1
|
Yi W, Sylvester E, Lian J, Deng C. The effects of risperidone and voluntary exercise intervention on synaptic plasticity gene expressions in the hippocampus and prefrontal cortex of juvenile female rats. Physiol Behav 2025; 294:114879. [PMID: 40096936 DOI: 10.1016/j.physbeh.2025.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Psychiatric disorders and antipsychotics are associated with impaired neuroplasticity, while physical exercise has been reported to enhance neuroplasticity and improve cognitive and affective processes. Therefore, this study hypothesizes that voluntary exercise can enhance synaptic plasticity in juvenile rats disrupted by risperidone, a commonly prescribed antipsychotic for pediatric patients. METHODS Thirty-two juvenile female rats were randomly assigned to Vehicle+Sedentary, Risperidone (0.9mg/kg; b.i.d)+Sedentary, Vehicle+Exercise (three hours daily access to running wheels), and Risperidone+Exercise groups for four week treatment. Brains were collected for further analysis. RESULTS In the hippocampus, the mRNA expressions of Bdnf, Ntrk2, and Grin2b were increased by risperidone and exercise intervention. Exercise upregulated expression of Grin1 and Grin2a. Syn1 and Syp mRNA expression were enhanced by exercise in the risperidone-treated group. The expression of both Mfn1 and Drp1 mRNA were decreased by risperidone-only treatment. In the prefrontal cortex, Bdnf and Dlg4 expression was upregulated by exercise, while the Ntrk2 expression was reduced by risperidone and reversed by exercise. The Mfn1 mRNA expression was decreased by risperidone with or without voluntary exercise. The risperidone-decreased Ppargc1α gene expression was enhanced by exercise. CONCLUSION Risperidone affects synaptic plasticity through a complex mechanism in female juvenile rats: enhancing certain key genes in the hippocampus while inhibiting genes essential for mitochondrial function. In line with our hypothesis, voluntary exercise promotes genes beneficial for synaptic plasticity and enhances specific genes reduced by risperidone, in female juvenile rats.
Collapse
Affiliation(s)
- Weijie Yi
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Emma Sylvester
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Gui S, Zeng F, Wu Z, Nonaka S, Sano T, Ni J, Nakanishi H, Moriyama M, Kanematsu T. Lipopolysaccharides from Porphyromonas gingivalis indirectly induce neuronal GSK3β-dependent synaptic defects and cause cognitive decline in a low-amyloid-β-concentration environment in Alzheimer's disease. J Alzheimers Dis 2025; 105:302-316. [PMID: 40111934 DOI: 10.1177/13872877251326879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundLipopolysaccharides from Porphyromonas gingivalis (P.gLPS) are involved in the pathology of Alzheimer's disease (AD). However, the effect of P.gLPS on synaptic defects remains unclear.ObjectiveIn this study, we tested our hypothesis that P.gLPS induces synaptic defects in a low-amyloid-beta (Aβ)-concentration environment.MethodsMG6 microglia or N2a neurons was treated with P.gLPS (0.1 μg/mL), soluble Aβ42 (0.1 μM) or AL (combined P.gLPS and soluble Aβ42 at 0.1 μM).ResultsIn cultured MG6 microglia, increased the mRNA expression of TNF-α, IL-1β and IL-6 and the TNF-α release in parallel with increased NF-κB activation. In cultured N2a neurons, treatment with Aβ42, P.gLPS, and AL did not affect the mRNA expression of synapsin1 (SYN1) or post-synaptic density protein-95 (PSD-95). However, the treatment with conditioned medium from AL-exposed MG6 microglia (AL-MCM) significantly reduced the mRNA and protein expression of SYN1, PSD-95, and nuclear translocation of repressor element-1 silencing transcription factor (REST) but significantly increased the mRNA expression of TNF receptor type I (at 48 h) and glycogen synthase kinase (GSK)3β (at 24 h). TWS119 pretreatment (5 μM), a GSK3β specific inhibitor, significantly reversed the AL-MCM-induced reduction in the mRNA expression of SYN1 and PSD-95 and nuclear translocation of REST in cultured N2a neurons. In APPNL-F/NL-F mice, the immunofluorescence intensity of SYN1 and PSD-95 in cortical neurons was positively correlated with the index of the memory test but negatively correlated with that of TNF-α-positive microglia.ConclusionsThese observations demonstrate that P.gLPS induces neuronal GSK3β-dependent synaptic defects in a low-Aβ concentration environment via microglial activation.
Collapse
Affiliation(s)
- Shuge Gui
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Tomomi Sano
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Wilson P, Kim N, Cotter R, Parkes M, Cmelak L, Reed MN, Gramlich MW. Presynaptic recycling pool density regulates spontaneous synaptic vesicle exocytosis rate and is upregulated in the presence of β-amyloid. Cell Rep 2025; 44:115410. [PMID: 40146773 DOI: 10.1016/j.celrep.2025.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Synapses represent a fundamental unit of information transfer during cognition via presynaptic vesicle exocytosis. It has been established that evoked release is probabilistic, but the mechanisms behind spontaneous release are less clear. Understanding spontaneous release is vital, as it plays a key role in maintaining synaptic connections. We propose a model framework for spontaneous release where the reserve pool geometrically constrains recycling pool vesicles, creating an entropic force that drives spontaneous release rate. We experimentally support this framework using SEM, fluorescence microscopy, computational modeling, and pharmacological approaches. Our model correctly predicts the spontaneous release rate as a function of presynapse size. Finally, we use our approach to show how β-amyloid mutations linked to Alzheimer's disease lead to increased spontaneous release rates. These results indicate that synapses regulate the density of the recycling pool to control the spontaneous release rate and may serve as an early indicator of Alzheimer's disease.
Collapse
Affiliation(s)
- Paxton Wilson
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Noah Kim
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Rachel Cotter
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Mason Parkes
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Michael W Gramlich
- Department of Physics, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
4
|
Sears JC, Broadie K. PKA restricts ERK signaling in learning and memory Kenyon cell neurons. Cell Signal 2025; 132:111818. [PMID: 40250698 DOI: 10.1016/j.cellsig.2025.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Protein Kinase A (PKA) and Extracellular Signal-Regulated Kinase (ERK) have core roles in learning and memory. Here, we investigate kinase-kinase signaling interactions in the Drosophila brain Kenyon cell learning/memory circuit using separation of phases-based activity reporter of kinase (SPARK) biosensors to image circuit-localized functions in vivo. We find that constitutively active Rapidly Accelerated Fibrosarcoma (RAFgof) enhances ERK signaling only in Kenyon cell domains with low baseline PKA signaling, and that transgenic inhibition of PKA function elevates ERK signaling. Conversely, loss of ERK has no impact on PKA signaling, whereas RAFgof expands PKA signaling. Importantly, transgenic PKA inhibition together with RAFgof synergistically elevates ERK signaling. These findings indicate a negative PKA-ERK pathway interaction within learning/memory Kenyon cells. We find that potentiating circuit activity using an exogenous NaChBac ion channel elevates PKA signaling in circuit domains with low baseline PKA function, and uniformly strongly increases ERK signaling. Similarly, thermogenetic stimulation of circuit activity with a temperature-sensitive TRPA1 channel increases PKA signaling in circuit domains of low baseline PKA, and elevates ERK signaling. Importantly, potentiating circuit activity (NaChBac) while also inhibiting PKA function synergistically elevates ERK signaling. Likewise, conditional induction of circuit activity (TRPA1) together with PKA inhibition increases activity-dependent ERK signaling. Finally, a mechanically-induced seizure model (bang-sensitive sesB mutant) elevates PKA signaling, while simultaneous transgenic PKA inhibition in this model acts to synergistically increase ERK signaling. Taken together, we conclude PKA limits ERK signaling in Kenyon cells within the learning and memory circuit, with PKA function acting to restrict activity-dependent ERK signaling.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
5
|
Petroccione MA, Melone M, Rathwell TJ, Dwivedi N, Grienberger C, Conti F, Scimemi A. An unsuspected physiological role for mGluRIII glutamate receptors in hippocampal area CA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646479. [PMID: 40236245 PMCID: PMC11996470 DOI: 10.1101/2025.03.31.646479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Group III metabotropic glutamate receptors (mGluRIII) are expressed broadly throughout the neocortex and hippocampus but are thought to inhibit neurotransmitter release only at a subset of synapses and in a target cell- specific manner. Accordingly, previous slice physiology experiments in hippocampal area CA1 showed that mGluRIII receptors inhibit glutamate and GABA release only at excitatory and inhibitory synapses formed onto GABAergic interneurons, not onto pyramidal cells. Here, we show that the supposed target cell-specific modulation of GABA release only occurs when the extracellular calcium concentration in the recording solution is higher than its physiological concentration in the cerebrospinal fluid. Under more physiological conditions, mGluRIII receptors inhibit GABA release at synapses formed onto both interneurons and pyramidal cells but limit glutamate release only onto interneurons. This previously unrecognized form of mGluRIII-dependent, pre-synaptic modulation of inhibition onto pyramidal cells is accounted for by a reduction in the size of the readily releasable pool, mediated by protein kinase A and its vesicle-associated target proteins, synapsins. Using in vivo whole-cell recordings in behaving mice, we demonstrate that blocking mGluRIII activation in the intact CA1 network results in net effects consistent with decreased inhibition and significantly alters CA1 place cell activity. Together, these findings challenge our current understanding of the role of mGluRIII receptors in the control of synaptic transmission and encoding of spatial information in the hippocampus.
Collapse
|
6
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Zhang Y, Guo Y, Du L, Zhao J, Ci X, Yin J, Niu Q, Mo Y, Zhang Q, Nie J. Maternal Exposure of SD Rats to Benzo[a]Pyrene Impairs Neurobehavior and Hippocampal Synaptic Ultrastructure in Offspring via Downregulating Synaptic-Associated Factors. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39967322 DOI: 10.1002/tox.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Benzo[a]pyrene (B[a]P) is a carcinogenic contaminant widely present in the environment. Recently, increasing studies have paid attention to the developmental neurotoxicity of B[a]P in offspring in their early life stages; however, the underlying molecular mechanisms have not been clearly elucidated. In this study, we aimed to evaluate the effects of prenatal B[a]P exposure on neurobehavior of pups during their brain growth spurt (BGS) period and also explore the potential underlying mechanisms. Pregnant Sprague-Dawley (SD) rats were intraperitoneally exposed to 0, 10, 20, or 40 mg/kg-bw B[a]P for three consecutive days during embryonic days 17-19. The physiological development index of pups was observed, and a series of neurobehavioral tests assessing sensory and motor maturation were performed. The complexity of dendritic branches and the basal dendritic spine density of CA1 pyramidal neurons were examined using Golgi-Cox staining during PND 1-14. In addition, the mRNA and protein expression levels of hippocampal BDNF, SYP, Arc, PSD-95, DNMT1, and DNMT3a, and the level of 5-mC were detected using RT-qPCR, Western blotting, or immunohistochemical staining, respectively. We noted that prenatal B[a]P exposure induced body weight loss and neurobehavioral impairments in the early life stages. Furthermore, this study firstly revealed that maternal exposure to B[a]P impaired the dendritic arborization and complexity of pyramidal neurons in the hippocampus CA1 subfield in offspring during the early postnatal period, and the damage of B[a]P to basal dendritic spine density was also observed in a dose-dependent manner. Correspondingly, maternal exposure to B[a]P markedly reduced BDNF, Arc, SYP, and PSD-95 mRNA and protein levels in the offspring hippocampus. Meanwhile, the levels of hippocampal DNMT1, DNMT3a, and 5-mC significantly increased in the offspring prenatally exposed to B[a]P. In summary, this study firstly demonstrated that maternal B[a]P exposure induced neurobehavioral deficits by destroying the hippocampal synaptic ultrastructure, which was possibly associated with the downregulation of BDNF, Arc, SYP, and PSD95 in the hippocampus through increased DNMTs-mediated DNA methylation in offspring during the BGS period.
Collapse
Affiliation(s)
- Yu Zhang
- Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Sinopharm Tongmei General Hospital, Datong, Shanxi, People's Republic of China
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Yuting Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Linhu Du
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Junxiu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Xiaorui Ci
- Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Sinopharm Tongmei General Hospital, Datong, Shanxi, People's Republic of China
| | - Jinzhu Yin
- Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Sinopharm Tongmei General Hospital, Datong, Shanxi, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, University of Louisville, Louisville, Kentucky, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, University of Louisville, Louisville, Kentucky, USA
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| |
Collapse
|
8
|
Chesnokova E, Bal N, Alhalabi G, Balaban P. Regulatory Elements for Gene Therapy of Epilepsy. Cells 2025; 14:236. [PMID: 39937026 PMCID: PMC11816724 DOI: 10.3390/cells14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The problem of drug resistance in epilepsy means that in many cases, a surgical treatment may be advised. But this is only possible if there is an epileptic focus, and resective brain surgery may have adverse side effects. One of the promising alternatives is gene therapy, which allows the targeted expression of therapeutic genes in different brain regions, and even in specific cell types. In this review, we provide detailed explanations of some key terms related to genetic engineering, and describe various regulatory elements that have already been used in the development of different approaches to treating epilepsy using viral vectors. We compare a few universal promoters for their strength and duration of transgene expression, and in our description of cell-specific promoters, we focus on elements driving expression in glutamatergic neurons, GABAergic neurons and astrocytes. We also explore enhancers and some other cis-regulatory elements currently used in viral vectors for gene therapy, and consider future perspectives of state-of-the-art technologies for designing new, stronger and more specific regulatory elements. Gene therapy has multiple advantages and should become more common in the future, but there is still a lot to study and invent in this field.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Natalia Bal
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Ghofran Alhalabi
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia;
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| |
Collapse
|
9
|
Schwab K, Robinson L, Annschuetz A, Dreesen E, Magbagbeolu M, Melis V, Theuring F, Harrington CR, Wischik CM, Riedel G. Rivastigmine interferes with the pharmacological activity of hydromethylthionine on presynaptic proteins in the line 66 model of frontotemporal dementia. Brain Res Bull 2025; 220:111172. [PMID: 39694148 DOI: 10.1016/j.brainresbull.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The negative interference of treatments between the acetylcholinesterase inhibitor rivastigmine and the tau aggregation inhibitor hydromethylthionine mesylate (HMTM) has been reported in Line 1 tau-transgenic mice, which overexpress a truncated species of tau protein that is found in the core of paired helical filaments in Alzheimer´s disease (AD). However, little is known about whether such interactions could affect synapses in mice overexpressing tau carrying pathogenic mutations. Here, we have used Line 66 (L66) mice which overexpress full-length human tau carrying the P301S mutation as a model in which tau accumulates in synapses. We measured the abundance of tau and synaptic proteins (VAMP-2, SNAP-25, SNTX-1, SYNPY-1, SYN-1, A-SYN) immunohistochemically to reveal structural synaptic alterations in these mice. Tau and synaptic markers were also examined in L66 mice treated with hydromethylthionine mesylate (HMTM) (15 mg/kg) and rivastigmine (0.5 mg/kg) administered singly and in combination. Tau protein accumulated in L66 mouse brains, and the levels of synaptic proteins were also altered, most notably with decreased levels of SNAP-25 and SYN-1. A decrease in tau accumulation in L66 brains caused by HMTM was partially compromised by rivastigmine pretreatment. Differences in synaptic proteins induced by HMTM alone were not identical with those induced by HMTM pretreated with rivastigmine. The most prominent differences appeared in proteins of the SNARE complex (SNAP-25, VAMP-2, SNTX-1), but rivastigmine also interfered with the HMTM-dependent reduction in tau accumulation. These data extend our previous findings with L1 mice and provide evidence for a synaptic mechanism of interference between symptomatic and disease-modifying dementia therapies and an explanation for similar drug interactions observed in clinical trials.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lianne Robinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Annschuetz
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
10
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
11
|
Dos Santos GRO, Cararo-Lopes MM, Possebom IR, de Sá Lima L, Scavone C, Kawamoto EM. Sex-dependent changes in AMPAR expression and Na, K-ATPase activity in the cerebellum and hippocampus of α-Klotho-Hypomorphic mice. Neuropharmacology 2024; 258:110097. [PMID: 39094831 DOI: 10.1016/j.neuropharm.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Aging is characterized by a functional decline in several physiological systems. α-Klotho-hypomorphic mice (Kl-/-) exhibit accelerated aging and cognitive decline. We evaluated whether male and female α-Klotho-hypomorphic mice show changes in the expression of synaptic proteins, N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, postsynaptic density protein 95 (PSD-95), synaptophysin and synapsin, and the activity of Na+, K+-ATPase (NaK) isoforms in the cerebellum and hippocampus. In this study, we demonstrated that in the cerebellum, Kl-/- male mice have reduced expression of GluA1 (AMPA) compared to wild-type (Kl+/+) males and Kl-/- females. Also, Kl-/- male and female mice show reduced ɑ2/ɑ3-NaK and Mg2+-ATPase activities in the cerebellum, respectively, and sex-based differences in NaK and Mg2+-ATPase activities in both the regions. Our findings suggest that α-Klotho could influence the expression of AMPAR and the activity of NaK isoforms in the cerebellum in a sex-dependent manner, and these changes may contribute, in part, to cognitive decline.
Collapse
Affiliation(s)
| | - Marina Minto Cararo-Lopes
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, 79070-900, Campo Grande, MS, Brazil
| | - Isabela Ribeiro Possebom
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Llanquinao J, Jara C, Cortés-Díaz D, Kerr B, Tapia-Rojas C. Contrasting Effects of an Atherogenic Diet and High-Protein/Unsaturated Fatty Acids Diet on the Accelerated Aging Mouse Model SAMP8 Phenotype. Neurol Int 2024; 16:1066-1085. [PMID: 39452682 PMCID: PMC11510401 DOI: 10.3390/neurolint16050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, which could impact the age-related phenotype. Methods: We studied two diets with low-carbohydrate and high-fat compositions, differing in the amount of protein and the fat type disposable-the atherogenic diet Cocoa (high protein/high saturated fat/high cholesterol) and the South Beach diet (very high-protein/high-unsaturated fat)-on oxidative stress, mitochondrial state, and hippocampus-dependent memory in 3-month-old Senescence-Accelerated Mouse Model (SAMP8) seed over 3 months to determine their pro- or anti-aging effects. Results: Despite its bad reputation, the Cocoa diet reduces the reactive oxygen species (ROS) content without impacting the energy state and hippocampus-dependent spatial acuity. In contrast to the beneficial impact proposed for the South Beach diet, it induced a pro-aging phenotype, increasing oxidative damage and the levels of NR2B subunit of the NMDA, impairing energy and spatial acuity. Surprisingly, despite the negative changes observed with both diets, this led to subtle memory impairment, suggesting the activation of compensatory mechanisms preventing more severe cognitive decline. Conclusions: Our results demonstrated that diets usually considered good could be detrimental to the onset of aging. Also, probably due to the brain plasticity of non-aged animals, they compensate for the damage, preventing a more aggravated phenotype. Nevertheless, these silent changes could predispose or increase the risk of suffering pathologies at advanced age.
Collapse
Affiliation(s)
- Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| |
Collapse
|
13
|
Song SH, Augustine GJ. A role for synapsin tetramerization in synaptic vesicle clustering. J Physiol 2024. [PMID: 38979871 DOI: 10.1113/jp286177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Although synapsins have long been proposed to be key regulators of synaptic vesicle (SV) clustering, their mechanism of action has remained mysterious and somewhat controversial. Here, we review synapsins and their associations with each other and with SVs. We highlight the recent hypothesis that synapsin tetramerization is a mechanism for SV clustering. This hypothesis, which aligns with numerous experimental results, suggests that the larger size of synapsin tetramers, in comparison to dimers, allows tetramers to form optimal bridges between SVs that overcome the repulsive force associated with the negatively charged membrane of SVs and allow synapsins to form a reserve pool of SVs within presynaptic terminals.
Collapse
Affiliation(s)
| | - George J Augustine
- Temasek Life sciences Laboratory, Singapore
- Department of Physiology, National University of Singapore, Singapore
| |
Collapse
|
14
|
Bruentgens F, Moreno Velasquez L, Stumpf A, Parthier D, Breustedt J, Benfenati F, Milovanovic D, Schmitz D, Orlando M. The Lack of Synapsin Alters Presynaptic Plasticity at Hippocampal Mossy Fibers in Male Mice. eNeuro 2024; 11:ENEURO.0330-23.2024. [PMID: 38866497 PMCID: PMC11223178 DOI: 10.1523/eneuro.0330-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.
Collapse
Affiliation(s)
- Felicitas Bruentgens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Laura Moreno Velasquez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Alexander Stumpf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Daniel Parthier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Jörg Breustedt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Dragomir Milovanovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Marta Orlando
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
15
|
Schwab K, Lauer D, Magbagbeolu M, Theuring F, Gasiorowska A, Zadrozny M, Harrington CR, Wischik CM, Niewiadomska G, Riedel G. Hydromethylthionine rescues synaptic SNARE proteins in a mouse model of tauopathies: Interference by cholinesterase inhibitors. Brain Res Bull 2024; 212:110955. [PMID: 38677558 DOI: 10.1016/j.brainresbull.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
In clinical trials for Alzheimer's disease (AD), hydromethylthionine mesylate (HMTM) showed reduced efficacy when administered as an add-on to symptomatic treatments, while it produced a significant improvement of cognitive function when taken as monotherapy. Interference of cholinesterase inhibition with HMTM was observed also in a tau transgenic mouse model, where rivastigmine reduced the pharmacological activity of HMTM at multiple brain levels including hippocampal acetylcholine release, synaptosomal glutamate release and mitochondrial activity. Here, we examined the effect of HMTM, given alone or in combination with the acetylcholinesterase inhibitor, rivastigmine, at the level of expression of selected pre-synaptic proteins (syntaxin-1; SNAP-25, VAMP-2, synaptophysin-1, synapsin-1, α-synuclein) in brain tissue harvested from tau-transgenic Line 1 (L1) and wild-type mice using immunohistochemistry. L1 mice overexpress the tau-core unit that induces tau aggregation and results in an AD-like phenotype. Synaptic proteins were lower in hippocampus and cortex but greater in basal forebrain regions in L1 compared to wild-type mice. HMTM partially normalised the expression pattern of several of these proteins in basal forebrain. This effect was diminished when HMTM was administered in combination with rivastigmine, where mean protein expression seemed supressed. This was further confirmed by group-based correlation network analyses where important levels of co-expression correlations in basal forebrain regions were lost in L1 mice and partially re-established when HMTM was given alone but not in combination with rivastigmine. These data indicate a reduction in pharmacological activity of HMTM when given as an add-on therapy, a result that is consistent with the responses observed in the clinic. Attenuation of the therapeutic effects of HMTM by cholinergic treatments may have important implications for other potential AD therapies.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Dilyara Lauer
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Anna Gasiorowska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Maciej Zadrozny
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Grażyna Niewiadomska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
16
|
Stavsky A, Parra-Rivas LA, Tal S, Riba J, Madhivanan K, Roy S, Gitler D. Synapsin E-domain is essential for α-synuclein function. eLife 2024; 12:RP89687. [PMID: 38713200 PMCID: PMC11076041 DOI: 10.7554/elife.89687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.
Collapse
Affiliation(s)
- Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Leonardo A Parra-Rivas
- Department of Pathology, University of California, San DiegoLa JollaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Shani Tal
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Jen Riba
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Subhojit Roy
- Department of Pathology, University of California, San DiegoLa JollaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
17
|
Hu Y, Shi T, Xu Z, Zhang M, Yang J, Liu Z, Wan Q, Liu Y. Heart failure potentially affects the cortical structure of the brain. Aging (Albany NY) 2024; 16:7357-7386. [PMID: 38656892 PMCID: PMC11087114 DOI: 10.18632/aging.205762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heart failure (HF) has been reported to affect cerebral cortex structure, but the underlying cause has not been determined. This study used Mendelian randomization (MR) to reveal the causal relationship between HF and structural changes in the cerebral cortex. METHODS HF was defined as the exposure variable, and cerebral cortex structure was defined as the outcome variable. Inverse-variance weighted (IVW), MR-Egger regression and weighted median (WME) were performed for MR analysis; MR-PRESSO and Egger's intercept was used to test horizontal pleiotropy; and "leave-one-out" was used for sensitivity analysis. RESULTS Fifty-two single nucleotide polymorphisms (SNPs) were defined as instrumental variables (IVs), and there was no horizontal pleiotropy in the IVs. According to the IVW analysis, the OR and 95% CI of cerebral cortex thickness were 0.9932 (0.9868-1.00) (P=0.0402), and the MR-Egger intercept was -15.6× 10-5 (P = 0.7974) and the Global test pval was 0.078. The P-value of the cerebral cortex surface was 0.2205, and the MR-Egger intercept was -34.69052 (P= 0.6984) and the Global Test pval was 0.045. HF had a causal effect on the surface area of the caudal middle frontal lobule (P=0.009), insula lobule (P=0.01), precuneus lobule (P=0.049) and superior parietal lobule (P=0.044). CONCLUSIONS HF was potentially associated with changes in cortical thickness and in the surface area of the caudal middle frontal lobule, insula lobule, precuneus lobule and superior parietal lobule.
Collapse
Affiliation(s)
- Yinqin Hu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyun Shi
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaohui Xu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Zhang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahui Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhirui Liu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiqi Wan
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anhui Provincial Hospital of Integrated Medicine, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of TCM, Hefei 230011, Anhui, China
| |
Collapse
|
18
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
19
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
20
|
Gu J, Rollo B, Berecki G, Petrou S, Kwan P, Sumer H, Cromer B. Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons. Exp Cell Res 2024; 435:113902. [PMID: 38145818 DOI: 10.1016/j.yexcr.2023.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
In vitro differentiation of stem cells into various cell lineages is valuable in developmental studies and an important source of cells for modelling physiology and pathology, particularly for complex tissues such as the brain. Conventional protocols for in vitro neuronal differentiation often suffer from complicated procedures, high variability and low reproducibility. Over the last decade, the identification of cell fate-determining transcription factors has provided new tools for cellular studies in neuroscience and enabled rapid differentiation driven by ectopic transcription factor expression. As a proneural transcription factor, Neurogenin 2 (Ngn2) expression alone is sufficient to trigger rapid and robust neurogenesis from pluripotent cells. Here, we established a stable cell line, by piggyBac (PB) transposition, that conditionally expresses Ngn2 for generation of excitatory neurons from mouse embryonic stem cells (ESCs) using an all-in-one PB construct. Our results indicate that Ngn2-induced excitatory neurons have mature and functional characteristics consistent with previous studies using conventional differentiation methods. This approach provides an all-in-one PB construct for rapid and high copy number gene delivery of dox-inducible transcription factors to induce differentiation. This approach is a valuable in vitro cell model for disease modeling, drug screening and cell therapy.
Collapse
Affiliation(s)
- Jinchao Gu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Geza Berecki
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Steven Petrou
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| | - Brett Cromer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
21
|
Alfken J, Neuhaus C, Major A, Taskina A, Hoffmann C, Ganzella M, Petrovic A, Zwicker D, Fernández-Busnadiego R, Jahn R, Milovanovic D, Salditt T. Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:8. [PMID: 38270681 PMCID: PMC11233366 DOI: 10.1140/epje/s10189-023-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.
Collapse
Affiliation(s)
- Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - András Major
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Alyona Taskina
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
- Theorie Biologischer Flüssigkeiten, Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Hoffmann
- Molekulare Neurowissenschaften, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Marcelo Ganzella
- Labor für Neurobiologie, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, Am Fassberg 11, 37077, Göttingen, Germany
| | - Arsen Petrovic
- Institut für Neuropathologie, Universitätsmedizin Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - David Zwicker
- Theorie Biologischer Flüssigkeiten, Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 11, 37077, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institut für Neuropathologie, Universitätsmedizin Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Reinhard Jahn
- Labor für Neurobiologie, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dragomir Milovanovic
- Molekulare Neurowissenschaften, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
22
|
Mao LM, Thallapureddy K, Wang JQ. Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo. Brain Res 2024; 1823:148671. [PMID: 37952872 PMCID: PMC10806815 DOI: 10.1016/j.brainres.2023.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Khyathi Thallapureddy
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
23
|
Stavsky A, Parra-Rivas LA, Tal S, Riba J, Madhivanan K, Roy S, Gitler D. Synapsin E-domain is essential for α-synuclein function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546170. [PMID: 37425805 PMCID: PMC10327093 DOI: 10.1101/2023.06.24.546170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at the synapse. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.
Collapse
Affiliation(s)
- Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Leonardo A. Parra-Rivas
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Shani Tal
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jen Riba
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kayalvizhi Madhivanan
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Current address: Arrowhead Pharmaceuticals, Pasadena, CA, 91105
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
24
|
Longfield SF, Mollazade M, Wallis TP, Gormal RS, Joensuu M, Wark JR, van Waardenberg AJ, Small C, Graham ME, Meunier FA, Martínez-Mármol R. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nat Commun 2023; 14:7277. [PMID: 37949856 PMCID: PMC10638352 DOI: 10.1038/s41467-023-43130-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | | | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function. Neurochem Int 2023; 170:105606. [PMID: 37657764 DOI: 10.1016/j.neuint.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Synaptic dysfunction is a typical pathophysiologic change in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Hintington's disease (HD) and amyotrophic lateral sclerosis (ALS), which involves protein post-translational modifications (PTMs) including L-isoaspartate (L-isoAsp) formed by isomerization of aspartate or deamidation of asparagine. The formation of L-isoAsp could be repaired by protein L-isoaspartyl methyltransferase (PIMT). Some synaptic proteins have been identified as PIMT potential substrates and play an essential role in ensuring synaptic function. In this review, we discuss the role of certain synaptic proteins as PIMT substrates in neurodegenerative disease, thus providing therapeutic synapse-centered targets for the treatment of NDs.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
26
|
Kim HY, Lee J, Kim HJ, Lee BE, Jeong J, Cho EJ, Jang HJ, Shin KJ, Kim MJ, Chae YC, Lee SE, Myung K, Baik JH, Suh PG, Kim JI. PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III. Exp Mol Med 2023; 55:2357-2375. [PMID: 37907739 PMCID: PMC10689754 DOI: 10.1038/s12276-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 11/02/2023] Open
Abstract
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jieun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewook Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Jeong Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ji Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
27
|
Song SH, Augustine GJ. Different mechanisms of synapsin-induced vesicle clustering at inhibitory and excitatory synapses. Cell Rep 2023; 42:113004. [PMID: 37597184 DOI: 10.1016/j.celrep.2023.113004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Synapsins cluster synaptic vesicles (SVs) to provide a reserve pool (RP) of SVs that maintains synaptic transmission during sustained activity. However, it is unclear how synapsins cluster SVs. Here we show that either liquid-liquid phase separation (LLPS) or tetramerization-dependent cross-linking can cluster SVs, depending on whether a synapse is excitatory or inhibitory. Cell-free reconstitution reveals that both mechanisms can cluster SVs, with tetramerization being more effective. At inhibitory synapses, perturbing synapsin-dependent LLPS impairs SV clustering and synchronization of gamma-aminobutyric acid (GABA) release, while preventing synapsin tetramerization does not. At glutamatergic synapses, the opposite is true: synapsin tetramerization enhances clustering of glutamatergic SVs and mobilization of these SVs from the RP, while synapsin LLPS does not. Comparison of inhibitory and excitatory transmission during prolonged synaptic activity reveals that synapsin LLPS serves as a brake to limit GABA release, while synapsin tetramerization enables rapid mobilization of SVs from the RP to sustain glutamate release.
Collapse
Affiliation(s)
- Sang-Ho Song
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - George J Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
28
|
Zheng X, Jing J, Yuan M, Liu N, Song Y. Contribution of gene polymorphisms on 3p25 to salivary gland carcinoma, ameloblastoma, and odontogenic keratocyst in the Chinese Han population. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:220-230. [PMID: 37495273 DOI: 10.1016/j.oooo.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE This study aimed to investigate the contribution of gene polymorphisms in 3p25 to salivary gland carcinoma (SGC), ameloblastoma (AM), and odontogenic keratocyst (OKC) in the Chinese Han population. STUDY DESIGN Sixteen tag-single nucleotide polymorphisms (SNPs) within 5 genes (SYN2, TIMP4, PPARG, RAF1, and IQSEC1) in 3p25 were genotyped in 411 individuals with or without SGC, AM, and OKC. Genotype, clinical phenotype, and bioinformatics analyses were performed to evaluate the function of candidate SNPs. RESULTS SYN2-rs3773364, TIMP4-rs3755724, PPARG-rs10865710, and PPARG-rs1175544 were related to decreased SGC susceptibility, whereas IQSEC1-rs2600322 and IQSEC1-rs2686742 decreased and increased AM risk, respectively. Stratification analysis revealed that the significance of the identified SNPs was stronger in females or individuals younger than 46 years in SGC. PPARG-rs10865710 and PPARG-rs1175544 were associated with lower lymph node metastasis. SYN2-rs3773364 and PPARG-rs1175544 were associated with favorable SGC patient survival. Functional assessments linked PPARG-rs1175544 to PPARG expression regulation. Linkage disequilibrium analysis revealed a haplotype (SYN2-rs3773364-A, TIMP4-rs3817004-A, and TIMP4-rs3755724-C) associated with decreased susceptibility to SGC. Generalized multifactor dimensionality reduction analysis indicated the gene-gene interactions among IQSEC1, TIMP4, and PPARG in SGC, AM, and OKC progression. CONCLUSIONS These variants play important roles in the progression of SGC, AM, and OKC in the Chinese Han population and may be considered biomarkers for early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Pediatric Dentistry, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Minyan Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nianke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
29
|
Li N, Gao Y, Zhang Y, Deng Y. An integrated multi-level analysis reveals learning-memory deficits and synaptic dysfunction in the rat model exposure to austere environment. J Proteomics 2023; 279:104887. [PMID: 36966970 DOI: 10.1016/j.jprot.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Austere environment existing in tank, submarine and vessel has many risk factors including high temperature and humidity, confinement, noise, hypoxia, and high level of carbon dioxide, which may cause depression and cognitive impairment. However, the underlying mechanism is not fully understood yet. We attempt to investigate the effects of austere environment (AE) on emotion and cognitive function in a rodent model. After 21 days of AE stress, the rats exhibit depressive-like behavior and cognitive impairment. Compared with control group, the glucose metabolic level of the hippocampus is significantly decreased using whole-brain positron emission tomography (PET) imaging, and the density of dendritic spines of the hippocampus is remarkably reduced in AE group. Then, we employ a label-free quantitative proteomics strategy to investigate the differentially abundant proteins in rats' hippocampus. It is striking that the differentially abundant proteins annotated by KEGG enrich in oxidative phosphorylation pathway, synaptic vesicle cycle pathway and glutamatergic synapses pathway. The synaptic vesicle transport related proteins (Syntaxin-1A, Synaptogyrin-1 and SV-2) are down-regulated, resulting in the accumulation of intracellular glutamate. Furthermore, the concentration of hydrogen peroxide and malondialdehyde is increased while the activity of superoxide dismutase and complex I and IV of mitochondria is decreased, indicating that oxidative damage to hippocampal synapses is associated with the cognitive decline. The results of this study offer direct evidence, for the first time, that austere environment can substantially cause learning and memory deficits and synaptic dysfunction in a rodent model via behavioral assessments, PET imaging, label-free proteomics, and oxidative stress tests. SIGNIFICANCE: The incidence of depression and cognitive decline in military occupations (for example, tanker and submariner) is significantly higher than that of global population. In the present study, we first established novel model to simulate the coexisting risk factors in the austere environment. The results of this study offer the direct evidences, for the first time, that the austere environment can substantially cause learning and memory deficits by altering plasticity of the synaptic transmission in a rodent model via proteomic strategy, PET imaging, oxidative stress and behavioral assessments. These findings provide valuable information to better understand the mechanisms of cognitive impairment.
Collapse
Affiliation(s)
- Nuomin Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yanan Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
30
|
Guo Y, Fu Y, Sun W. 50 Hz Magnetic Field Exposure Inhibited Spontaneous Movement of Zebrafish Larvae through ROS-Mediated syn2a Expression. Int J Mol Sci 2023; 24:ijms24087576. [PMID: 37108734 PMCID: PMC10144198 DOI: 10.3390/ijms24087576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and occupational environments. However, its potential adverse effects and the underlying mechanism on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos (including a transfected synapsin IIa (syn2a) overexpression plasmid) at 3 h post-fertilization (hpf) were exposed to a 50-Hz magnetic field (MF) with a series of intensities (100, 200, 400 and 800 μT, respectively) for 1 h or 24 h every day for 5 days. Results showed that, although MF exposure did not affect the basic development parameters including hatching rate, mortality and malformation rate, yet MF at 200 μT could significantly induce spontaneous movement (SM) hypoactivity in zebrafish larvae. Histological examination presented morphological abnormalities of the brain such as condensed cell nucleus and cytoplasm, increased intercellular space. Moreover, exposure to MF at 200 μT inhibited syn2a transcription and expression, and increased reactive oxygen species (ROS) level as well. Overexpression of syn2a could effectively rescue MF-induced SM hypoactivity in zebrafish. Pretreatment with N-acetyl-L-cysteine (NAC) could not only recover syn2a protein expression which was weakened by MF exposure, but also abolish MF-induced SM hypoactivity. However, syn2a overexpression did not affect MF-increased ROS. Taken together, the findings suggested that exposure to a 50-Hz MF inhibited spontaneous movement of zebrafish larvae via ROS-mediated syn2a expression in a nonlinear manner.
Collapse
Affiliation(s)
- Yixin Guo
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiti Fu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
31
|
Garner CC, Ackermann F. Synaptic logistics: The presynaptic scaffold protein Piccolo a nodal point tuning synaptic vesicle recycling, maintenance and integrity. Mol Cell Neurosci 2023; 124:103795. [PMID: 36436725 DOI: 10.1016/j.mcn.2022.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Properly working synapses are one important guarantor for a functional and healthy brain. They are small, densely packed structures, where information is transmitted through the release of neurotransmitters from synaptic vesicles (SVs). The latter cycle within the presynaptic terminal as they first fuse with the plasma membrane to deliver their neurotransmitter, and afterwards become recycled and prepared for a new release event. The synapse is an autonomous structure functioning mostly independent of the neuronal soma. Dysfunction in synaptic processes associated with local insults or genetic abnormalities can directly compromise synapse function and integrity and subsequently lead to the onset of neurodegenerative diseases. Therefore, measures need to be in place counteracting these threats for instance through the continuous replacement of old and damaged SV proteins. Interestingly recent studies show that the presynaptic scaffolding protein Piccolo contributes to health, function and integrity of synapses, as it mediates the delivery of synaptic proteins from the trans-Golgi network (TGN) towards synapses, as well as the local recycling and turnover of SV proteins within synaptic terminals. It can fulfill these various tasks through its multi-domain structure and ability to interact with numerous binding partners. In addition, Piccolo has recently been linked with the early onset neurodegenerative disease Pontocerebellar Hypoplasia Type 3 (PCH3) further underlying its importance for neuronal health. In this review, we will focus on Piccolo's contributions to synapse function, health and integrity and make a connection how those may contribute to the disease pattern of PCH3.
Collapse
Affiliation(s)
- Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Germany
| | - Frauke Ackermann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
32
|
Musazzi L, Tornese P, Sala N, Lee FS, Popoli M, Ieraci A. Acute stress induces an aberrant increase of presynaptic release of glutamate and cellular activation in the hippocampus of BDNF Val/Met mice. J Cell Physiol 2022; 237:3834-3844. [PMID: 35908196 PMCID: PMC9796250 DOI: 10.1002/jcp.30833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Paolo Tornese
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Nathalie Sala
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Francis S. Lee
- Department of PsychiatryWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Maurizio Popoli
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | | |
Collapse
|
33
|
Bauer CS, Cohen RN, Sironi F, Livesey MR, Gillingwater TH, Highley JR, Fillingham DJ, Coldicott I, Smith EF, Gibson YB, Webster CP, Grierson AJ, Bendotti C, De Vos KJ. An interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in ALS/FTD. Acta Neuropathol 2022; 144:437-464. [PMID: 35876881 PMCID: PMC9381633 DOI: 10.1007/s00401-022-02470-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Dysfunction and degeneration of synapses is a common feature of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene is the main genetic cause of ALS/FTD (C9ALS/FTD). The repeat expansion leads to reduced expression of the C9orf72 protein. How C9orf72 haploinsufficiency contributes to disease has not been resolved. Here we identify the synapsin family of synaptic vesicle proteins, the most abundant group of synaptic phosphoproteins, as novel interactors of C9orf72 at synapses and show that C9orf72 plays a cell-autonomous role in the regulation of excitatory synapses. We mapped the interaction of C9orf72 and synapsin to the N-terminal longin domain of C9orf72 and the conserved C domain of synapsin, and show interaction of the endogenous proteins in synapses. Functionally, C9orf72 deficiency reduced the number of excitatory synapses and decreased synapsin levels at remaining synapses in vitro in hippocampal neuron cultures and in vivo in the hippocampal mossy fibre system of C9orf72 knockout mice. Consistent with synaptic dysfunction, electrophysiological recordings identified impaired excitatory neurotransmission and network function in hippocampal neuron cultures with reduced C9orf72 expression, which correlated with a severe depletion of synaptic vesicles from excitatory synapses in the hippocampus of C9orf72 knockout mice. Finally, neuropathological analysis of post-mortem sections of C9ALS/FTD patient hippocampus with C9orf72 haploinsufficiency revealed a marked reduction in synapsin, indicating that disruption of the interaction between C9orf72 and synapsin may contribute to ALS/FTD pathobiology. Thus, our data show that C9orf72 plays a cell-autonomous role in the regulation of neurotransmission at excitatory synapses by interaction with synapsin and modulation of synaptic vesicle pools, and identify a novel role for C9orf72 haploinsufficiency in synaptic dysfunction in C9ALS/FTD.
Collapse
Affiliation(s)
- Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Rebecca N Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Daniel J Fillingham
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Yolanda B Gibson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
34
|
Effect and Mechanism of Yisui Fuyongtang (YSFYT) Decoction on Cognitive Function and Synaptic Plasticity in Rats with Vascular Cognitive Impairment. J Immunol Res 2022; 2022:1709360. [PMID: 35846430 PMCID: PMC9286900 DOI: 10.1155/2022/1709360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/02/2023] Open
Abstract
Vascular cognitive impairment (VCI) has emerged as the second major disease responsible for dementia, and there is still a lack of effective treatment methods for this disorder to date. Clinical medications have found that Yisui Fuyongtang (YSFYT) Decoction is effective in improving neurological signs and learning-memory functions in patients who develop white matter lesions and whole brain atrophy. To clarify the effect and molecular regulation mechanism of YSFYT Decoction on model rats, this research analyzed the influence of YSFYT Decoction on the learning-memory ability and lipid metabolism of rats based on behavioral and biochemical analysis. Further pathology and protein detection methods were adopted to investigate the action of YSFYT Decoction on the neurons in the hippocampus of model rats and the regulation of the brain derived neurotrophic factor (BDNF)-tyrosine protein kinase receptor B (TrkB) signaling pathway. Compared with the VCI group, after YSFYT Decoction administration, the ratio of swimming time in the platform, number of crossing the platform, number of active avoidance, and proportion of active avoidance of the rats were markedly increased, whereas the response latency was substantially reduced (p < 0.05). Biochemical tests indicated that contents of lipoprotein lipase (LPL), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) of the model rats in YSFYT Decoction treatment group were greatly reduced, whereas those of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), catalase (CAT), malondialdehyde (MDA), and superoxide dismutase (SOD) were elevated (p < 0.05). Additionally, Bcl-2 expression in YSFYT Decoction treatment group was significantly increased, but neuron apoptosis of the hippocampus tissue was reduced. Meanwhile, neuron number was apparently higher than that in VCI model group. Following Yisui Decoction treatment, expressions of growth-associated protein 43 (GAP43), synaptophysin (SYP), postsynaptic density 95 (PSD95), NMDAR subunit 2B (NR2B), BDNF, TrkB, phospho-mitogen-activated protein kinase (p-MAPK), extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and phospho-protein kinase B (p-AKT) were markedly elevated. Taken together, YSFYT Decoction could activate the BDNF-TrkB signaling pathway, elevate Bcl-2 expression, and minimize neuronal apoptosis in hippocampus, thereby improving the behavioral characteristics and biochemical indicators of the VCI rat model.
Collapse
|
35
|
Becker M, Abaev K, Pinhasov A, Ornoy A. S-Adenosyl-Methionine alleviates sociability aversion and reduces changes in gene expression in a mouse model of social hierarchy. Behav Brain Res 2022; 427:113866. [DOI: 10.1016/j.bbr.2022.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
|
36
|
Neonatal Oxidative Stress Impairs Cortical Synapse Formation and GABA Homeostasis in Parvalbumin-Expressing Interneurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8469756. [PMID: 35663195 PMCID: PMC9159830 DOI: 10.1155/2022/8469756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
Neonatal brain injury is often caused by preterm birth. Brain development is vulnerable to increased environmental stress, including oxidative stress challenges. Due to a premature change of the fetal living environment from low oxygen in utero into postnatal high-oxygen room air conditions ex utero, the immature preterm brain is exposed to a relative hyperoxia, which can induce oxidative stress and impair neuronal cell development. To simulate the drastic increase of oxygen exposure in the immature brain, 5-day-old C57BL/6 mice were exposed to hyperoxia (80% oxygen) for 48 hours or kept in room air (normoxia, 21% oxygen) and mice were analyzed for maturational alterations of cortical GABAergic interneurons. As a result, oxidative stress was indicated by elevated tyrosine nitration of proteins. We found perturbation of perineuronal net formation in line with decreased density of parvalbumin-expressing (PVALB) cortical interneurons in hyperoxic mice. Moreover, maturational deficits of cortical PVALB+ interneurons were obtained by decreased glutamate decarboxylase 67 (GAD67) protein expression in Western blot analysis and lower gamma-aminobutyric acid (GABA) fluorescence intensity in immunostaining. Hyperoxia-induced oxidative stress affected cortical synaptogenesis by decreasing synapsin 1, synapsin 2, and synaptophysin expression. Developmental delay of synaptic marker expression was demonstrated together with decreased PI3K-signaling as a pathway being involved in synaptogenesis. These results elucidate that neonatal oxidative stress caused by increased oxygen exposure can lead to GABAergic interneuron damage which may serve as an explanation for the high incidence of psychiatric and behavioral alterations found in preterm infants.
Collapse
|
37
|
Meng L, Zou L, Xiong M, Chen J, Zhang X, Yu T, Li Y, Liu C, Chen G, Wang Z, Ye K, Zhang Z. A synapsin Ⅰ cleavage fragment contributes to synaptic dysfunction in Alzheimer's disease. Aging Cell 2022; 21:e13619. [PMID: 35443102 PMCID: PMC9124304 DOI: 10.1111/acel.13619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic dysfunction is a key feature of Alzheimer's disease (AD). However, the molecular mechanisms underlying synaptic dysfunction remain unclear. Here, we show that synapsin Ⅰ, one of the most important synaptic proteins, is fragmented by the cysteine proteinase asparagine endopeptidase (AEP). AEP cleaves synapsin at N82 in the brains of AD patients and generates the C‐terminal synapsin Ⅰ (83–705) fragment. This fragment is abnormally distributed in neurons and induces synaptic dysfunction. Overexpression of AEP in the hippocampus of wild‐type mice results in the production of the synapsin Ⅰ (83–705) fragment and induces synaptic dysfunction and cognitive deficits. Moreover, overexpression of the AEP‐generated synapsin Ⅰ (83–705) fragment in the hippocampus of tau P301S transgenic mice and wild‐type mice promotes synaptic dysfunction and cognitive deficits. These findings suggest a novel mechanism of synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Li Zou
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
- Department of Neurology Zhongnan Hospital of Wuhan University Wuhan China
| | - Min Xiong
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Jiehui Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Xingyu Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Ting Yu
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Yiming Li
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Congcong Liu
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Guiqin Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Zhihao Wang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Zhentao Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
38
|
Möck EEA, Honkonen E, Airas L. Synaptic Loss in Multiple Sclerosis: A Systematic Review of Human Post-mortem Studies. Front Neurol 2021; 12:782599. [PMID: 34912290 PMCID: PMC8666414 DOI: 10.3389/fneur.2021.782599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Gray matter pathology plays a central role in the progression of multiple sclerosis (MS). The occurrence of synaptic loss appears to be important but, to date, still poorly investigated aspect of MS pathology. In this systematic review, we drew from the recent knowledge about synaptic loss in human post-mortem studies. Methods: We conducted a systematic search with PubMed to identify relevant publications. Publications available from15 June 2021 were taken into account. We selected human post-mortem studies that quantitatively assessed the synapse number in MS tissue. Results: We identified 14 relevant publications out of which 9 reported synaptic loss in at least one investigated subregion. The most commonly used synaptic marker was synaptophysin; non-etheless, we found substantial differences in the methodology and the selection of reference tissue. Investigated regions included the cortex, the hippocampus, the cerebellum, the thalamus, and the spinal cord. Conclusion: Synaptic loss seems to take place throughout the entire central nervous system. However, the results are inconsistent, probably due to differences in the methodology. Moreover, synaptic loss appears to be a dynamic process, and thus the nature of this pathology might be captured using in vivo synaptic density measurements.
Collapse
Affiliation(s)
- E E Amelie Möck
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eveliina Honkonen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
39
|
Yang Z, Sun F, Liao H, Zhang Z, Dou Z, Xing Q, Hu J, Huang X, Bao Z. Genome-wide association study reveals genetic variations associated with ocean acidification resilience in Yesso scallop Patinopecten yessoensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105963. [PMID: 34547702 DOI: 10.1016/j.aquatox.2021.105963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA), which refers to a gradual decrease in seawater pH due to the absorption of atmospheric carbon dioxide, profoundly affects the growth, development and survival of bivalves. Relatively limited studies have assessed the resilience of bivalve to OA. In the present study, Patinopecten yessoensis, an economically and ecologically significant species, were exposed to low pH (pH = 7.5) for 4 weeks. Forty-seven scallops that died in the first week were considered pH-sensitive population, and 20 that were alive at the end of the experiment were considered pH-tolerant population. A genome-wide association study was conducted to identify the genomic loci associated the resilience of P. yessoensis to OA. Twenty-one single nucleotide polymorphisms were significantly associated with resilience, which were distributed in 11 linkage groups. Within the linkage disequilibrium block region (± 300 kb) surrounding the 21 SNPs, 193 candidate genes were successfully identified. Particularly, five associated SNPs were directly located on five genes, including SP24, CFDH, 5HTR3, HSDL1 and ZFP346. The GO enrichment and KEGG pathway analyses showed that the molecular response of P. yessoensis to OA mainly involved neural signal transmission, energy metabolism and redox reaction. Candidate genes were expressed during larval development and in adult tissues. Furthermore, the expression of 30 candidate genes changed significantly under low pH stress in the mantle. Our results reveal certain SNPs and candidate genes that could elucidate the different responses of P. yessoensis to OA. The genetic variations indicated molecular resilience in P. yessoensis populations, which may enable adaptation to future acidification stress.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanhua Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zheng Dou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| |
Collapse
|
40
|
Berezovskaya AS, Tyganov SA, Nikolaeva SD, Naumova AA, Merkulyeva NS, Shenkman BS, Glazova MV. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats. Cell Mol Neurobiol 2021; 41:1549-1561. [PMID: 32683580 PMCID: PMC11448613 DOI: 10.1007/s10571-020-00922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.
Collapse
Affiliation(s)
- Anna S Berezovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia.
| |
Collapse
|
41
|
Jęśko H, Wieczorek I, Wencel PL, Gąssowska-Dobrowolska M, Lukiw WJ, Strosznajder RP. Age-Related Transcriptional Deregulation of Genes Coding Synaptic Proteins in Alzheimer's Disease Murine Model: Potential Neuroprotective Effect of Fingolimod. Front Mol Neurosci 2021; 14:660104. [PMID: 34305524 PMCID: PMC8299068 DOI: 10.3389/fnmol.2021.660104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) induces time-dependent changes in sphingolipid metabolism, which may affect transcription regulation and neuronal phenotype. We, therefore, analyzed the influence of age, amyloid β precursor protein (AβPP), and the clinically approved, bioavailable sphingosine-1-phosphate receptor modulator fingolimod (FTY720) on the expression of synaptic proteins. RNA was isolated, reverse-transcribed, and subjected to real-time PCR. Expression of mutant (V717I) AβPP led to few changes at 3 months of age but reduced multiple mRNA coding for synaptic proteins in a 12-month-old mouse brain. Complexin 1 (Cplx1), SNAP25 (Snap25), syntaxin 1A (Stx1a), neurexin 1 (Nrxn1), neurofilament light (Nefl), and synaptotagmin 1 (Syt1) in the hippocampus, and VAMP1 (Vamp1) and neurexin 1 (Nrxn1) in the cortex were all significantly reduced in 12-month-old mice. Post mortem AD samples from the human hippocampus and cortex displayed lower expression of VAMP, synapsin, neurofilament light (NF-L) and synaptophysin. The potentially neuroprotective FTY720 reversed most AβPP-induced changes in gene expression (Cplx1, Stx1a, Snap25, and Nrxn1) in the 12-month-old hippocampus, which is thought to be most sensitive to early neurotoxic insults, but it only restored Vamp1 in the cortex and had no influence in 3-month-old brains. Further study may reveal the potential usefulness of FTY720 in the modulation of deregulated neuronal phenotype in AD brains.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Leonard Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Walter J. Lukiw
- LSU Neuroscience Center, Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Zhang M, Augustine GJ. Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors? Cells 2021; 10:cells10030658. [PMID: 33809712 PMCID: PMC8002314 DOI: 10.3390/cells10030658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
In presynaptic terminals, synaptic vesicles (SVs) are found in a discrete cluster that includes a reserve pool that is mobilized during synaptic activity. Synapsins serve as a key protein for maintaining SVs within this reserve pool, but the mechanism that allows synapsins to do this is unclear. This mechanism is likely to involve synapsins either cross-linking SVs, thereby anchoring SVs to each other, or creating a liquid phase that allows SVs to float within a synapsin droplet. Here, we summarize what is known about the role of synapsins in clustering of SVs and evaluate experimental evidence supporting these two models.
Collapse
|
43
|
Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110135. [PMID: 33058959 DOI: 10.1016/j.pnpbp.2020.110135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022]
Abstract
Synapsins (Syns) are a family of phosphoproteins associated with synaptic vesicles (SVs). Their main function is to regulate neurotransmitter release by maintaining a reserve pool of SVs at the presynaptic terminal. Previous studies reported that the deletion of one or more Syn genes in mice results in an epileptic phenotype and autism-related behavioral abnormalities. Here we aimed at characterizing the behavioral phenotype and neurobiological correlates of the deletion of Syns in a Syn triple knockout (TKO) mouse model. Wild type (WT) and TKO mice were tested in the open field, novelty suppressed feeding, light-dark box, forced swim, tail suspension and three-chamber sociability tests. Using in vivo electrophysiology, we recorded the spontaneous activity of dorsal raphe nucleus (DRN) serotonin (5-HT) and ventral tegmental area (VTA) dopamine (DA) neurons. Levels of 5-HT and DA in the frontal cortex and hippocampus of WT and TKO mice were also assessed using a High-Performance Liquid Chromatography. TKO mice displayed hyperactivity and impaired social and anxiety-like behavior. Behavioral dysfunctions were accompanied by reduced firing activity of DRN 5-HT, but not VTA DA, neurons. TKO mice also showed increased responsiveness of DRN 5-HT-1A autoreceptors, measured as a reduced dose of the 5-HT-1A agonist 8-OH-DPAT necessary to inhibit DRN 5-HT firing activity by 50%. Finally, hippocampal 5-HT levels were lower in TKO than in WT mice. Overall, Syns deletion in mice leads to a reduction in DRN 5-HT firing activity and hippocampal 5-HT levels along with behavioral alterations reminiscent of human neuropsychiatric conditions associated with Syn dysfunction.
Collapse
|
44
|
Shen J, Yang L, Wei W. Role of Fto on CaMKII/CREB signaling pathway of hippocampus in depressive-like behaviors induced by chronic restraint stress mice. Behav Brain Res 2021; 406:113227. [PMID: 33677012 DOI: 10.1016/j.bbr.2021.113227] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Major depressive disorders (MDD) is one of the most common mental illness in the world. Recently, brain m6A /m (fat mass- and obesity-associated gene Fto) was found that exerted an important role in regulating gene expression involved in stress related depression. However, the potential mechanism of Fto on depression still remains elusive. This study investigated the role of Fto and its downstream signaling pathway in hippocampus on chronic restraint stress induced depressive-like behaviors. METHODS C57BL/6 mice weighing 20-22 g were randomly divided into 4 groups (Control, Control + Fto-ov, Stress, Stress + Fto-ov). Mice were exposed to chronic restraint stress for 3 consecutive weeks to induce depression model. Mice in the Fto-ov groups were stereotaxic injected with Recombinant Adeno-associated Virus lentivirus (Fto) in hippocampus followed by stress procedure. Depressive-like behaviors were detected after stress procedure. Western blot was used to test hippocampal Fto, p-CaMKII and p-CREB expression. Post synaptic density protein 95 (PSD95) and synaptophysin levels were detected by PCR. Golgi-Cox staining was used to appraise dendritic spine density and branches. Synaptic morphology in hippocampus was determined by electron microscopy. RESULTS We demonstrated that chronic restraint stress induced depressive-like behaviors, decreased protein expression of Fto, p-CaMKII and p-CREB, reduced levels of synaptic plasticity markers (synaptophysin and PSD95) in hippocampus. Moreover, chronic restraint stress led to synaptic morphology alterations (reduced dendritic spine density and number of branches; thinned postsynaptic density). However, these molecules changes and morphology alterations were reversed by stereotaxic injected recombinant adeno-associated Fto-overexpression virus in hippocampus. CONCLUSIONS This study found that the modulation of Fto on CaMKII/CREB signaling pathway plays a key role in hippocampal synaptic plasticity, and then ameliorated chronic restraint stress induced depressive-like behaviors.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China
| | - Lu Yang
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China.
| |
Collapse
|
45
|
Neurothreads: Development of supportive carriers for mature dopaminergic neuron differentiation and implantation. Biomaterials 2021; 270:120707. [PMID: 33601130 DOI: 10.1016/j.biomaterials.2021.120707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
In this study we present the use of elastic macroporous cryogels for differentiation and transplantation of mature neurons. We develop a coating suitable for long-term neuronal culture, including stem cell differentiation, by covalent immobilization of neural adhesion proteins. In the context of cell therapy for Parkinson's disease, we show compatibility with established dopaminergic differentiation of both immortalized mesencephalic progenitors - LUHMES - and human embryonic stem cells (hESCs). We adjust structural properties of the biomaterial to create carriers - Neurothreads - favourable for cell viability during transplantation. Finally, we show feasibility of preservation of mature neurons, supported by Neurothreads, one month after in-vivo transplantation. Preliminary data suggests that the Neurothread approach could provide more mature and less proliferative cells in vivo.
Collapse
|
46
|
Saal KA, Warth Pérez Arias C, Roser AE, Christoph Koch J, Bähr M, Rizzoli SO, Lingor P. Rho-kinase inhibition by fasudil modulates pre-synaptic vesicle dynamics. J Neurochem 2021; 157:1052-1068. [PMID: 33341946 DOI: 10.1111/jnc.15274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
The Rho kinase (ROCK) signaling pathway is an attractive therapeutic target in neurodegeneration since it has been linked to the prevention of neuronal death and neurite regeneration. The isoquinoline derivative fasudil is a potent ROCK inhibitor, which is already approved for chronic clinical treatment in humans. However, the effects of chronic fasudil treatments on neuronal function are still unknown. We analyzed here chronic fasudil treatment in primary rat hippocampal cultures. Neurons were stimulated with 20 Hz field stimulation and we investigated pre-synaptic mechanisms and parameters regulating synaptic transmission after fasudil treatment by super resolution stimulated emission depletion (STED) microscopy, live-cell fluorescence imaging, and western blotting. Fasudil did not affect basic synaptic function or the amount of several synaptic proteins, but it altered the chronic dynamics of the synaptic vesicles. Fasudil reduced the proportion of the actively recycling vesicles, and shortened the vesicle lifetime, resulting overall in a reduction of the synaptic response upon stimulation. We conclude that fasudil does not alter synaptic structure, accelerates vesicle turnover, and decreases the number of released vesicles. This broadens the known spectrum of effects of this drug, and suggests new potential clinical uses.
Collapse
Affiliation(s)
- Kim Ann Saal
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Carmina Warth Pérez Arias
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany.,Department of Neurology, Rechts der Isar Hospital of the Technical University Munich, Munich, Germany
| |
Collapse
|
47
|
Pang R, Wang X, Pei F, Zhang W, Shen J, Gao X, Chang C. Regular Exercise Enhances Cognitive Function and Intracephalic GLUT Expression in Alzheimer's Disease Model Mice. J Alzheimers Dis 2020; 72:83-96. [PMID: 31561359 DOI: 10.3233/jad-190328] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain energy metabolic impairment is one of the main features of Alzheimer's disease (AD) and is considered an underlying factor involved in cognitive impairment. Therefore, brain energy metabolism may represent a new therapeutic target for AD medical interventions. Among nutrients providing energy, glucose, the primary energy source, cannot cross the blood-brain barrier freely without specific glucose transporters (GLUTs), which are essential for the maintenance of cerebral energy metabolism homeostasis. Several converging lines of evidence suggest that GLUT1 deficiency in mice leads to synapse reduction and dysregulation coupled with mitochondrial morphological changes. In this study, the results revealed that regular exercise (RE) decreased the expression of amyloid-β and phosphorylated tau by western blot, and enhanced the spatial learning and exploration ability of AD model mice as assessed by Morris water maze test. Mitochondrial cristae and edges were clear and intact, ATP production in the brain raised, the number of synapses increased, and GLUT1 and GLUT3 expression levels improved in the central nervous system (CNS) in AD model mice after RE. Changes in GLUT1 and GLUT3 expression at the protein level after RE are an important part of energy metabolic adaptation in AD model mice. Learning and memory improvement are highly associated with mitochondrial integrity and sufficient synapses in the CNS. This research suggests that increased brain energy metabolism attributed to RE exhibits promising therapeutic potential for AD.
Collapse
Affiliation(s)
- Ruiqi Pang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaofan Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Feifei Pei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weizhe Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaming Shen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoqun Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Center of Cerebral Palsy Surgical Research and Treatment, Zhengzhou University, Zhengzhou, China.,Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, China
| | - Cheng Chang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Center of Cerebral Palsy Surgical Research and Treatment, Zhengzhou University, Zhengzhou, China.,Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, China
| |
Collapse
|
48
|
Loss of TREM2 Confers Resilience to Synaptic and Cognitive Impairment in Aged Mice. J Neurosci 2020; 40:9552-9563. [PMID: 33139402 DOI: 10.1523/jneurosci.2193-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2), a receptor exclusively expressed by microglia in the brain, modulates microglial immune homeostasis. Human genetic studies have shown that the loss-of-function mutations in TREM2 signaling are strongly associated with an elevated risk of age-related neurodegenerative diseases including Alzheimer's disease (AD). Numerous studies have investigated the impact of TREM2 deficiency in the pathogenic process of AD. However, the role of TREM2 in shaping neuronal and cognitive function during normal aging is underexplored. In the present study, we employed behavioral, electrophysiological, and biochemical approaches to assess cognitive and synaptic function in male and female young and aged TREM2-deficient (Trem2-/-) mice compared with age-matched, sex-matched, and genetic background-matched wild-type (WT) C57BL/6J controls. Young Trem2-/- mice exhibited normal cognitive function and synaptic plasticity but had increased dendritic spine density compared with young WT. Unexpectedly, aged Trem2-/- mice showed superior cognitive performance compared with aged WT controls. Consistent with the behavioral data, aged Trem2-/- mice displayed significantly enhanced hippocampal long-term potentiation (LTP) and increased dendritic spine density and synaptic markers compared with aged WT mice. Taken together, these findings suggest that loss of TREM2 affects the neuronal structure and confers resilience to age-related synaptic and cognitive impairment during non-pathogenic aging.SIGNIFICANCE STATEMENT Microglia are innate immune cells of the brain that orchestrates neurodevelopment, synaptic function, and immune response to environmental stimuli. Microglial triggering receptor expressed on myeloid cells 2 (TREM2) signaling plays pivotal roles in regulating these functions and loss of TREM2 signaling leads to increased risk of developing age-related neurologic disorders. However, the neurologic role of TREM2 in normal aging is poorly understood. The results of the present study unveil the positive impacts of TREM2 deficiency on cognitive and synaptic function during aging and suggest that TREM2 may exert detrimental effects on neuronal function. The possibility of age-related negative impacts from TREM2 is critically important since TREM2 has emerged as a major therapeutic target for Alzheimer's dementia.
Collapse
|
49
|
Quintas M, Neto JL, Sequeiros J, Sousa A, Pereira-Monteiro J, Lemos C, Alonso I. Going Deep into Synaptic Vesicle Machinery Genes and Migraine Susceptibility - A Case-Control Association Study. Headache 2020; 60:2152-2165. [PMID: 32979221 DOI: 10.1111/head.13957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A number of observations, including among our study population, have implicated variants in the syntaxin-1A, a component of the synaptic vesicles, in migraine susceptibility. Therefore, we hypothesize that variants in other components of the vesicle machinery are involved in migraine. BACKGROUND Migraine is a common and complex neurologic disorder that affects approximately 15-18% of the general population. The exact cause of migraine is unknown; however, genetic studies have made possible substantial progress toward the identification of underlying molecular pathways. Neurotransmitters have been for long considered to have a key role in migraine pathophysiology; so we investigated common variants in genes involved in the synaptic vesicle machinery and their impact in migraine susceptibility. METHODS We performed a case-control study comprising 188 unrelated patients with headache and 286 healthy controls in a population from the north of Portugal. Benefiting from the presence of linkage disequilibrium, we selected and genotyped 119 tagging single-nucleotide polymorphisms in 18 genes. RESULTS We found significant associations between single-nucleotide variants and migraine in 7 genes, SYN1, SYN2, SNAP25, VAMP2, STXBP1, STXBP5, and UNC13A, either conferring an increased risk or protection of migraine. Due to SYN1 X-chromosomal location, we performed the statistical analysis separated by gender and, in the female group, the C allele of rs5906435 increased the risk for migraine susceptibility (P = .021; OR = 1.69; 95% CI: 1.21-2.34). In contrast, the TT genotype of the same variant emerged as a potential protective factor (P = .003; OR = 0.45; 95% CI: 0.27-0.74). The SYN2 analysis supported the rs3773364's G allele (P = .014) as a risk factor for migraine, and although not statistically significant after correction, the AG genotype (P = .006; OR = 1.86; 95% CI: 1.20-2.90) reinforced the allelic findings. Additionally, we found the SNAP25-rs363039's CT genotype (P = .001; OR = 2.14; 95% CI: 1.36-3.34), the STXBP5-rs1765028's T allele (P = .041; OR = 1.46; 95% CI: 1.13-1.90), and the UNC13B-rs7851161's TT genotype (P = .001; OR = 2.14; 95% CI: 1.36-3.34) as statistically significant risk factors for migraine liability. VAMP2-rs1150's G allele revealed a risk association to migraine, not statistically significant after correction (P = .068). Additionally, we found haplotypes in SYN1, SYN2, STXBP1, and UNC13B to be associated with migraine. CONCLUSIONS Overall, this study provides a new insight into migraine liability, identifying possible starting points for functional studies.
Collapse
Affiliation(s)
- Marlene Quintas
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Zhang S, Yan ML, Yang L, An XB, Zhao HM, Xia SN, Jin Z, Huang SY, Qu Y, Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332:113389. [PMID: 32580014 DOI: 10.1016/j.expneurol.2020.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|