resulted in enhanced resistance to a bacterial pathogen, Xanthomonas oryzae pv. oryzae; resistance was compromised in transgenic lines under-expressing OsWRKY11. Ectopic expression of OsWRKY11 resulted in constitutive expression of defense-associated genes, whereas knock-down (kd) of OsWRKY11 reduced expression of defense-associated genes during pathogen attack, suggesting that OsWRKY11 activates defense responses. OsWRKY11 bound directly to the promoter of CHITINASE 2, a gene associated with defense, and activated its transcription. In addition, ectopic expression of OsWRKY11 enhanced tolerance to drought stress and induced constitutive expression of drought-responsive genes. Induction of drought-responsive genes was compromised in OsWRKY11-kd plants. OsWRKY11 also bound directly to the promoter of a drought-responsive gene, RAB21, activating its transcription. In addition, OsWRKY11 protein levels were controlled by the ubiquitin-proteasome system. CONCLUSION OsWRKY11 integrates plant responses to pathogens and abiotic stresses by positively modulating the expression of biotic and abiotic stress-related genes.
Collapse
Affiliation(s)
- Heyoung Lee
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Jooyoung Cha
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Changhyun Choi
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Naeyoung Choi
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Hyun-So Ji
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Seungbum Lee
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea.
| |
Collapse
|