1
|
Li P, Yin M, Guerrini S, Gao W. Roles of artificial intelligence and high frame-rate contrast-enhanced ultrasound in the differential diagnosis of Breast Imaging Reporting and Data System 4 breast nodules. Gland Surg 2025; 14:462-478. [PMID: 40256461 PMCID: PMC12004330 DOI: 10.21037/gs-24-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/07/2025] [Indexed: 04/22/2025]
Abstract
Background Breast cancer prevalence and mortality are rising, emphasizing the need for early, accurate diagnosis. Contrast-enhanced ultrasound (CEUS) and artificial intelligence (AI) show promise in distinguishing benign from malignant breast nodules. We compared the diagnostic values of AI, high frame-rate CEUS (HiFR-CEUS), and their combination in Breast Imaging Reporting and Data System (BI-RADS) 4 nodules, using pathology as the gold standard. Methods Patients with BI-RADS 4 breast nodules who were hospitalized at the Department of Thyroid and Breast Surgery, Taizhou People's Hospital from December 2021 to June 2022 were enrolled in the study.80 female patients (80 lesions) underwent preoperative AI and/or HiFR-CEUS. We assessed diagnostic outcomes of AI, HiFR-CEUS, and their combination, calculating sensitivity (SE), specificity (SP), accuracy (ACC), positive/negative predictive values (PPV/NPV). Reliability was compared using Kappa statistics, and AI-HiFR-CEUS correlation was analyzed with Pearson's test. Receiver operating characteristic curves were plotted to compare diagnostic accuracy of AI, HiFR-CEUS, and their combined approach in differentiating BI-RADS 4 lesions. Results Of the 80 lesions, 18 were pathologically confirmed to be benign, while the remaining 62 were malignant. The SE, SP, ACC, PPV, and NPV were 75.81%, 94.44%, 80.00%, 97.92%, and 53.13% in the AI group, 74.20%, 94.44%, 78.75%, 97.91%, and 51.51% in the HiFR-CEUS group, and 98.39%, 88.89%, 96.25%, 96.83%, and 94.12% in the combination group, respectively. Thus, the SE, ACC, and NPV of the combination group were significantly higher than those of the AI and HiFR-CEUS groups, and the SP of the combination group was lower (all P<0.05); however, no significant difference was found between the groups in terms of the PPV (P>0.05). No statistically significant difference was observed in the diagnostic performance of the AI and HiFR-CEUS groups (all P>0.05). The AI and HiFR-CEUS groups had moderate agreement with the "gold standard" (Kappa =0.551, Kappa =0.530, respectively), while the combination group had high agreement (Kappa =0.890). AI was positively correlated with HiFR-CEUS (r=0.249, P<0.05). The area under the curves (AUCs) of AI, HiFR-CEUS, and both in combination were 0.851±0.039, 0.815±0.047, and 0.936±0.039, respectively. Thus, the AUC of the combination group was significantly higher than those of the AI and HiFR-CEUS groups (Z1=2.207, Z2=2.477, respectively, both P<0.05). The AI group had a higher AUC than the HiFR-CEUS group, but the difference was not statistically significant (Z3=0.554, P>0.05). Conclusions Compared with AI alone or HiFR-CEUS alone, the combined use of these two methods had higher diagnostic performance in distinguishing between benign and malignant BI-RADS 4 breast nodules. Thus, our combination method could further improve the diagnostic accuracy and guide clinical decision making.
Collapse
Affiliation(s)
- Ping Li
- Ultrasound Medicine Department, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Ming Yin
- Ultrasound Medicine Department, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Susanna Guerrini
- Unit of Diagnostic Imaging, Department of Medical Sciences, Azienda Ospedaliero-Universitaria Senese, University of Siena, Siena, Italy
| | - Wenxiang Gao
- Ultrasound Medicine Department, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Baek J, Kim J, Kim HJ, Yoon JH, Park HY, Lee J, Kang B, Zakiryarov I, Kultaev A, Saktashev B, Kim WH. Clinical Application of Artificial Intelligence in Breast Ultrasound. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2025; 86:216-226. [PMID: 40201609 PMCID: PMC11973104 DOI: 10.3348/jksr.2025.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the most common cancer in women worldwide, and its early detection is critical for improving survival outcomes. As a diagnostic and screening tool, mammography can be less effective owing to the masking effect of fibroglandular tissue, but breast US has good sensitivity even in dense breasts. However, breast US is highly operator dependent, highlighting the need for artificial intelligence (AI)-driven solutions. Unlike other modalities, US is performed using a handheld device that produces a continuous real-time video stream, yielding 12000-48000 frames per examination. This can be significantly challenging for AI development and requires real-time AI inference capabilities. In this review, we classified AI solutions as computer-aided diagnosis and computer-aided detection to facilitate a functional understanding and review commercial software supported by clinical evidence. In addition, to bridge healthcare gaps and enhance patient outcomes in geographically under resourced areas, we propose a novel framework by reviewing the existing AI-based triage workflows including mobile ultrasound.
Collapse
|
3
|
Du L, Liu H, Cai M, Pan J, Zha H, Nie C, Lin M, Li C, Zong M, Zhang B. Ultrasound S-detect system can improve diagnostic performance of less experienced radiologists in differentiating breast masses: a retrospective dual-centre study. Br J Radiol 2025; 98:404-411. [PMID: 39535865 DOI: 10.1093/bjr/tqae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To compare the performance of radiologists when assisted by an S-detect system with that of radiologists or an S-detect system alone in diagnosing breast masses on US images in a dual-centre setting. METHODS US images were retrospectively identified 296 breast masses (150 benign, 146 malignant) by investigators at 2 medical centres. Six radiologists from the 2 centres independently analysed the US images and classified each mass into categories 2-5. The radiologists then re-reviewed the images with the use of the S-detect system. The diagnostic value of radiologists alone, S-detect alone, and radiologists + S-detect were analysed and compared. RESULTS Radiologists had significantly decreased the average false negative rate (FNR) for diagnosing breast masses using S-detect system (-10.7%) (P < .001) and increased the area under the receiver operating characteristic curve (AUC) from 0.743 to 0.788 (P < .001). Seventy-seven out of 888 US images from 6 radiologists in this study were changed positively (from false positive to true negative or from false negative to true positive) with the S-detect, whereas 39 out of 888 US images were altered negatively. CONCLUSION Radiologists had better performance for the diagnosis of malignant breast masses on US images with an S-detect system than without. ADVANCES IN KNOWLEDGE The study reported an improvement in sensitivity and AUC particularly for low to intermediate-level radiologists, involved cases and radiologists from 2 different centres, and compared the diagnostic value of using S-detect system for masses of different sizes.
Collapse
Affiliation(s)
- Liwen Du
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongli Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengjun Cai
- Department of Ultrasound, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jiazhen Pan
- Department of Ultrasound, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Hailing Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenlei Nie
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Minjia Lin
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cuiying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Zong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bo Zhang
- Department of Ultrasound, Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Hong YT, Yu ZH, Chou CP. Comparative Study of AI Modes in Ultrasound Diagnosis of Breast Lesions. Diagnostics (Basel) 2025; 15:560. [PMID: 40075807 PMCID: PMC11898511 DOI: 10.3390/diagnostics15050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Objectives: This study evaluated the diagnostic performance of the S-Detect ultrasound system's three selectable AI modes-high-sensitivity (HSe), high-accuracy (HAc), and high-specificity (HSp)-for breast lesion diagnosis, comparing their performance in a clinical setting. Methods: This retrospective analysis evaluated 260 breast lesions from ultrasound images of 232 women (mean age: 50.2 years) using the S-Detect system. Each lesion was analyzed under the HSe, HAc, and HSp modes. The study employed ROC curve analysis to comprehensively compare the diagnostic performance of the AI modes against radiologist diagnoses. Subgroup analyses focused on the age (<45, 45-55, >55 years) and lesion size (<1 cm, 1-2 cm, >2 cm). Results: Among the 260 lesions, 73% were identified as benign and 27% as malignant. Radiologists achieved a sensitivity of 98.6%, specificity of 64.2%, and accuracy of 73.5%. The HSe mode exhibited the highest sensitivity at 95.7%. The HAc mode excelled with the highest accuracy (86.2%) and positive predictive value (71.3%), while the HSp mode had the highest specificity at 95.8%. In the age-based subgroup analyses, the HAc mode consistently showed the highest area under the curve (AUC) across all categories. The HSe mode achieved the highest AUC (0.726) for lesions smaller than 1 cm. In the case of lesions sized 1-2 cm and larger than 2 cm, the HAc mode showed the highest AUCs of 0.906 and 0.776, respectively. Conclusions: The S-Detect HSe mode matches radiologists' performance. Alternative modes provide sensitivity and specificity adjustments. The patient age and lesion size influence the diagnostic performance across all S-Detect modes.
Collapse
Affiliation(s)
- Yu-Ting Hong
- Radiology Department, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (Y.-T.H.); (Z.-H.Y.)
| | - Zi-Han Yu
- Radiology Department, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (Y.-T.H.); (Z.-H.Y.)
- Department of Radiology, Jiannren Hospital, Kaohsiung 813414, Taiwan
| | - Chen-Pin Chou
- Radiology Department, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (Y.-T.H.); (Z.-H.Y.)
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 831301, Taiwan
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
5
|
Zhang P, Zhang M, Lu M, Jin C, Wang G, Lin X. Comparative Analysis of the Diagnostic Value of S-Detect Technology in Different Planes Versus the BI-RADS Classification for Breast Lesions. Acad Radiol 2025; 32:58-66. [PMID: 39138111 DOI: 10.1016/j.acra.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
RATIONALE AND OBJECTIVES S-Detect, a deep learning-based Computer-Aided Detection system, is recognized as an important tool for diagnosing breast lesions using ultrasound imaging. However, it may exhibit inconsistent findings across multiple imaging planes. This study aims to evaluate the diagnostic performance of S-Detect in different planes and identify factors contributing to these inconsistencies. MATERIALS AND METHODS A retrospective cohort study was conducted on 711 patients with 756 breast lesions between January 2019 and January 2022. S-Detect was utilized to assess lesions in radial and anti-radial planes. BI-RADS classifications were employed for comparative analysis. The diagnostic performance was compared within each group, and p-values were computed for intergroup comparisons. Univariable and multivariable analyses were conducted to identify factors contributing to diagnostic inconsistency in S-Detect across planes. RESULTS Among 756 breast lesions, 668 (88.4%) exhibited consistent S-Detect outcomes across planes while 88 (11.6%) were inconsistent. In the consistent group, the diagnostic accuracy and area under the curve (AUC) of S-Detect were significantly higher than those of BI-RADS (accuracy: 91.2% vs. 84.9%, p = 0.045; AUC: 0.916 vs. 0.859, p = 0.036). In the inconsistent group, the diagnostic accuracy and AUC of S-Detect in radial and anti-radial planes were lower than those of BI-RADS (accuracy: 47.7% for radial, 52.2% for anti-radial vs. 69.3% for BI-RADS, p = 0.014, p-anti = 0.039; AUC: 0.503 for radial, 0.497 for anti-radial vs. 0.739 for BI-RADS, p = 0.042, p-anti <0.001). Diagnostic inconsistency in S-Detect across planes was significantly associated with lesion size, indistinct or angular margins, and enhancement posterior acoustic features (p < 0.05). CONCLUSION S-Detect has outperformed BI-RADS in diagnostic precision under conditions of inter-planar concordance. However, its diagnostic efficacy is compromised in scenarios of inter-planar discordance. Under these circumstances, the results of S-Detect should be carefully referenced.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Ultrasound, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Min Zhang
- Department of Ultrasound, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Menglin Lu
- Department of Ultrasound, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Chaoying Jin
- Department of Ultrasound, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Gang Wang
- Department of Ultrasound, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Xianfang Lin
- Department of Ultrasound, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, China.
| |
Collapse
|
6
|
Jin ZY, Li JK, Niu RL, Fu NQ, Jiang Y, Li SY, Wang ZL. Application of an artificial intelligence-assisted diagnostic system for breast ultrasound: a prospective study. Gland Surg 2024; 13:2221-2231. [PMID: 39822361 PMCID: PMC11733640 DOI: 10.21037/gs-24-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/05/2024] [Indexed: 01/19/2025]
Abstract
Background Accurate diagnosis of breast cancer is of great importance to improve the prognosis of patients. Artificial intelligence (AI)-assisted diagnostic system for breast ultrasound is gradually being applied in the identification of benign and malignant breast lesions. This study aimed to evaluate the diagnostic performance and optimal application of AI-assisted ultrasonography for breast lesions in clinical setting. Methods A total of 501 consecutive patients with 679 breast lesions were prospectively included in the study. Junior and senior radiologists were asked to interpret images of lesions with and without AI assistance, respectively. Three application modes of AI were employed: AI alone, adjusted Breast Imaging Reporting and Data System (BI-RADS; incorporating BI-RADS obtained by AI into BI-RADS obtained by radiologists), and second reading mode (combining characteristic information extracted by AI to conduct a second reading so as to obtain a new BI-RADS). The diagnostic performances of these application modes were analyzed and compared. Results The area under the curve (AUC) of junior radiologists increased from 0.879 to 0.921 in BI-RADSsecond reading, which was higher than that in BI-RADSadjusted (0.901), similar to that in AI alone (0.924), and lower than that obtained by senior radiologists (0.950). Using BI-RADS category 4A as the threshold, the sensitivity of junior radiologists was found to increase from 0.83 to 0.92 (P<0.001). Furthermore, the specificity increased from 0.79 to 0.85, which was higher than those of AI alone and BI-RADSadjusted (P<0.001). The unnecessary biopsy rate decreased by 14.70% (P=0.01). For senior radiologists, the sensitivity increased from 0.91 to 0.96 (P=0.01). Similar results were observed in the subgroup analysis of lesions ≤2 cm. For lesions >2 cm, only the specificity of junior radiologists increased from 0.39 to 0.52 (P=0.03). Conclusions AI-assisted ultrasound is useful for the diagnosis of breast lesions, particularly for junior radiologists and lesions ≤2 cm. The use of the second reading mode can achieve excellent diagnostic performance.
Collapse
Affiliation(s)
- Zhi-Ying Jin
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun-Kang Li
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui-Lan Niu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nai-Qin Fu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Jiang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Yu Li
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Li Wang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Singh S, Healy NA. The top 100 most-cited articles on artificial intelligence in breast radiology: a bibliometric analysis. Insights Imaging 2024; 15:297. [PMID: 39666106 PMCID: PMC11638451 DOI: 10.1186/s13244-024-01869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Artificial intelligence (AI) in radiology is a rapidly evolving field. In breast imaging, AI has already been applied in a real-world setting and multiple studies have been conducted in the area. The aim of this analysis is to identify the most influential publications on the topic of artificial intelligence in breast imaging. METHODS A retrospective bibliometric analysis was conducted on artificial intelligence in breast radiology using the Web of Science database. The search strategy involved searching for the keywords 'breast radiology' or 'breast imaging' and the various keywords associated with AI such as 'deep learning', 'machine learning,' and 'neural networks'. RESULTS From the top 100 list, the number of citations per article ranged from 30 to 346 (average 85). The highest cited article titled 'Artificial Neural Networks In Mammography-Application To Decision-Making In The Diagnosis Of Breast-Cancer' was published in Radiology in 1993. Eighty-three of the articles were published in the last 10 years. The journal with the greatest number of articles was Radiology (n = 22). The most common country of origin was the United States (n = 51). Commonly occurring topics published were the use of deep learning models for breast cancer detection in mammography or ultrasound, radiomics in breast cancer, and the use of AI for breast cancer risk prediction. CONCLUSION This study provides a comprehensive analysis of the top 100 most-cited papers on the subject of artificial intelligence in breast radiology and discusses the current most influential papers in the field. CLINICAL RELEVANCE STATEMENT This article provides a concise summary of the top 100 most-cited articles in the field of artificial intelligence in breast radiology. It discusses the most impactful articles and explores the recent trends and topics of research in the field. KEY POINTS Multiple studies have been conducted on AI in breast radiology. The most-cited article was published in the journal Radiology in 1993. This study highlights influential articles and topics on AI in breast radiology.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Radiology, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Beaumont Breast Centre, Beaumont Hospital, Dublin, Ireland.
| | - Nuala A Healy
- Department of Radiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Breast Centre, Beaumont Hospital, Dublin, Ireland
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Wang P, Xia H, Liu L, Wang X, Yan L, Kong Z, Xu H, Huang B. Improving the Diagnostic Performance and Breast Imaging Reporting and Data System Category Agreement of Less Experienced Radiologists by Utilizing Computer-Aided Diagnosis Software for Breast Ultrasound. Ultrasound Q 2024; 40:e00695. [PMID: 39590515 DOI: 10.1097/ruq.0000000000000695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
This study aimed to assess the effectiveness of intelligence-based computer-aided diagnosis (CAD) software in ultrasound (US) and its potential to improve the diagnostic performance of less experienced radiologists, as well as the agreement on Breast Imaging Reporting and Data System (BI-RADS) categories with the experienced radiologist. Images of 385 breast lesions in 351 female taken from January 2019 to December 2020 were included. Two less experienced radiologists independently reviewed US images with and without CAD assistance, recording final assessments using the BI-RADS category. The diagnostic performance of CAD and radiologists were calculated and compared. Kappa statistics were used to determine agreement between the experienced radiologist and the less experienced radiologists, based on BI-RADS category before and after using CAD software. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CAD software were 95.5%, 71.5%, 81.3%, 69.8%, and 95.9%, respectively, and those were improved in junior radiologist and intermediate-level radiologist after the addition of CAD. Additionally, with the assistance of CAD, the area under the curve was improved for both the junior radiologist and radiologist (0.704 vs 0.847 and 0.876 vs 0.900, P = 0.009, 0.005), although it remained lower than the senior radiologist. The agreement of BI-RADS category between the less experienced and the experienced radiologists showed a significant improvement (P = 0.04, 0.000). The CAD on US could improve less experienced radiologists' diagnostic performance and agreement on BI-RADS categories, making it an effective decision-making tool in clinical practice.
Collapse
Affiliation(s)
- Peilei Wang
- Department of Ultrasound, Zhongshan Hospital Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Carrilero-Mardones M, Parras-Jurado M, Nogales A, Pérez-Martín J, Díez FJ. Deep Learning for Describing Breast Ultrasound Images with BI-RADS Terms. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2940-2954. [PMID: 38926264 PMCID: PMC11612129 DOI: 10.1007/s10278-024-01155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer is the most common cancer in women. Ultrasound is one of the most used techniques for diagnosis, but an expert in the field is necessary to interpret the test. Computer-aided diagnosis (CAD) systems aim to help physicians during this process. Experts use the Breast Imaging-Reporting and Data System (BI-RADS) to describe tumors according to several features (shape, margin, orientation...) and estimate their malignancy, with a common language. To aid in tumor diagnosis with BI-RADS explanations, this paper presents a deep neural network for tumor detection, description, and classification. An expert radiologist described with BI-RADS terms 749 nodules taken from public datasets. The YOLO detection algorithm is used to obtain Regions of Interest (ROIs), and then a model, based on a multi-class classification architecture, receives as input each ROI and outputs the BI-RADS descriptors, the BI-RADS classification (with 6 categories), and a Boolean classification of malignancy. Six hundred of the nodules were used for 10-fold cross-validation (CV) and 149 for testing. The accuracy of this model was compared with state-of-the-art CNNs for the same task. This model outperforms plain classifiers in the agreement with the expert (Cohen's kappa), with a mean over the descriptors of 0.58 in CV and 0.64 in testing, while the second best model yielded kappas of 0.55 and 0.59, respectively. Adding YOLO to the model significantly enhances the performance (0.16 in CV and 0.09 in testing). More importantly, training the model with BI-RADS descriptors enables the explainability of the Boolean malignancy classification without reducing accuracy.
Collapse
Affiliation(s)
- Mikel Carrilero-Mardones
- Department of Artificial Intelligence, Universidad Nacional de Educacion a Distancia (UNED), Madrid, Spain.
| | | | - Alberto Nogales
- CEIEC Research Institute, Universidad Francisco de Vitoria, Madrid, Spain
| | - Jorge Pérez-Martín
- Department of Artificial Intelligence, Universidad Nacional de Educacion a Distancia (UNED), Madrid, Spain
| | - Francisco Javier Díez
- Department of Artificial Intelligence, Universidad Nacional de Educacion a Distancia (UNED), Madrid, Spain
| |
Collapse
|
10
|
Yi M, Lin Y, Lin Z, Xu Z, Li L, Huang R, Huang W, Wang N, Zuo Y, Li N, Ni D, Zhang Y, Li Y. Biopsy or Follow-up: AI Improves the Clinical Strategy of US BI-RADS 4A Breast Nodules Using a Convolutional Neural Network. Clin Breast Cancer 2024; 24:e319-e332.e2. [PMID: 38494415 DOI: 10.1016/j.clbc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop predictive nomograms based on clinical and ultrasound features and to improve the clinical strategy for US BI-RADS 4A lesions. METHODS Patients with US BI-RADS 4A lesions from 3 hospitals between January 2016 and June 2020 were retrospectively included. Clinical and ultrasound features were extracted to establish nomograms CE (based on clinical experience) and DL (based on deep-learning algorithm). The performances of nomograms were evaluated by receiver operator characteristic curves, calibration curves and decision curves. Diagnostic performances with DL of radiologists were analyzed. RESULTS 1616 patients from 2 hospitals were randomly divided into training and internal validation cohorts at a ratio of 7:3. Hundred patients from another hospital made up external validation cohort. DL achieved more optimized AUCs than CE (internal validation: 0.916 vs. 0.863, P < .01; external validation: 0.884 vs. 0.776, P = .05). The sensitivities of DL were higher than CE (internal validation: 81.03% vs. 72.41%, P = .044; external validation: 93.75% vs. 81.25%, P = .4795) without losing specificity (internal validation: 84.91% vs. 86.47%, P = .353; external validation: 69.14% vs. 71.60%, P = .789). Decision curves indicated DL adds more clinical net benefit. With DL's assistance, both radiologists achieved higher AUCs (0.712 vs. 0.801; 0.547 vs. 0.800), improved specificities (70.93% vs. 74.42%, P < .001; 59.3% vs. 81.4%, P = .004), and decreased unnecessary biopsy rates by 6.7% and 24%. CONCLUSION DL was developed to discriminate US BI-RADS 4A lesions with a higher diagnostic power and more clinical net benefit than CE. Using DL may guide clinicians to make precise clinical decisions and avoid overtreatment of benign lesions.
Collapse
Affiliation(s)
- Mei Yi
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Lin
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehui Lin
- Medical Ultrasound Image Computing (MUSIC) Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ziting Xu
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lian Li
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruobing Huang
- Medical Ultrasound Image Computing (MUSIC) Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Weijun Huang
- Department of Ultrasound, The First People's Hospital of Foshan, Foshan, China
| | - Nannan Wang
- Department of Ultrasound, The First People's Hospital of Foshan, Foshan, China
| | - Yanling Zuo
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Nuo Li
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Ni
- Medical Ultrasound Image Computing (MUSIC) Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yanyan Zhang
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yingjia Li
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Irmici G, Cè M, Pepa GD, D'Ascoli E, De Berardinis C, Giambersio E, Rabiolo L, La Rocca L, Carriero S, Depretto C, Scaperrotta G, Cellina M. Exploring the Potential of Artificial Intelligence in Breast Ultrasound. Crit Rev Oncog 2024; 29:15-28. [PMID: 38505878 DOI: 10.1615/critrevoncog.2023048873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Breast ultrasound has emerged as a valuable imaging modality in the detection and characterization of breast lesions, particularly in women with dense breast tissue or contraindications for mammography. Within this framework, artificial intelligence (AI) has garnered significant attention for its potential to improve diagnostic accuracy in breast ultrasound and revolutionize the workflow. This review article aims to comprehensively explore the current state of research and development in harnessing AI's capabilities for breast ultrasound. We delve into various AI techniques, including machine learning, deep learning, as well as their applications in automating lesion detection, segmentation, and classification tasks. Furthermore, the review addresses the challenges and hurdles faced in implementing AI systems in breast ultrasound diagnostics, such as data privacy, interpretability, and regulatory approval. Ethical considerations pertaining to the integration of AI into clinical practice are also discussed, emphasizing the importance of maintaining a patient-centered approach. The integration of AI into breast ultrasound holds great promise for improving diagnostic accuracy, enhancing efficiency, and ultimately advancing patient's care. By examining the current state of research and identifying future opportunities, this review aims to contribute to the understanding and utilization of AI in breast ultrasound and encourage further interdisciplinary collaboration to maximize its potential in clinical practice.
Collapse
Affiliation(s)
- Giovanni Irmici
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Gianmarco Della Pepa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Elisa D'Ascoli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Claudia De Berardinis
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Emilia Giambersio
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Lidia Rabiolo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Policlinico Università di Palermo, Palermo, Italy
| | - Ludovica La Rocca
- Postgraduation School in Radiodiagnostics, Università degli Studi di Napoli
| | - Serena Carriero
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Catherine Depretto
- Breast Radiology Unit, Fondazione IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | | | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
12
|
Harrison P, Hasan R, Park K. State-of-the-Art of Breast Cancer Diagnosis in Medical Images via Convolutional Neural Networks (CNNs). JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2023; 7:387-432. [PMID: 37927373 PMCID: PMC10620373 DOI: 10.1007/s41666-023-00144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023]
Abstract
Early detection of breast cancer is crucial for a better prognosis. Various studies have been conducted where tumor lesions are detected and localized on images. This is a narrative review where the studies reviewed are related to five different image modalities: histopathological, mammogram, magnetic resonance imaging (MRI), ultrasound, and computed tomography (CT) images, making it different from other review studies where fewer image modalities are reviewed. The goal is to have the necessary information, such as pre-processing techniques and CNN-based diagnosis techniques for the five modalities, readily available in one place for future studies. Each modality has pros and cons, such as mammograms might give a high false positive rate for radiographically dense breasts, while ultrasounds with low soft tissue contrast result in early-stage false detection, and MRI provides a three-dimensional volumetric image, but it is expensive and cannot be used as a routine test. Various studies were manually reviewed using particular inclusion and exclusion criteria; as a result, 91 recent studies that classify and detect tumor lesions on breast cancer images from 2017 to 2022 related to the five image modalities were included. For histopathological images, the maximum accuracy achieved was around 99 % , and the maximum sensitivity achieved was 97.29 % by using DenseNet, ResNet34, and ResNet50 architecture. For mammogram images, the maximum accuracy achieved was 96.52 % using a customized CNN architecture. For MRI, the maximum accuracy achieved was 98.33 % using customized CNN architecture. For ultrasound, the maximum accuracy achieved was around 99 % by using DarkNet-53, ResNet-50, G-CNN, and VGG. For CT, the maximum sensitivity achieved was 96 % by using Xception architecture. Histopathological and ultrasound images achieved higher accuracy of around 99 % by using ResNet34, ResNet50, DarkNet-53, G-CNN, and VGG compared to other modalities for either of the following reasons: use of pre-trained architectures with pre-processing techniques, use of modified architectures with pre-processing techniques, use of two-stage CNN, and higher number of studies available for Artificial Intelligence (AI)/machine learning (ML) researchers to reference. One of the gaps we found is that only a single image modality is used for CNN-based diagnosis; in the future, a multiple image modality approach can be used to design a CNN architecture with higher accuracy.
Collapse
Affiliation(s)
- Pratibha Harrison
- Department of Computer and Information Science, University of Massachusetts Dartmouth, 285 Old Westport Rd, North Dartmouth, 02747 MA USA
| | - Rakib Hasan
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, PhulBari Gate, Khulna, 9203 Bangladesh
| | - Kihan Park
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Rd, North Dartmouth, 02747 MA USA
| |
Collapse
|
13
|
Li JW, Sheng DL, Chen JG, You C, Liu S, Xu HX, Chang C. Artificial intelligence in breast imaging: potentials and challenges. Phys Med Biol 2023; 68:23TR01. [PMID: 37722385 DOI: 10.1088/1361-6560/acfade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Breast cancer, which is the most common type of malignant tumor among humans, is a leading cause of death in females. Standard treatment strategies, including neoadjuvant chemotherapy, surgery, postoperative chemotherapy, targeted therapy, endocrine therapy, and radiotherapy, are tailored for individual patients. Such personalized therapies have tremendously reduced the threat of breast cancer in females. Furthermore, early imaging screening plays an important role in reducing the treatment cycle and improving breast cancer prognosis. The recent innovative revolution in artificial intelligence (AI) has aided radiologists in the early and accurate diagnosis of breast cancer. In this review, we introduce the necessity of incorporating AI into breast imaging and the applications of AI in mammography, ultrasonography, magnetic resonance imaging, and positron emission tomography/computed tomography based on published articles since 1994. Moreover, the challenges of AI in breast imaging are discussed.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dan-Li Sheng
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Gang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication & Electronic Engineering, East China Normal University, People's Republic of China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Shuai Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
14
|
Yan S, Li J, Wu W. Artificial intelligence in breast cancer: application and future perspectives. J Cancer Res Clin Oncol 2023; 149:16179-16190. [PMID: 37656245 DOI: 10.1007/s00432-023-05337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Breast cancer is one of the most common cancers and is one of the leading causes of cancer-related deaths in women worldwide. Early diagnosis and treatment are the key for a favorable prognosis. The application of artificial intelligence technology in the medical field is increasingly extensive, including image analysis, automated diagnosis, intelligent pharmaceutical system, personalized treatment and so on. AI-based breast cancer imaging, pathology and adjuvant therapy technology cannot only reduce the workload of clinicians, but also continuously improve the accuracy and sensitivity of breast cancer diagnosis and treatment. This paper reviews the application of AI in breast cancer, as well as looks ahead and poses challenges to the future development of AI for breast cancer detection and therapeutic, so as to provide ideas for future research.
Collapse
Affiliation(s)
- Shuixin Yan
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Jiadi Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Weizhu Wu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
15
|
Song P, Zhang L, Bai L, Wang Q, Wang Y. Diagnostic performance of ultrasound with computer-aided diagnostic system in detecting breast cancer. Heliyon 2023; 9:e20712. [PMID: 37860526 PMCID: PMC10582378 DOI: 10.1016/j.heliyon.2023.e20712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose This study aims to examine the performance of breast ultrasound with a computer-aided diagnostic (CAD) system in detecting malignant breast cancer compared to conventional ultrasound and investigate the effects on smaller tumor sizes (≤20 mm). Methods This retrospective analysis included 123 patients with breast masses between March 2021 and July 2023. By using pathology results from biopsies or surgeries as the gold standard, we calculated and compared the diagnostic performances of conventional ultrasound and CAD, including sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and area under the receiver operating characteristic curve (AUC). A subgroup analysis of masses ≤20 mm in size was performed. Results Twenty-seven patients were pathologically diagnosed with malignant breast cancer. CAD had a higher specificity (92.71 % vs. 62.5 %) and accuracy (93.5 % vs. 69.92 %) than conventional ultrasound. The AUC of CAD was significantly greater than that of conventional ultrasonography (0.9450 vs. 0.7940, p < 0.0001). The agreement between the CAD and pathology results was almost perfect (kappa = 0.82, p < 0.0001). In patients with masses ≤20 mm, the effect was consistent: CAD had higher specificity (91.43 % vs. 51.43 %), higher accuracy (90.70 % vs. 58.14 %), and a higher AUC (0.8946 vs. 0.6946, p < 0.0001) than conventional ultrasound. Thirty-one downgrades were observed in BI-RADS 4A and 4B based on CAD, all of which were proven to be benign. Conclusion Compared to conventional breast ultrasound, CAD had better diagnostic performance, with higher specificity, accuracy, and AUC. CAD can help recognize benign lesions, especially in patients with BI-RADS 4A, and avoid unnecessary invasive procedures.
Collapse
Affiliation(s)
- Pengjie Song
- Department of Ultrasound, Gangkou Hospital, Qinhuangdao, Hebei, 066000, China
| | - Li Zhang
- Department of Ultrasound, Gangkou Hospital, Qinhuangdao, Hebei, 066000, China
| | - Longmei Bai
- Department of Ultrasound, Gangkou Hospital, Qinhuangdao, Hebei, 066000, China
| | - Qing Wang
- Department of Ultrasound, Gangkou Hospital, Qinhuangdao, Hebei, 066000, China
| | - Yanlei Wang
- Department of Ultrasound, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, Hebei, 066000, China
| |
Collapse
|
16
|
Wanderley MC, Soares CMA, Morais MMM, Cruz RM, Lima IRM, Chojniak R, Bitencourt AGV. Application of artificial intelligence in predicting malignancy risk in breast masses on ultrasound. Radiol Bras 2023; 56:229-234. [PMID: 38204896 PMCID: PMC10775818 DOI: 10.1590/0100-3984.2023.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 01/12/2024] Open
Abstract
Objective To evaluate the results obtained with an artificial intelligence-based software for predicting the risk of malignancy in breast masses from ultrasound images. Materials and Methods This was a retrospective, single-center study evaluating 555 breast masses submitted to percutaneous biopsy at a cancer referral center. Ultrasonographic findings were classified in accordance with the BI-RADS lexicon. The images were analyzed by using Koios DS Breast software and classified as benign, probably benign, low to intermediate suspicion, high suspicion, or probably malignant. The histological classification was considered the reference standard. Results The mean age of the patients was 51 years, and the mean mass size was 16 mm. The radiologist evaluation had a sensitivity and specificity of 99.1% and 34.0%, respectively, compared with 98.2% and 39.0%, respectively, for the software evaluation. The positive predictive value for malignancy for the BI-RADS categories was similar between the radiologist and software evaluations. Two false-negative results were identified in the radiologist evaluation, the masses in question being classified as suspicious by the software, whereas four false-negative results were identified in the software evaluation, the masses in question being classified as suspicious by the radiologist. Conclusion In our sample, the performance of artificial intelligence-based software was comparable to that of a radiologist.
Collapse
Affiliation(s)
| | | | | | | | | | - Rubens Chojniak
- Department of Imaging, A.C.Camargo Cancer Center, São Paulo,
SP, Brazil
| | | |
Collapse
|
17
|
Afrin H, Larson NB, Fatemi M, Alizad A. Deep Learning in Different Ultrasound Methods for Breast Cancer, from Diagnosis to Prognosis: Current Trends, Challenges, and an Analysis. Cancers (Basel) 2023; 15:3139. [PMID: 37370748 PMCID: PMC10296633 DOI: 10.3390/cancers15123139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the second-leading cause of mortality among women around the world. Ultrasound (US) is one of the noninvasive imaging modalities used to diagnose breast lesions and monitor the prognosis of cancer patients. It has the highest sensitivity for diagnosing breast masses, but it shows increased false negativity due to its high operator dependency. Underserved areas do not have sufficient US expertise to diagnose breast lesions, resulting in delayed management of breast lesions. Deep learning neural networks may have the potential to facilitate early decision-making by physicians by rapidly yet accurately diagnosing and monitoring their prognosis. This article reviews the recent research trends on neural networks for breast mass ultrasound, including and beyond diagnosis. We discussed original research recently conducted to analyze which modes of ultrasound and which models have been used for which purposes, and where they show the best performance. Our analysis reveals that lesion classification showed the highest performance compared to those used for other purposes. We also found that fewer studies were performed for prognosis than diagnosis. We also discussed the limitations and future directions of ongoing research on neural networks for breast ultrasound.
Collapse
Affiliation(s)
- Humayra Afrin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Gu Y, Xu W, Liu Y, An X, Li J, Cong L, Zhu L, He X, Wang H, Jiang Y. The feasibility of a novel computer-aided classification system for the characterisation and diagnosis of breast masses on ultrasound: a single-centre preliminary test study. Clin Radiol 2023:S0009-9260(23)00130-7. [PMID: 37069025 DOI: 10.1016/j.crad.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023]
Abstract
AIM To introduce a novel computer-aided classification (CAC) system and investigate the feasibility of characterising and diagnosing breast masses on ultrasound (US). MATERIALS AND METHODS A total of 246 breast masses were included. US features and the final assessment categories of the breast masses were analysed by a radiologist and the CAC system according to the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The CAC system evaluated the BI-RADS assessment from the fusion of multi-view and colour Doppler US images without (SmartBreast) or with combining clinical variables (m-CAC system). The diagnostic performance and agreement of US characteristics between the radiologist and the CAC system were compared. RESULTS The agreement between the radiologist and the CAC system was substantial for mass shape (κ = 0.673), orientation (κ = 0.682), margin (κ = 0.622), posterior features (κ = 0.629), calcifications in a mass (κ = 0.709) and vascularity (κ = 0.745), fair for echo pattern (κ = 0.379), and moderate for BI-RADS assessment (κ = 0.575). With BI-RADS 4a as the cut-off value, the specificity (52.5% versus 25%, p<0.0001) and accuracy (73.98% versus 62.6%, p=0.0002) of the m-CAC system were improved without significant loss of sensitivity (94.44% versus 98.41%, p=0.1250) compared with the SmartBreast. The m-CAC system showed similar specificity (52.5% versus 45.83%, p=0.2430) and accuracy (73.98% versus 73.58%, p=1.0000) as the radiologist, but a lower sensitivity (94.44% versus 100%, p=0.0156). CONCLUSION The CAC system showed an acceptable agreement with the radiologist for characterisation of breast lesions. It has the potential to mimic the decision-making behaviour of radiologists for the classification of breast lesions.
Collapse
Affiliation(s)
- Y Gu
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - W Xu
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Y Liu
- Department of Medical Imaging Advanced Research, Beijing Research Institute, Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Beijing, China
| | - X An
- Department of Medical Imaging Advanced Research, Beijing Research Institute, Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Beijing, China
| | - J Li
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - L Cong
- Department of Medical Imaging Advanced Research, Beijing Research Institute, Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Beijing, China
| | - L Zhu
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China
| | - X He
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China
| | - H Wang
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| | - Y Jiang
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
19
|
AI: Can It Make a Difference to the Predictive Value of Ultrasound Breast Biopsy? Diagnostics (Basel) 2023; 13:diagnostics13040811. [PMID: 36832299 PMCID: PMC9955683 DOI: 10.3390/diagnostics13040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
(1) Background: This study aims to compare the ground truth (pathology results) against the BI-RADS classification of images acquired while performing breast ultrasound diagnostic examinations that led to a biopsy and against the result of processing the same images through the AI algorithm KOIOS DS TM (KOIOS). (2) Methods: All results of biopsies performed with ultrasound guidance during 2019 were recovered from the pathology department. Readers selected the image which better represented the BI-RADS classification, confirmed correlation to the biopsied image, and submitted it to the KOIOS AI software. The results of the BI-RADS classification of the diagnostic study performed at our institution were set against the KOIOS classification and both were compared to the pathology reports. (3) Results: 403 cases were included in this study. Pathology rendered 197 malignant and 206 benign reports. Four biopsies on BI-RADS 0 and two images are included. Of fifty BI-RADS 3 cases biopsied, only seven rendered cancers. All but one had a positive or suspicious cytology; all were classified as suspicious by KOIOS. Using KOIOS, 17 B3 biopsies could have been avoided. Of 347 BI-RADS 4, 5, and 6 cases, 190 were malignant (54.7%). Because only KOIOS suspicious and probably malignant categories should be biopsied, 312 biopsies would have resulted in 187 malignant lesions (60%), but 10 cancers would have been missed. (4) Conclusions: KOIOS had a higher ratio of positive biopsies in this selected case study vis-à-vis the BI-RADS 4, 5 and 6 categories. A large number of biopsies in the BI-RADS 3 category could have been avoided.
Collapse
|
20
|
Alsharif WM. The utilization of artificial intelligence applications to improve breast cancer detection and prognosis. Saudi Med J 2023; 44:119-127. [PMID: 36773967 PMCID: PMC9987701 DOI: 10.15537/smj.2023.44.2.20220611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Breast imaging faces challenges with the current increase in medical imaging requests and lesions that breast screening programs can miss. Solutions to improve these challenges are being sought with the recent advancement and adoption of artificial intelligent (AI)-based applications to enhance workflow efficiency as well as patient-healthcare outcomes. rtificial intelligent tools have been proposed and used to analyze different modes of breast imaging, in most of the published studies, mainly for the detection and classification of breast lesions, breast lesion segmentation, breast density evaluation, and breast cancer risk assessment. This article reviews the background of the Conventional Computer-aided Detection system and AI, AI-based applications in breast medical imaging for the identification, segmentation, and categorization of lesions, breast density and cancer risk evaluation. In addition, the challenges, and limitations of AI-based applications in breast imaging are also discussed.
Collapse
Affiliation(s)
- Walaa M. Alsharif
- From the Diagnostic Radiology Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munawwarah; and from the Society of Artificial Intelligence in Healthcare, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
Xing B, Chen X, Wang Y, Li S, Liang YK, Wang D. Evaluating breast ultrasound S-detect image analysis for small focal breast lesions. Front Oncol 2022; 12:1030624. [PMID: 36582786 PMCID: PMC9792476 DOI: 10.3389/fonc.2022.1030624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background S-Detect is a computer-assisted, artificial intelligence-based system of image analysis that has been integrated into the software of ultrasound (US) equipment and has the capacity to independently differentiate between benign and malignant focal breast lesions. Since the revision and upgrade in both the breast imaging-reporting and data system (BI-RADS) US lexicon and the S-Detect software in 2013, evidence that supports improved accuracy and specificity of radiologists' assessment of breast lesions has accumulated. However, such assessment using S-Detect technology to distinguish malignant from breast lesions with a diameter no greater than 2 cm requires further investigation. Methods The US images of focal breast lesions from 295 patients in our hospital from January 2019 to June 2022 were collected. The BI-RADS data were evaluated by the embedded program and as manually modified prior to the determination of a pathological diagnosis. The receiver operator characteristic (ROC) curves were constructed to compare the diagnostic accuracy between the assessments of the conventional US images, the S-Detect classification, and the combination of the two. Results There were 326 lesions identified in 295 patients, of which pathological confirmation demonstrated that 239 were benign and 87 were malignant. The sensitivity, specificity, and accuracy of the conventional imaging group were 75.86%, 93.31%, and 88.65%. The sensitivity, specificity, and accuracy of the S-Detect classification group were 87.36%, 88.28%, and 88.04%, respectively. The assessment of the amended combination of S-Detect with US image analysis (Co-Detect group) was improved with a sensitivity, specificity, and accuracy of 90.80%, 94.56%, and 93.56%, respectively. The diagnostic accuracy of the conventional US group, the S-Detect group, and the Co-Detect group using area under curves was 0.85, 0.88 and 0.93, respectively. The Co-Detect group had a better diagnostic efficiency compared with the conventional US group (Z = 3.882, p = 0.0001) and the S-Detect group (Z = 3.861, p = 0.0001). There was no significant difference in distinguishing benign from malignant small breast lesions when comparing conventional US and S-Detect techniques. Conclusions The addition of S-Detect technology to conventional US imaging provided a novel and feasible method to differentiate benign from malignant small breast nodules.
Collapse
Affiliation(s)
- Boyuan Xing
- Department of Ultrasound Imaging, The People’s Hospital of China Three Gorges University/the First People’s Hospital of Yichang, Yichang, Hubei, China
| | - Xiangyi Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yalin Wang
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Shuang Li
- Department of Pathology, The People’s Hospital of China Three Gorges University/the First People’s Hospital of Yichang, Yichang, Hubei, China
| | - Ying-Kui Liang
- Department of Nuclear Medicine, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China,*Correspondence: Dawei Wang, ; Ying-Kui Liang,
| | - Dawei Wang
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing, China,Department of Nuclear Medicine, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China,*Correspondence: Dawei Wang, ; Ying-Kui Liang,
| |
Collapse
|
22
|
Chen P, Tong J, Lin T, Wang Y, Yu Y, Chen M, Yang G. The added value of S-detect in the diagnostic accuracy of breast masses by senior and junior radiologist groups: a systematic review and meta-analysis. Gland Surg 2022; 11:1946-1960. [PMID: 36654955 PMCID: PMC9840989 DOI: 10.21037/gs-22-643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Background S-detect is an emerging computer-aided diagnosis (CAD) technique that provides a reference for radiologists to identify breast cancer. Some studies have shown that US (ultrasound) + S-detect can improve the diagnostic accuracy of junior radiologists more than senior radiologists, but the results are inconsistent in various studies. Therefore, this meta-analysis aimed to assess the value of S-detect combined with the US outcomes from senior and junior radiologists for the diagnosis of breast cancer. Methods We searched the PubMed, Cochrane Library, Embase, Web of Science, and Wanfang databases, China Biology Medicine disc, China National Knowledge Infrastructure (CNKI), and VIP database for trials on the diagnostic accuracy of US + S-detect for the diagnosis of breast masses. The search time frame was from the date of establishment of the database to August 20, 2022. Two researchers independently screened the literature, extracted the information, and evaluated the quality of the included literature using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scale. StataSE 15.1 software was utilized to assess pooled metrics, including sensitivity, specificity, and the area under the curve (AUC). Results A total of 19 articles with 3,349 patients and 3,895 breast masses were included in this meta-analysis. Of these, seventeen articles evaluated the diagnostic performance of senior radiologists' US + S-detect for breast cancer, while twelve articles reported junior radiologists' diagnostic performance. The risk of bias was primarily attributed to patient selection, flow and timing. In the senior radiologist group, the pooled sensitivity and specificity of US + S-detect were 0.93 [95% confidence interval (CI): 0.89-0.95] and 0.86 (95% CI: 0.80-0.90), respectively, with an AUC of 0.96. As for the junior radiologist group, the pooled sensitivity and specificity of US + S-detect were 0.89 (95% CI: 0.83-0.93) and 0.79 (95% CI: 0.72-0.84), respectively, and the AUC was 0.91. Conclusions The results of this meta-analysis showed that the pooled sensitivity and the AUC of both the senior and junior radiologist groups were high, with good diagnostic efficacy and high clinical application. However, the results of this study are highly heterogeneous and need to be validated by collecting more high-quality studies and accumulating a larger sample size.
Collapse
Affiliation(s)
- Peijun Chen
- Department of Ultrasonography, The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China;,Department of Ultrasonography, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Chinese and Western Hospital of Zhejiang Province (Hangzhou Red Cross Hospital), Hangzhou, China
| | - Jiahui Tong
- Department of Ultrasonography, The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ting Lin
- Department of Ultrasonography, The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ying Wang
- Department of Ultrasonography, Hangzhou Normal University Division of Health Sciences, Hangzhou, China
| | - Yuehui Yu
- Department of Ultrasonography, Hangzhou Normal University Division of Health Sciences, Hangzhou, China
| | - Menghan Chen
- Department of Ultrasonography, Hangzhou Normal University Division of Health Sciences, Hangzhou, China
| | - Gaoyi Yang
- Department of Ultrasonography, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Chinese and Western Hospital of Zhejiang Province (Hangzhou Red Cross Hospital), Hangzhou, China
| |
Collapse
|
23
|
Lee SE, Lee E, Kim EK, Yoon JH, Park VY, Youk JH, Kwak JY. Application of Artificial Intelligence Computer-Assisted Diagnosis Originally Developed for Thyroid Nodules to Breast Lesions on Ultrasound. J Digit Imaging 2022; 35:1699-1707. [PMID: 35902445 PMCID: PMC9712894 DOI: 10.1007/s10278-022-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022] Open
Abstract
As thyroid and breast cancer have several US findings in common, we applied an artificial intelligence computer-assisted diagnosis (AI-CAD) software originally developed for thyroid nodules to breast lesions on ultrasound (US) and evaluated its diagnostic performance. From January 2017 to December 2017, 1042 breast lesions (mean size 20.2 ± 11.8 mm) of 1001 patients (mean age 45.9 ± 12.9 years) who underwent US-guided core-needle biopsy were included. An AI-CAD software that was previously trained and validated with thyroid nodules using the convolutional neural network was applied to breast nodules. There were 665 benign breast lesions (63.0%) and 391 breast cancers (37.0%). The area under the receiver operating characteristic curve (AUROC) of AI-CAD to differentiate breast lesions was 0.678 (95% confidence interval: 0.649, 0.707). After fine-tuning AI-CAD with 1084 separate breast lesions, the diagnostic performance of AI-CAD markedly improved (AUC 0.841). This was significantly higher than that of radiologists when the cutoff category was BI-RADS 4a (AUC 0.621, P < 0.001), but lower when the cutoff category was BI-RADS 4b (AUC 0.908, P < 0.001). When applied to breast lesions, the diagnostic performance of an AI-CAD software that had been developed for differentiating malignant and benign thyroid nodules was not bad. However, an organ-specific approach guarantees better diagnostic performance despite the similar US features of thyroid and breast malignancies.
Collapse
Affiliation(s)
- Si Eun Lee
- Department of Radiology, Yongin Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eunjung Lee
- Department of Computational Science and Engineering, Yonsei University, Seoul, Korea
| | - Eun-Kyung Kim
- Department of Radiology, Yongin Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Vivian Youngjean Park
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ji Hyun Youk
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Kwak
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
24
|
Sun P, Feng Y, Chen C, Dekker A, Qian L, Wang Z, Guo J. An AI model of sonographer's evaluation+ S-Detect + elastography + clinical information improves the preoperative identification of benign and malignant breast masses. Front Oncol 2022; 12:1022441. [PMID: 36439410 PMCID: PMC9692079 DOI: 10.3389/fonc.2022.1022441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Purpose The purpose of the study was to build an AI model with selected preoperative clinical features to further improve the accuracy of the assessment of benign and malignant breast nodules. Methods Patients who underwent ultrasound, strain elastography, and S-Detect before ultrasound-guided biopsy or surgical excision were enrolled. The diagnosis model was built using a logistic regression model. The diagnostic performances of different models were evaluated and compared. Results A total of 179 lesions (101 benign and 78 malignant) were included. The whole dataset consisted of a training set (145 patients) and an independent test set (34 patients). The AI models constructed based on clinical features, ultrasound features, and strain elastography to predict and classify benign and malignant breast nodules had ROC AUCs of 0.87, 0.81, and 0.79 in the test set. The AUCs of the sonographer and S-Detect were 0.75 and 0.82, respectively, in the test set. The AUC of the combined AI model with the best performance was 0.89 in the test set. The combined AI model showed a better specificity of 0.92 than the other models. The sonographer's assessment showed better sensitivity (0.97 in the test set). Conclusion The combined AI model could improve the preoperative identification of benign and malignant breast masses and may reduce unnecessary breast biopsies.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Feng
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhixiang Wang
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jun Guo
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
25
|
Marini TJ, Castaneda B, Parker K, Baran TM, Romero S, Iyer R, Zhao YT, Hah Z, Park MH, Brennan G, Kan J, Meng S, Dozier A, O’Connell A. No sonographer, no radiologist: Assessing accuracy of artificial intelligence on breast ultrasound volume sweep imaging scans. PLOS DIGITAL HEALTH 2022; 1:e0000148. [PMID: 36812553 PMCID: PMC9931251 DOI: 10.1371/journal.pdig.0000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/21/2022] [Indexed: 05/12/2023]
Abstract
Breast ultrasound provides a first-line evaluation for breast masses, but the majority of the world lacks access to any form of diagnostic imaging. In this pilot study, we assessed the combination of artificial intelligence (Samsung S-Detect for Breast) with volume sweep imaging (VSI) ultrasound scans to evaluate the possibility of inexpensive, fully automated breast ultrasound acquisition and preliminary interpretation without an experienced sonographer or radiologist. This study was conducted using examinations from a curated data set from a previously published clinical study of breast VSI. Examinations in this data set were obtained by medical students without prior ultrasound experience who performed VSI using a portable Butterfly iQ ultrasound probe. Standard of care ultrasound exams were performed concurrently by an experienced sonographer using a high-end ultrasound machine. Expert-selected VSI images and standard of care images were input into S-Detect which output mass features and classification as "possibly benign" and "possibly malignant." Subsequent comparison of the S-Detect VSI report was made between 1) the standard of care ultrasound report by an expert radiologist, 2) the standard of care ultrasound S-Detect report, 3) the VSI report by an expert radiologist, and 4) the pathological diagnosis. There were 115 masses analyzed by S-Detect from the curated data set. There was substantial agreement of the S-Detect interpretation of VSI among cancers, cysts, fibroadenomas, and lipomas to the expert standard of care ultrasound report (Cohen's κ = 0.73 (0.57-0.9 95% CI), p<0.0001), the standard of care ultrasound S-Detect interpretation (Cohen's κ = 0.79 (0.65-0.94 95% CI), p<0.0001), the expert VSI ultrasound report (Cohen's κ = 0.73 (0.57-0.9 95% CI), p<0.0001), and the pathological diagnosis (Cohen's κ = 0.80 (0.64-0.95 95% CI), p<0.0001). All pathologically proven cancers (n = 20) were designated as "possibly malignant" by S-Detect with a sensitivity of 100% and specificity of 86%. Integration of artificial intelligence and VSI could allow both acquisition and interpretation of ultrasound images without a sonographer and radiologist. This approach holds potential for increasing access to ultrasound imaging and therefore improving outcomes related to breast cancer in low- and middle- income countries.
Collapse
Affiliation(s)
- Thomas J. Marini
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | - Benjamin Castaneda
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Kevin Parker
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Timothy M. Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Stefano Romero
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Radha Iyer
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yu T. Zhao
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Zaegyoo Hah
- Samsung Medison Co., Ltd., Seoul, Republic of Korea
| | - Moon Ho Park
- Samsung Electronics Co., Ltd., Seoul, Republic of Korea
| | - Galen Brennan
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jonah Kan
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Steven Meng
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ann Dozier
- Department of Public Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Avice O’Connell
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
26
|
Edwards C, Chamunyonga C, Searle B, Reddan T. The application of artificial intelligence in the sonography profession: Professional and educational considerations. ULTRASOUND (LEEDS, ENGLAND) 2022; 30:273-282. [PMID: 36969531 PMCID: PMC10034654 DOI: 10.1177/1742271x211072473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
The integration of artificial intelligence (AI) technology within the health industry is increasing. This educational piece discusses the implementation of AI and its impact on sonography. The authors investigate how AI may influence the profession and provide examples of how ultrasound imaging may be enhanced and innovated by integrating AI technology. This article highlights challenges related to the application of AI and provides insight into how they could be addressed. The critical distinction between the role of a sonographer and the reporting specialist in the context of AI is highlighted as a key issue for those developing, researching, and evaluating AI systems. A key recommendation is for the sonography community to address ultrasound education, particularly how AI knowledge could be incorporated into university education. This is an important consideration that should be extended to practising professionals as they may be involved in evaluating the efficiency and methodologies used in new research that may incorporate AI technologies.
Collapse
Affiliation(s)
- Christopher Edwards
- School of Clinical Sciences,
Faculty of Health, Queensland University of Technology, Brisbane, QLD,
Australia
- Centre for Biomedical
Technologies, Queensland University of Technology, Brisbane, QLD,
Australia
| | - Crispen Chamunyonga
- School of Clinical Sciences,
Faculty of Health, Queensland University of Technology, Brisbane, QLD,
Australia
- Department of Medical Imaging,
Redcliffe Hospital, Redcliffe, QLD, Australia
- Centre for Biomedical
Technologies, Queensland University of Technology, Brisbane, QLD,
Australia
| | - Benjamin Searle
- School of Clinical Sciences,
Faculty of Health, Queensland University of Technology, Brisbane, QLD,
Australia
- Department of Medical Imaging,
Redcliffe Hospital, Redcliffe, QLD, Australia
| | - Tristan Reddan
- School of Clinical Sciences,
Faculty of Health, Queensland University of Technology, Brisbane, QLD,
Australia
- Medical Imaging and Nuclear
Medicine, Queensland Children’s Hospital, South Brisbane, QLD,
Australia
| |
Collapse
|
27
|
Kaplan E, Chan WY, Dogan S, Barua PD, Bulut HT, Tuncer T, Cizik M, Tan RS, Acharya UR. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images. Med Eng Phys 2022; 108:103895. [DOI: 10.1016/j.medengphy.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
28
|
Mahant SS, Varma AR. Artificial Intelligence in Breast Ultrasound: The Emerging Future of Modern Medicine. Cureus 2022; 14:e28945. [PMID: 36237807 PMCID: PMC9547651 DOI: 10.7759/cureus.28945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
In today's world, progressively enormous popularity prevails around artificial intelligence (AI). AI is gaining popularity in the identification of various images. Therefore, it has been widely used in the ultrasound of the breast. Furthermore, AI can perform a quantitative evaluation, which further helps maintain the diagnosis's accuracy. Moreover, breast cancer is the most common cancer in women, posing a severe threat to women's health. Hence, its early detection is usually associated with a patient's prognosis. As a result, using AI in breast cancer screening and detection is highly crucial. The concept of AI in the perspective of breast ultrasound has been highlighted in this brief review article. It tends to focus on early AI, i.e., traditional machine learning and deep learning algorithms. Also, the use of AI in ultrasound and the use of it in mammography, magnetic resonance imaging, nuclear medicine imaging, and classification of breast lesions is broadly explained, along with the challenges faced in bringing AI into daily practice.
Collapse
|
29
|
Liu M, He F, Xiao J. Application of S-detect combined with virtual touch imaging quantification in ultrasound for diagnosis of breast mass. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1089-1098. [PMID: 36097777 PMCID: PMC10950111 DOI: 10.11817/j.issn.1672-7347.2022.220078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Ultrasound is a safe and timely diagnosis method commonly used for breast lesion, however it depends on the operator to a certain degree. As an emerging technology, artificial intelligence can be combined with ultrasound in depth to improve the intelligence and precision of ultrasound diagnosis and avoid diagnostic errors caused by subjectivity of radiologists. This paper aims to investigate the value of artificial intelligence S-detect system combined with virtual touch imaging quantification (VTIQ) technique in the differential diagnosis of benign and malignant breast masses by conventional ultrasound (CUS). respectively, and AUCs for them were 0.74, 0.86, 0.79, and 0.94, respectively. The diagnostic accuracy of CUS+S-detect was higher than that of CUS (P<0.05). The diagnostic accuracy of CUS+S-detect was higher than that of CUS (P<0.05). The diagnostic specificity of CUS+VTIQ was higher than that of CUS (P<0.05). The diagnostic accuracy and AUC of CUS+S-detect+VTIQ were higher than those of S-detect or VTIQ applied to CUS alone (P<0.05). The sensitivities of CUS for senior radiologists, CUS for junior radiologists, CUS+S-detect+VTIQ for senior radiologists, and CUS+S-detect+VTIQ for junior radiologists were 60.00%, 80.00%, 72.73%, and 90.00%, respectively, when diagnosing benign and malignant breast masses in 50 randomly selected cases. The specificities for them was 66.67%, 76.67%, 80.00%, and 81.25%, respectively. The accuracies for them was 64.00%, 78.00%, 80.00%, and 88.00%, respectively. The AUCs for them were 0.63, 0.78, 0.88, and 0.80, respectively. Compared with the CUS for junior radiologists, the CUS+S-detect+VTIQ for junior radiologists had higher sensitivity, specificity, and accuracy (all P<0.05). The consistency of the combined application of S-detect and VTIQ for diagnosing breast masses at 2 different times was good among junior radiologists (Kappa=0.800). METHODS CUS, S-detects, and VTIQ were used to differentially diagnose benign and malignant breast masses in 108 cases, and the final pathological results were referred to as the gold standard for classifying breast masses. The diagnostic efficacy were evaluated and compared, among the 3 methods and among S-detect applied to CUS (CUS+S-detect), VTIQ applied to CUS (CUS+VTIQ), and S-detect combined with VTIQ applied to CUS (CUS+S-detect+VTIQ). Fifty cases were acquired randomly from the collected breast masses, and 2 radiologists with different years of experience (2 and 8 years) used S-detect combined with VTIQ for the ultrasonic differential diagnosis of benign and malignant breast masses. RESULTS The differences in sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC) of the 3 diagnostic methods of CUS, S-detect, and VTIQ were not statistically significant (all P>0.05). The sensitivities of CUS, CUS+Sdetect, CUS+VTIQ, and CUS+S-detect+VTIQ were 78.57%, 92.86%, 69.05%, and 95.24%, respectively, the specificities for them were 69.70%, 78.79%, 87.88%, and 92.42%, respectively, the accuracies for them were 73.15%, 84.26%, 80.56%, and 93.52%. CONCLUSIONS S-detect combined with VTIQ when applied to CUS can overcome the shortcomings of separate applications and complement each other, especially for junior radiologists, and can more effectively improve the diagnostic efficacy of ultrasound for benign and malignant breast masses.
Collapse
Affiliation(s)
- Menghan Liu
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Fang He
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha 410013
- Department of Ultrasound, Third Hospital of Changsha, Changsha 410035, China
| | - Jidong Xiao
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|
30
|
Abstract
BACKGROUND Computer-aided diagnosis (CAD) systems have shown great potential as an effective auxiliary diagnostic tool in breast imaging. Previous studies have shown that S-Detect technology has a high accuracy in the differential diagnosis of breast masses. However, the application of S-Detect in clinical practice remains controversial, and the results vary among different clinical trials. This meta-analysis aimed to determine the diagnostic accuracy of S-Detect for distinguishing between benign and malignant breast masses. METHODS We searched PubMed, Cochrane Library, and CBM databases from inception to April 1, 2021. Meta-analysis was conducted using STATA version 14.0 and Meta-Disc version 1.4 softwares. We calculated the summary statistics for sensitivity (Sen), specificity (Spe), positive, and negative likelihood ratio (LR+/LR-), diagnostic odds ratio(DOR), and summary receiver operating characteristic (SROC) curves. Cochran Q-statistic and I2 test were used to evaluate the potential heterogeneity between studies. Sensitivity analysis was performed to evaluate the influence of single studies on the overall estimate. We also performed meta-regression analyses to investigate potential sources of heterogeneity. RESULTS Eleven studies that met all the inclusion criteria were included in the meta-analysis. A total of 951 malignant and 1866 benign breast masses were assessed. All breast masses were histologically confirmed using S-Detect. The pooled Sen was 0.82 (95% confidence interval(CI) = 0.74-0.88); the pooled Spe was 0.83 (95%CI = 0.78-0.88). The pooled LR + was 4.91 (95%CI = 3.75-6.41); the pooled negative LR - was 0.21 (95%CI = 0.15-0.31). The pooled DOR of S-Detect in the diagnosis of breast nodules was 23.12 (95% CI = 14.53-36.77). The area under the SROC curve was 0.90 (SE = 0.0166). No evidence of publication bias was found (t = 0.54, P = .61). CONCLUSIONS Our meta-analysis indicates that S-Detect may have high diagnostic accuracy in distinguishing benign and malignant breast masses.
Collapse
Affiliation(s)
- Xiaolei Wang
- Ultrasound department of the First Affiliated Hospital of Dalian Medical University
| | - Shuang Meng
- Ultrasound department of the First Affiliated Hospital of Dalian Medical University
- *Correspondence: Shuang Meng, No. 222 Zhongshan Road, Xigang District, Dalian City, Liaoning Province, China ()
| |
Collapse
|
31
|
Yin HL, Jiang Y, Xu Z, Jia HH, Lin GW. Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions. J Cancer Res Clin Oncol 2022; 149:2575-2584. [PMID: 35771263 DOI: 10.1007/s00432-022-04142-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the value of the combined diagnosis of multiparametric MRI-based deep learning models to differentiate triple-negative breast cancer (TNBC) from fibroadenoma magnetic resonance Breast Imaging-Reporting and Data System category 4 (BI-RADS 4) lesions and to evaluate whether the combined diagnosis of these models could improve the diagnostic performance of radiologists. METHODS A total of 319 female patients with 319 pathologically confirmed BI-RADS 4 lesions were randomly divided into training, validation, and testing sets in this retrospective study. The three models were established based on contrast-enhanced T1-weighted imaging, diffusion-weighted imaging, and T2-weighted imaging using the training and validation sets. The artificial intelligence (AI) combination score was calculated according to the results of three models. The diagnostic performances of four radiologists with and without AI assistance were compared with the AI combination score on the testing set. The area under the curve (AUC), sensitivity, specificity, accuracy, and weighted kappa value were calculated to assess the performance. RESULTS The AI combination score yielded an excellent performance (AUC = 0.944) on the testing set. With AI assistance, the AUC for the diagnosis of junior radiologist 1 (JR1) increased from 0.833 to 0.885, and that for JR2 increased from 0.823 to 0.876. The AUCs of senior radiologist 1 (SR1) and SR2 slightly increased from 0.901 and 0.950 to 0.925 and 0.975 after AI assistance, respectively. CONCLUSION Combined diagnosis of multiparametric MRI-based deep learning models to differentiate TNBC from fibroadenoma magnetic resonance BI-RADS 4 lesions can achieve comparable performance to that of SRs and improve the diagnostic performance of JRs.
Collapse
Affiliation(s)
- Hao-Lin Yin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Jing'an District, 221# Yan'anxi Road, Shanghai, 200040, China
| | - Yu Jiang
- Department of Radiology, West China Hospital of Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Zihan Xu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Hui-Hui Jia
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Jing'an District, 221# Yan'anxi Road, Shanghai, 200040, China
| | - Guang-Wu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Jing'an District, 221# Yan'anxi Road, Shanghai, 200040, China.
| |
Collapse
|
32
|
Wei Q, Yan YJ, Wu GG, Ye XR, Jiang F, Liu J, Wang G, Wang Y, Song J, Pan ZP, Hu JH, Jin CY, Wang X, Dietrich CF, Cui XW. The diagnostic performance of ultrasound computer-aided diagnosis system for distinguishing breast masses: a prospective multicenter study. Eur Radiol 2022; 32:4046-4055. [PMID: 35066633 DOI: 10.1007/s00330-021-08452-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To evaluate the diagnostic value of computer-aided diagnosis (CAD) software on ultrasound in distinguishing benign and malignant breast masses and avoiding unnecessary biopsy. METHODS This prospective, multicenter study included patients who were scheduled for pathological diagnosis of breast masses between April 2019 and November 2020. Ultrasound images, videos, CAD analysis, and BI-RADS were obtained. The AUC, accuracy, sensitivity, specificity, PPV, and NPV were calculated and compared with radiologists. RESULTS Overall, 901 breast masses in 901 patients were enrolled in this study. The accuracy, sensitivity, specificity, PPV and NPV of CAD software were 89.6%, 94.2%, 87.0%, 80.4%, and 96.3, respectively, in the long-axis section; 89.0%, 91.4%, 87.7%, 80.8%, and 94.7%, respectively, in the short-axis section. With BI-RADS 4a as the cut-off value, CAD software has a higher AUC (0.906 vs 0.734 vs 0.696, all p < 0.001) than both experienced and less experienced radiologists. With BI-RADS 4b as the cut-off value, CAD software showed better AUC than less experienced radiologists (0.906 vs 0.874, p < 0.001), but not superior to experienced radiologists (0.906 vs 0.883, p = 0.057). After the application of CAD software, the unnecessary biopsy rate of BI-RADS categories 4 and 5 was significantly decreased (33.0% vs 11.9%, 37.8% vs 14.5%), and the malignant rate of biopsy in category 4a was significantly increased (11.6% vs 40.7%, 7.4% vs 34.9%, all p < 0.001). CONCLUSIONS CAD software on ultrasound can be used as an effective auxiliary diagnostic tool for differential diagnosis of benign and malignant breast masses and reducing unnecessary biopsy. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT03887598) KEY POINTS: • Prospective multicenter study showed that computer-aided diagnosis software provides greater diagnostic confidence for differentiating benign and malignant breast masses. • Computer-aided diagnosis software can help radiologists reduce unnecessary biopsy. • The management of patients with breast masses becomes more appropriate.
Collapse
Affiliation(s)
- Qi Wei
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Yu-Jing Yan
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Ge-Ge Wu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Xi-Rong Ye
- Department of Medical Ultrasound, The Central Hospital of EDong Healthcare, Huangshi, 435000, Hubei Province, China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Jie Liu
- Department of Medical Ultrasound, Yichang General Hospital, Renmin Hospital of Three Gorges University, Hubei Province, Yichang, 443099, China
| | - Gang Wang
- Department of Medical Ultrasound, Taizhou Hospital of Zhejiang Province, Linhai, 318000, Zhejiang Province, China
| | - Yi Wang
- Department of Medical Ultrasound, Macheng People's Hospital, Macheng, 438300, Hubei Province, China
| | - Juan Song
- Department of Medical Ultrasound, Xiangyang No. 1 People's Hospital, Affiliated Hospital of Hubei University of Medicine, Xiangyang, 441000, Hubei Province, China
| | - Zhi-Ping Pan
- Department of Medical Ultrasound, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, Jiangsu Province, China
| | - Jin-Hua Hu
- Department of Medical Ultrasound, Anqing First People's Hospital of Anhui Medical University, Anqing, 246052, Anhui Province, China
| | - Chao-Ying Jin
- Department of Medical Ultrasound, Taizhou Hospital of Zhejiang Province, Linhai, 318000, Zhejiang Province, China
| | - Xiang Wang
- Department of Medical Ultrasound, Macheng People's Hospital, Macheng, 438300, Hubei Province, China
| | - Christoph F Dietrich
- Department of Internal Medicine, Hirslanden Clinic, Schänzlihalde 11, 3013, Bern, Switzerland
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
33
|
Wei Q, Zeng SE, Wang LP, Yan YJ, Wang T, Xu JW, Zhang MY, Lv WZ, Dietrich CF, Cui XW. The Added Value of a Computer-Aided Diagnosis System in Differential Diagnosis of Breast Lesions by Radiologists With Different Experience. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1355-1363. [PMID: 34432320 DOI: 10.1002/jum.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To evaluate the value of the computer-aided diagnosis system, S-Detect (based on deep learning algorithm), in distinguishing benign and malignant breast masses and reducing unnecessary biopsy based on the experience of radiologists. METHODS From February 2018 to March 2019, 266 breast masses in 192 women were included in our study. Ultrasound (US) examination, including S-Detect technique, was performed by the radiologist with about 10 years of clinical experience in breast US imaging. US images were analyzed by four other radiologists with different experience in breast imaging (radiologists 1, 2, 3, and 4 with 1, 4, 9, and 20 years, respectively) according to their clinical experience (with and without the results of S-Detect). Diagnostic capabilities and unnecessary biopsy of radiologists and radiologists combined with S-Detect were compared and analyzed. RESULTS After referring to the results of S-Detect, the changes made by less experienced radiologists were greater than experienced radiologists (benign or malignant, 44 vs 22 vs 14 vs 2; unnecessary biopsy, 34 vs 25 vs 10 vs 5). When combined with S-Detect, less experienced radiologists showed significant improvement in accuracy, specificity, positive predictive value, negative predictive value, and area under curve (P < .05), but not for experienced radiologists (P > .05). Similarly, the unnecessary biopsy rate of less experienced radiologists decreased significantly (44.4% vs 32.7%, P = .006; 36.8% vs 28.2%, P = .033), but not for experienced radiologists (P > .05). CONCLUSIONS Less experienced radiologists rely more on S-Detect software. And S-Detect can be an effective decision-making tool for breast US, especially for less experienced radiologists.
Collapse
Affiliation(s)
- Qi Wei
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-E Zeng
- Department of Medical Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ping Wang
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Yan
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Wei Xu
- Department of Medical Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Yi Zhang
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Zhi Lv
- Department of Artificial Intelligence, Julei Technology, Wuhan, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, Bern, Switzerland
| | - Xin-Wu Cui
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Lee SE, Han K, Youk JH, Lee JE, Hwang JY, Rho M, Yoon J, Kim EK, Yoon JH. Differing benefits of artificial intelligence-based computer-aided diagnosis (AI-CAD) for breast US according to workflow and experience level. Ultrasonography 2022; 41:718-727. [PMID: 35850498 PMCID: PMC9532201 DOI: 10.14366/usg.22014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose This study evaluated how artificial intelligence-based computer-assisted diagnosis (AI-CAD) for breast ultrasonography (US) influences diagnostic performance and agreement between radiologists with varying experience levels in different workflows. Methods Images of 492 breast lesions (200 malignant and 292 benign masses) in 472 women taken from April 2017 to June 2018 were included. Six radiologists (three inexperienced [<1 year of experience] and three experienced [10-15 years of experience]) individually reviewed US images with and without the aid of AI-CAD, first sequentially and then simultaneously. Diagnostic performance and interobserver agreement were calculated and compared between radiologists and AI-CAD. Results After implementing AI-CAD, the specificity, positive predictive value (PPV), and accuracy significantly improved, regardless of experience and workflow (all P<0.001, respectively). The overall area under the receiver operating characteristic curve significantly increased in simultaneous reading, but only for inexperienced radiologists. The agreement for Breast Imaging Reporting and Database System (BI-RADS) descriptors generally increased when AI-CAD was used (κ=0.29-0.63 to 0.35-0.73). Inexperienced radiologists tended to concede to AI-CAD results more easily than experienced radiologists, especially in simultaneous reading (P<0.001). The conversion rates for final assessment changes from BI-RADS 2 or 3 to BI-RADS higher than 4a or vice versa were also significantly higher in simultaneous reading than sequential reading (overall, 15.8% and 6.2%, respectively; P<0.001) for both inexperienced and experienced radiologists. Conclusion Using AI-CAD to interpret breast US improved the specificity, PPV, and accuracy of radiologists regardless of experience level. AI-CAD may work better in simultaneous reading to improve diagnostic performance and agreement between radiologists, especially for inexperienced radiologists.
Collapse
Affiliation(s)
- Si Eun Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Radiology, Research Institute of Radiological Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Youk
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Eun Lee
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji-Young Hwang
- Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Miribi Rho
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jiyoung Yoon
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Kyung Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Radiology, Research Institute of Radiological Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Jung Hyun Yoon
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Correspondence to: Jung Hyun Yoon, MD, PhD, Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea Tel. +82-2-2228-7400 Fax. +82-2-2227-8337 E-mail:
| |
Collapse
|
35
|
Zhao C, Xiao M, Ma L, Ye X, Deng J, Cui L, Guo F, Wu M, Luo B, Chen Q, Chen W, Guo J, Li Q, Zhang Q, Li J, Jiang Y, Zhu Q. Enhancing Performance of Breast Ultrasound in Opportunistic Screening Women by a Deep Learning-Based System: A Multicenter Prospective Study. Front Oncol 2022; 12:804632. [PMID: 35223484 PMCID: PMC8867611 DOI: 10.3389/fonc.2022.804632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To validate the feasibility of S-Detect, an ultrasound computer-aided diagnosis (CAD) system using deep learning, in enhancing the diagnostic performance of breast ultrasound (US) for patients with opportunistic screening-detected breast lesions. METHODS Nine medical centers throughout China participated in this prospective study. Asymptomatic patients with US-detected breast masses were enrolled and received conventional US, S-Detect, and strain elastography subsequently. The final pathological results are referred to as the gold standard for classifying breast mass. The diagnostic performances of the three methods and the combination of S-Detect and elastography were evaluated and compared, including sensitivity, specificity, and area under the receiver operating characteristics (AUC) curve. We also compared the diagnostic performances of S-Detect among different study sites. RESULTS A total of 757 patients were enrolled, including 460 benign and 297 malignant cases. S-Detect exhibited significantly higher AUC and specificity than conventional US (AUC, S-Detect 0.83 [0.80-0.85] vs. US 0.74 [0.70-0.77], p < 0.0001; specificity, S-Detect 74.35% [70.10%-78.28%] vs. US 54.13% [51.42%-60.29%], p < 0.0001), with no decrease in sensitivity. In comparison to that of S-Detect alone, the AUC value significantly was enhanced after combining elastography and S-Detect (0.87 [0.84-0.90]), without compromising specificity (73.93% [68.60%-78.78%]). Significant differences in the S-Detect's performance were also observed across different study sites (AUC of S-Detect in Groups 1-4: 0.89 [0.84-0.93], 0.84 [0.77-0.89], 0.85 [0.76-0.92], 0.75 [0.69-0.80]; p [1 vs. 4] < 0.0001, p [2 vs. 4] = 0.0165, p [3 vs. 4] = 0.0157). CONCLUSIONS Compared with the conventional US, S-Detect presented higher overall accuracy and specificity. After S-Detect and strain elastography were combined, the performance could be further enhanced. The performances of S-Detect also varied among different centers.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengsu Xiao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Ma
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhua Ye
- Department of Ultrasound, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Deng
- Department of Ultrasound, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Fajin Guo
- Department of Ultrasound, Beijing Hospital, Beijing, China
| | - Min Wu
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Qin Chen
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wu Chen
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Guo
- Department of Ultrasound, Aero Space Central Hospital, Beijing, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Qing Zhang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchu Li
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingli Zhu
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Li JW, Cao YC, Zhao ZJ, Shi ZT, Duan XQ, Chang C, Chen JG. Prediction for pathological and immunohistochemical characteristics of triple-negative invasive breast carcinomas: the performance comparison between quantitative and qualitative sonographic feature analysis. Eur Radiol 2022; 32:1590-1600. [PMID: 34519862 DOI: 10.1007/s00330-021-08224-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Sonographic features are associated with pathological and immunohistochemical characteristics of triple-negative breast cancer (TNBC). To predict the biological property of TNBC, the performance using quantitative high-throughput sonographic feature analysis was compared with that using qualitative feature assessment. METHODS We retrospectively reviewed ultrasound images, clinical, pathological, and immunohistochemical (IHC) data of 252 female TNBC patients. All patients were subgrouped according to the histological grade, Ki67 expression level, and human epidermal growth factor receptor 2 (HER2) score. Qualitative sonographic feature assessment included shape, margin, posterior acoustic pattern, and calcification referring to the Breast Imaging Reporting and Data System (BI-RADS). Quantitative sonographic features were acquired based on the computer-aided radiomics analysis. Breast cancer masses were manually segmented from the surrounding breast tissues. For each ultrasound image, 1688 radiomics features of 7 feature classes were extracted. The principal component analysis (PCA), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were used to determine the high-throughput radiomics features that were highly correlated to biological properties. The performance using both quantitative and qualitative sonographic features to predict biological properties of TNBC was represented by the area under the receiver operating characteristic curve (AUC). RESULTS In the qualitative assessment, regular tumor shape, no angular or spiculated margin, posterior acoustic enhancement, and no calcification were used as the independent sonographic features for TNBC. Using the combination of these four features to predict the histological grade, Ki67, HER2, axillary lymph node metastasis (ALNM), and lymphovascular invasion (LVI), the AUC was 0.673, 0.680, 0.651, 0.587, and 0.566, respectively. The number of high-throughput features that closely correlated with biological properties was 34 for histological grade (AUC 0.942), 27 for Ki67 (AUC 0.732), 25 for HER2 (AUC 0.730), 34 for ALNM (AUC 0.804), and 34 for LVI (AUC 0.795). CONCLUSION High-throughput quantitative sonographic features are superior to traditional qualitative ultrasound features in predicting the biological behavior of TNBC. KEY POINTS • Sonographic appearances of TNBCs showed a great variety in accordance with its biological and clinical characteristics. • Both qualitative and quantitative sonographic features of TNBCs are associated with tumor biological characteristics. • The quantitative high-throughput feature analysis is superior to two-dimensional sonographic feature assessment in predicting tumor biological property.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Yu-Cheng Cao
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, #500 Dongchuan Rd., Shanghai, 200241, China
| | - Zhi-Jin Zhao
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Zhao-Ting Shi
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Xiao-Qian Duan
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, #500 Dongchuan Rd., Shanghai, 200241, China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
| | - Jian-Gang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, #500 Dongchuan Rd., Shanghai, 200241, China.
| |
Collapse
|
37
|
Zhu Y, Zhan W, Jia X, Liu J, Zhou J. Clinical Application of Computer-Aided Diagnosis for Breast Ultrasonography: Factors That Lead to Discordant Results in Radial and Antiradial Planes. Cancer Manag Res 2022; 14:751-760. [PMID: 35237075 PMCID: PMC8882474 DOI: 10.2147/cmar.s348463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 01/30/2023] Open
Affiliation(s)
- Ying Zhu
- Department of Ultrasound, Shanghai Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Weiwei Zhan
- Department of Ultrasound, Shanghai Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Xiaohong Jia
- Department of Ultrasound, Shanghai Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Juan Liu
- Department of Ultrasound, Shanghai Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Jianqiao Zhou
- Department of Ultrasound, Shanghai Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, People’s Republic of China
- Correspondence: Jianqiao Zhou, Department of Ultrasound, Shanghai Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, People’s Republic of China, Email
| |
Collapse
|
38
|
Kim YS, Lee SE, Chang JM, Kim SY, Bae YK. Ultrasonographic morphological characteristics determined using a deep learning-based computer-aided diagnostic system of breast cancer. Medicine (Baltimore) 2022; 101:e28621. [PMID: 35060538 PMCID: PMC8772632 DOI: 10.1097/md.0000000000028621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023] Open
Abstract
To investigate the correlations between ultrasonographic morphological characteristics quantitatively assessed using a deep learning-based computer-aided diagnostic system (DL-CAD) and histopathologic features of breast cancer.This retrospective study included 282 women with invasive breast cancer (<5 cm; mean age, 54.4 [range, 29-85] years) who underwent surgery between February 2016 and April 2017. The morphological characteristics of breast cancer on B-mode ultrasonography were analyzed using DL-CAD, and quantitative scores (0-1) were obtained. Associations between quantitative scores and tumor histologic type, grade, size, subtype, and lymph node status were compared.Two-hundred and thirty-six (83.7%) tumors were invasive ductal carcinoma, 18 (6.4%) invasive lobular carcinoma, and 28 (9.9%) micropapillary, apocrine, and mucinous. The mean size was 1.8 ± 1.0 (standard deviation) cm, and 108 (38.3%) cases were node positive. Irregular shape score was associated with tumor size (P < .001), lymph nodes status (P = .001), and estrogen receptor status (P = .016). Not-circumscribed margin (P < .001) and hypoechogenicity (P = .003) scores correlated with tumor size, and non-parallel orientation score correlated with histologic grade (P = .024). Luminal A tumors exhibited more irregular features (P = .048) with no parallel orientation (P = .002), whereas triple-negative breast cancer showed a rounder/more oval and parallel orientation.Quantitative morphological characteristics of breast cancers determined using DL-CAD correlated with histopathologic features and could provide useful information about breast cancer phenotypes.
Collapse
Affiliation(s)
- Young Seon Kim
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Seung Eun Lee
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|
39
|
Lyu SY, Zhang Y, Zhang MW, Zhang BS, Gao LB, Bai LT, Wang J. Diagnostic value of artificial intelligence automatic detection systems for breast BI-RADS 4 nodules. World J Clin Cases 2022; 10:518-527. [PMID: 35097077 PMCID: PMC8771370 DOI: 10.12998/wjcc.v10.i2.518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence rate of breast cancer has exceeded that of lung cancer, and it has become the most malignant type of cancer in the world. BI-RADS 4 breast nodules have a wide range of malignant risks and are associated with challenging clinical decision-making.
AIM To explore the diagnostic value of artificial intelligence (AI) automatic detection systems for BI-RADS 4 breast nodules and to assess whether conventional ultrasound BI-RADS classification with AI automatic detection systems can reduce the probability of BI-RADS 4 biopsy.
METHODS A total of 107 BI-RADS breast nodules confirmed by pathology were selected between June 2019 and July 2020 at Hwa Mei Hospital, University of Chinese Academy of Sciences. These nodules were classified by ultrasound doctors and the AI-SONIC breast system. The diagnostic values of conventional ultrasound, the AI automatic detection system, conventional ultrasound combined with the AI automatic detection system and adjusted BI-RADS classification diagnosis were statistically analyzed.
RESULTS Among the 107 breast nodules, 61 were benign (57.01%), and 46 were malignant (42.99%). The pathology results were considered the gold standard; furthermore, the sensitivity, specificity, accuracy, Youden index, and positive and negative predictive values were 84.78%, 67.21%, 74.77%, 0.5199, 66.10% and 85.42% for conventional ultrasound BI-RADS classification diagnosis, 86.96%, 75.41%, 80.37%, 0.6237, 72.73%, and 88.46% for automatic AI detection, 80.43%, 90.16%, 85.98%, 0.7059, 86.05%, and 85.94% for conventional ultrasound BI-RADS classification with automatic AI detection and 93.48%, 67.21%, 78.50%, 0.6069, 68.25%, and 93.18% for adjusted BI-RADS classification, respectively. The biopsy rate, cancer detection rate and malignancy risk were 100%, 42.99% and 0% and 67.29%, 61.11%, and 1.87% before and after BI-RADS adjustment, respectively.
CONCLUSION Automatic AI detection has high accuracy in determining benign and malignant BI-RADS 4 breast nodules. Conventional ultrasound BI-RADS classification combined with AI automatic detection can reduce the biopsy rate of BI-RADS 4 breast nodules.
Collapse
Affiliation(s)
- Shu-Yi Lyu
- Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Interventional Therapy Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Yan Zhang
- Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Interventional Therapy Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Mei-Wu Zhang
- Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Interventional Therapy Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Bai-Song Zhang
- Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Interventional Therapy Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Li-Bo Gao
- Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Interventional Therapy Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Lang-Tao Bai
- Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Interventional Therapy Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Jue Wang
- Ultrasonography Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
- Ultrasonography Department, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| |
Collapse
|
40
|
Ying Z, Xiaohong J, Yijie D, Juan L, Yilai C, Congcong Y, Weiwei Z, Jianqiao Z. Using S-Detect to Improve Breast Ultrasound: The Different Combined Strategies Based on Radiologist Experienc. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2022. [DOI: 10.37015/audt.2022.220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
41
|
Liu Q, Qu M, Sun L, Wang H. Accuracy of ultrasonic artificial intelligence in diagnosing benign and malignant breast diseases: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28289. [PMID: 34918704 PMCID: PMC8678017 DOI: 10.1097/md.0000000000028289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Artificial intelligence system is a deep learning system based on computer-assisted ultrasonic image diagnosis, which can extract morphological features of breast mass and conduct objective and efficient image analysis, thus automatically intelligent classification of breast mass, avoiding subjective error and improving the accuracy of diagnosis.[1-2] A large number of studies have confirmed that artificial intelligence (AI) has high effectiveness and reliability in the differential diagnosis of benign and malignant breast diseases.[3-4] However, the results of these studies have been contradictory. Therefore, this meta-analysis tested the hypothesis that artificial intelligence system is accurate in distinguishing benign and malignant breast diseases. METHODS We will search PubMed, Web of Science, Cochrane Library, and Chinese biomedical databases from their inceptions to the November 20, 2021, without language restrictions. Two authors will independently carry out searching literature records, scanning titles and abstracts, full texts, collecting data, and assessing risk of bias. Review Manager 5.2 and Stata14.0 software will be used for data analysis. RESULTS This systematic review will determine the accuracy of AI in the differential diagnosis of benign and malignant breast diseases. CONCLUSION Its findings will provide helpful evidence for the accuracy of AI in the differential diagnosis of benign and malignant breast diseases. SYSTEMATIC REVIEW REGISTRATION INPLASY2021110087.
Collapse
|
42
|
Nicosia L, Addante F, Bozzini AC, Latronico A, Montesano M, Meneghetti L, Tettamanzi F, Frassoni S, Bagnardi V, De Santis R, Pesapane F, Fodor CI, Mastropasqua MG, Cassano E. Evaluation of computer-aided diagnosis in breast ultrasonography: Improvement in diagnostic performance of inexperienced radiologists. Clin Imaging 2021; 82:150-155. [PMID: 34826773 DOI: 10.1016/j.clinimag.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/11/2021] [Accepted: 11/07/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate if a computer-aided diagnosis (CAD) system on ultrasound (US) can improve the diagnostic performance of inexperienced radiologists. METHODS We collected ultrasound images of 256 breast lesions taken between March and May 2020. We asked two experienced and two inexperienced radiologists to retrospectively review the US features of each breast lesion according to the Breast Imaging Reporting and Data System (BI-RADS) categories. A CAD examination with S-Detect™ software (Samsung Healthcare, Seoul, South Korea) was conducted retrospectively by another uninvolved radiologist blinded to the BIRADS values previously attributed to the lesions. Diagnostic performances of experienced and inexperienced radiologists and CAD were compared and the inter-observer agreement among radiologists was calculated. RESULTS The diagnostic performance of the experienced group in terms of sensitivity was significantly higher than CAD (p < 0.001). Conversely, the diagnostic performance of inexperienced group in terms of both sensitivity and specificity was significantly lower than CAD (p < 0.001). We obtained an excellent agreement in the evaluation of the lesions among the two expert radiologists (Kappa coefficient: 88.7%), and among the two non-expert radiologists (Kappa coefficient: 84.9%). CONCLUSION The US CAD system is a useful additional tool to improve the diagnostic performance of the inexperienced radiologists, eventually reducing the number of unnecessary biopsies. Moreover, it is a valid second opinion in case of experienced radiologists.
Collapse
Affiliation(s)
- Luca Nicosia
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy.
| | - Francesca Addante
- Department of Emergency and Organ Transplantation, Section of Anatomic Pathology, School of Medicine, University "Aldo Moro", 70124 Bari, Italy
| | - Anna Carla Bozzini
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy
| | - Antuono Latronico
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy
| | - Marta Montesano
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy
| | - Lorenza Meneghetti
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy
| | - Francesca Tettamanzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy
| | - Rossella De Santis
- Postgraduate School in Radiology, University of Milan, 20122 Milan, Italy
| | - Filippo Pesapane
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy
| | - Cristiana Iuliana Fodor
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Mauro Giuseppe Mastropasqua
- Department of Emergency and Organ Transplantation, Section of Anatomic Pathology, School of Medicine, University "Aldo Moro", 70124 Bari, Italy
| | - Enrico Cassano
- Division of Breast imaging IEO; European institute of Oncology, IRCCS, Via Ripamonti 435, Milan Italy
| |
Collapse
|
43
|
Zhang D, Jiang F, Yin R, Wu GG, Wei Q, Cui XW, Zeng SE, Ni XJ, Dietrich CF. A Review of the Role of the S-Detect Computer-Aided Diagnostic Ultrasound System in the Evaluation of Benign and Malignant Breast and Thyroid Masses. Med Sci Monit 2021; 27:e931957. [PMID: 34552043 PMCID: PMC8477643 DOI: 10.12659/msm.931957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Computer-aided diagnosis (CAD) systems have attracted extensive attention owing to their performance in the field of image diagnosis and are rapidly becoming a promising auxiliary tool in medical imaging tasks. These systems can quantitatively evaluate complex medical imaging features and achieve efficient and high-diagnostic accuracy. Deep learning is a representation learning method. As a major branch of artificial intelligence technology, it can directly process original image data by simulating the structure of the human brain neural network, thus independently completing the task of image recognition. S-Detect is a novel and interactive CAD system based on a deep learning algorithm, which has been integrated into ultrasound equipment and can help radiologists identify benign and malignant nodules, reduce physician workload, and optimize the ultrasound clinical workflow. S-Detect is becoming one of the most commonly used CAD systems for ultrasound evaluation of breast and thyroid nodules. In this review, we describe the S-Detect workflow and outline its application in breast and thyroid nodule detection. Finally, we discuss the difficulties and challenges faced by S-Detect as a precision medical tool in clinical practice and its prospects.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Rui Yin
- Department of Ultrasound, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, PR China
| | - Ge-Ge Wu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi Wei
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shu-E Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Jun Ni
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China
| | | |
Collapse
|
44
|
Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: Where are we and where are we heading? Eur J Radiol 2021; 142:109882. [PMID: 34392105 PMCID: PMC8387447 DOI: 10.1016/j.ejrad.2021.109882] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Significant advances in imaging analysis and the development of high-throughput methods that can extract and correlate multiple imaging parameters with different clinical outcomes have led to a new direction in medical research. Radiomics and artificial intelligence (AI) studies are rapidly evolving and have many potential applications in breast imaging, such as breast cancer risk prediction, lesion detection and classification, radiogenomics, and prediction of treatment response and clinical outcomes. AI has been applied to different breast imaging modalities, including mammography, ultrasound, and magnetic resonance imaging, in different clinical scenarios. The application of AI tools in breast imaging has an unprecedented opportunity to better derive clinical value from imaging data and reshape the way we care for our patients. The aim of this study is to review the current knowledge and future applications of AI-enhanced breast imaging in clinical practice.
Collapse
Affiliation(s)
- Almir Bitencourt
- Department of Imaging, A.C.Camargo Cancer Center, Sao Paulo, SP, Brazil; Dasa, Sao Paulo, SP, Brazil
| | - Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Guy's and St. Thomas' NHS Trust, Great Maze Pond, London, UK
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Kim MY, Kim SY, Kim YS, Kim ES, Chang JM. Added value of deep learning-based computer-aided diagnosis and shear wave elastography to b-mode ultrasound for evaluation of breast masses detected by screening ultrasound. Medicine (Baltimore) 2021; 100:e26823. [PMID: 34397844 PMCID: PMC8341270 DOI: 10.1097/md.0000000000026823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Low specificity and operator dependency are the main problems of breast ultrasound (US) screening. We investigated the added value of deep learning-based computer-aided diagnosis (S-Detect) and shear wave elastography (SWE) to B-mode US for evaluation of breast masses detected by screening US.Between February 2018 and June 2019, B-mode US, S-Detect, and SWE were prospectively obtained for 156 screening US-detected breast masses in 146 women before undergoing US-guided biopsy. S-Detect was applied for the representative B-mode US image, and quantitative elasticity was measured for SWE. Breast Imaging Reporting and Data System final assessment category was assigned for the datasets of B-mode US alone, B-mode US plus S-Detect, and B-mode US plus SWE by 3 radiologists with varied experience in breast imaging. Area under the receiver operator characteristics curve (AUC), sensitivity, and specificity for the 3 datasets were compared using Delong's method and McNemar test.Of 156 masses, 10 (6%) were malignant and 146 (94%) were benign. Compared to B-mode US alone, the addition of S-Detect increased the specificity from 8%-9% to 31%-71% and the AUC from 0.541-0.545 to 0.658-0.803 in all radiologists (All P < .001). The addition of SWE to B-mode US also increased the specificity from 8%-9% to 41%-75% and the AUC from 0.541-0.545 to 0.709-0.823 in all radiologists (All P < .001). There was no significant loss in sensitivity when either S-Detect or SWE were added to B-mode US.Adding S-Detect or SWE to B-mode US improved the specificity and AUC without loss of sensitivity.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yeon Soo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Sil Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
46
|
Shen YT, Chen L, Yue WW, Xu HX. Artificial intelligence in ultrasound. Eur J Radiol 2021; 139:109717. [PMID: 33962110 DOI: 10.1016/j.ejrad.2021.109717] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Ultrasound (US), a flexible green imaging modality, is expanding globally as a first-line imaging technique in various clinical fields following with the continual emergence of advanced ultrasonic technologies and the well-established US-based digital health system. Actually, in US practice, qualified physicians should manually collect and visually evaluate images for the detection, identification and monitoring of diseases. The diagnostic performance is inevitably reduced due to the intrinsic property of high operator-dependence from US. In contrast, artificial intelligence (AI) excels at automatically recognizing complex patterns and providing quantitative assessment for imaging data, showing high potential to assist physicians in acquiring more accurate and reproducible results. In this article, we will provide a general understanding of AI, machine learning (ML) and deep learning (DL) technologies; We then review the rapidly growing applications of AI-especially DL technology in the field of US-based on the following anatomical regions: thyroid, breast, abdomen and pelvis, obstetrics heart and blood vessels, musculoskeletal system and other organs by covering image quality control, anatomy localization, object detection, lesion segmentation, and computer-aided diagnosis and prognosis evaluation; Finally, we offer our perspective on the challenges and opportunities for the clinical practice of biomedical AI systems in US.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clnical Research Center of Interventional Medicine, Shanghai, 200072, PR China
| | - Liang Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Wen-Wen Yue
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clnical Research Center of Interventional Medicine, Shanghai, 200072, PR China.
| | - Hui-Xiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clnical Research Center of Interventional Medicine, Shanghai, 200072, PR China.
| |
Collapse
|
47
|
Xia Q, Cheng Y, Hu J, Huang J, Yu Y, Xie H, Wang J. Differential diagnosis of breast cancer assisted by S-Detect artificial intelligence system. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3680-3689. [PMID: 34198406 DOI: 10.3934/mbe.2021184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Objective Traditional breast ultrasound relies too much on the operation skills of diagnostic doctors, and the repeatability in different doctors was low. This study aimed to evaluate the assistant diagnostic value of S-Detect artificial intelligence (AI) system in differentiating benign from malignant breast masses. Methods The ultrasound images of 40 patients who underwent ultrasound examination in our hospital were collected. The conventional ultrasound images, elastic images, and S-Detect mode of breast lesions were analyzed. The breast imaging reporting and data system recommended by the American Society of Radiology (BI-RADS) classification for each breast mass was evaluated both by the doctor and AI. The receiver operator characteristics (ROC) curves were drawn to compare the diagnostic efficiency. Result Among the 40 lesions, 16 were benign, and 24 were malignant. The S-Detect AI system had a high diagnostic efficiency for malignant mass, with sensitivity, specificity, and accuracy of 95.8%, 93.8%, and 89.6%. The accuracy of AI was higher than the elastic image and then than the conventional gray-scale image. With the assistance of the S-Detect AI system, the accuracy of BI-RADS classification was improved significantly. Conclusion The S-Detect AI system will enhance breast cancer diagnostic accuracy and improve ultrasound examination quality.
Collapse
Affiliation(s)
- Qun Xia
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| | - Yangmei Cheng
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| | - Jinhua Hu
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| | - Juxia Huang
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| | - Yi Yu
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| | - Hongjuan Xie
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| | - Jun Wang
- Department of Ultrasound, Anqing First People's Hospital Affiliated to Anhui Medical University, Anhui 246004, China
| |
Collapse
|
48
|
Kim SY, Choi Y, Kim EK, Han BK, Yoon JH, Choi JS, Chang JM. Deep learning-based computer-aided diagnosis in screening breast ultrasound to reduce false-positive diagnoses. Sci Rep 2021; 11:395. [PMID: 33432076 PMCID: PMC7801712 DOI: 10.1038/s41598-020-79880-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
A major limitation of screening breast ultrasound (US) is a substantial number of false-positive biopsy. This study aimed to develop a deep learning-based computer-aided diagnosis (DL-CAD)-based diagnostic model to improve the differential diagnosis of screening US-detected breast masses and reduce false-positive diagnoses. In this multicenter retrospective study, a diagnostic model was developed based on US images combined with information obtained from the DL-CAD software for patients with breast masses detected using screening US; the data were obtained from two hospitals (development set: 299 imaging studies in 2015). Quantitative morphologic features were obtained from the DL-CAD software, and the clinical findings were collected. Multivariable logistic regression analysis was performed to establish a DL-CAD-based nomogram, and the model was externally validated using data collected from 164 imaging studies conducted between 2018 and 2019 at another hospital. Among the quantitative morphologic features extracted from DL-CAD, a higher irregular shape score (P = .018) and lower parallel orientation score (P = .007) were associated with malignancy. The nomogram incorporating the DL-CAD-based quantitative features, radiologists' Breast Imaging Reporting and Data Systems (BI-RADS) final assessment (P = .014), and patient age (P < .001) exhibited good discrimination in both the development and validation cohorts (area under the receiver operating characteristic curve, 0.89 and 0.87). Compared with the radiologists' BI-RADS final assessment, the DL-CAD-based nomogram lowered the false-positive rate (68% vs. 31%, P < .001 in the development cohort; 97% vs. 45% P < .001 in the validation cohort) without affecting the sensitivity (98% vs. 93%, P = .317 in the development cohort; each 100% in the validation cohort). In conclusion, the proposed model showed good performance for differentiating screening US-detected breast masses, thus demonstrating a potential to reduce unnecessary biopsies.
Collapse
Affiliation(s)
- Soo -Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yunhee Choi
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun -Kyung Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boo-Kyung Han
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Yoon
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Soo Choi
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
49
|
Niu S, Huang J, Li J, Liu X, Wang D, Zhang R, Wang Y, Shen H, Qi M, Xiao Y, Guan M, Liu H, Li D, Liu F, Wang X, Xiong Y, Gao S, Wang X, Zhu J. Application of ultrasound artificial intelligence in the differential diagnosis between benign and malignant breast lesions of BI-RADS 4A. BMC Cancer 2020; 20:959. [PMID: 33008320 PMCID: PMC7532640 DOI: 10.1186/s12885-020-07413-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The classification of Breast Imaging Reporting and Data System 4A (BI-RADS 4A) lesions is mostly based on the personal experience of doctors and lacks specific and clear classification standards. The development of artificial intelligence (AI) provides a new method for BI-RADS categorisation. We analysed the ultrasonic morphological and texture characteristics of BI-RADS 4A benign and malignant lesions using AI, and these ultrasonic characteristics of BI-RADS 4A benign and malignant lesions were compared to examine the value of AI in the differential diagnosis of BI-RADS 4A benign and malignant lesions. METHODS A total of 206 lesions of BI-RADS 4A examined using ultrasonography were analysed retrospectively, including 174 benign lesions and 32 malignant lesions. All of the lesions were contoured manually, and the ultrasonic morphological and texture features of the lesions, such as circularity, height-to-width ratio, margin spicules, margin coarseness, margin indistinctness, margin lobulation, energy, entropy, grey mean, internal calcification and angle between the long axis of the lesion and skin, were calculated using grey level gradient co-occurrence matrix analysis. Differences between benign and malignant lesions of BI-RADS 4A were analysed. RESULTS Significant differences in margin lobulation, entropy, internal calcification and ALS were noted between the benign group and malignant group (P = 0.013, 0.045, 0.045, and 0.002, respectively). The malignant group had more margin lobulations and lower entropy compared with the benign group, and the benign group had more internal calcifications and a greater angle between the long axis of the lesion and skin compared with the malignant group. No significant differences in circularity, height-to-width ratio, margin spicules, margin coarseness, margin indistinctness, energy, and grey mean were noted between benign and malignant lesions. CONCLUSIONS Compared with the naked eye, AI can reveal more subtle differences between benign and malignant BI-RADS 4A lesions. These results remind us carefully observation of the margin and the internal echo is of great significance. With the help of morphological and texture information provided by AI, doctors can make a more accurate judgment on such atypical benign and malignant lesions.
Collapse
Affiliation(s)
- Sihua Niu
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Jianhua Huang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang Province, China
| | - Jia Li
- Department of Ultrasound, Southeast University Zhongda Hospital, Nanjing, 210009, Jiangsu Province, China
| | - Xueling Liu
- Department of Ultrasound, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Dan Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Ruifang Zhang
- Department of Ultrasound, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, Henan Province, China
| | - Yingyan Wang
- Department of Ultrasound, Southeast University Zhongda Hospital, Nanjing, 210009, Jiangsu Province, China
| | - Huiming Shen
- Department of Ultrasound, Southeast University Zhongda Hospital, Nanjing, 210009, Jiangsu Province, China
| | - Min Qi
- Department of Ultrasound, Southeast University Zhongda Hospital, Nanjing, 210009, Jiangsu Province, China
| | - Yi Xiao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang Province, China
| | - Mengyao Guan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang Province, China
| | - Haiyan Liu
- Department of Ultrasound, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, Henan Province, China
| | - Diancheng Li
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Feifei Liu
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Xiuming Wang
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Xiong
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Siqi Gao
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Xue Wang
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China
| | - Jiaan Zhu
- Department of Ultrasound, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
50
|
Xiao M, Zhao C, Li J, Zhang J, Liu H, Wang M, Ouyang Y, Zhang Y, Jiang Y, Zhu Q. Diagnostic Value of Breast Lesions Between Deep Learning-Based Computer-Aided Diagnosis System and Experienced Radiologists: Comparison the Performance Between Symptomatic and Asymptomatic Patients. Front Oncol 2020; 10:1070. [PMID: 32733799 PMCID: PMC7358588 DOI: 10.3389/fonc.2020.01070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose: The purpose of this study was to compare the diagnostic performance of breast lesions between deep learning-based computer-aided diagnosis (deep learning-based CAD) system and experienced radiologists and to compare the performance between symptomatic and asymptomatic patients. Methods: From January to December 2018, a total of 451 breast lesions in 389 consecutive patients were examined (mean age 46.86 ± 13.03 years, range 19-84 years) by both ultrasound and deep learning-based CAD system, all of which were biopsied, and the pathological results were obtained. The lesions were diagnosed by two experienced radiologists according to the fifth edition Breast Imaging Reporting and Data System (BI-RADS). The final deep learning-based CAD assessments were dichotomized as possibly benign or possibly malignant. The diagnostic performances of the radiologists and deep learning-based CAD were calculated and compared for asymptomatic patients and symptomatic patients. Results: There were 206 asymptomatic screening patients with 235 lesions (mean age 45.06 ± 10.90 years, range 21-73 years) and 183 symptomatic patients with 216 lesions (mean age 50.03 ± 14.97 years, range 19-84 years). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and area under the receiver operating characteristic curve (AUC) of the deep learning-based CAD in asymptomatic patients were 93.8, 83.9, 75.0, 96.3, 87.2, and 0.89%, respectively. In asymptomatic patients, the specificity (83.9 vs. 66.5%, p < 0.001), PPV (75.0 vs. 59.4%, p = 0.013), accuracy (87.2 vs. 76.2%, p = 0.002) and AUC (0.89 to 0.81, p = 0.0013) of CAD were all significantly higher than those of the experienced radiologists. The sensitivity (93.8 vs. 80.0%), specificity (83.9 vs. 61.8%,), accuracy (87.2 vs. 73.6%) and AUC (0.89 vs. 0.71) of CAD were all higher for asymptomatic patients than for symptomatic patients. If the BI-RADS 4a lesions diagnosed by the radiologists in asymptomatic patients were downgraded to BI-RADS 3 according to the CAD, then 54.8% (23/42) of the lesions would avoid biopsy without missing the malignancy. Conclusion: The deep learning-based CAD system had better performance in asymptomatic patients than in symptomatic patients and could be a promising complementary tool to ultrasound for increasing diagnostic specificity and avoiding unnecessary biopsies in asymptomatic screening patients.
Collapse
Affiliation(s)
- Mengsu Xiao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Chenyang Zhao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Jianchu Li
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Jing Zhang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - He Liu
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Ming Wang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Yunshu Ouyang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Yixiu Zhang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Qingli Zhu
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|