1
|
Whitehead CA, Fang H, Su H, Morokoff AP, Kaye AH, Hanssen E, Nowell CJ, Drummond KJ, Greening DW, Vella LJ, Mantamadiotis T, Stylli SS. Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner. Cell Oncol (Dordr) 2023; 46:909-931. [PMID: 37014551 PMCID: PMC10356899 DOI: 10.1007/s13402-023-00786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Huaqi Su
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Microscopy Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Vella
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia.
| |
Collapse
|
2
|
Asih PR, Poljak A, Kassiou M, Ke YD, Ittner LM. Differential mitochondrial protein interaction profile between human translocator protein and its A147T polymorphism variant. PLoS One 2022; 17:e0254296. [PMID: 35522669 PMCID: PMC9075623 DOI: 10.1371/journal.pone.0254296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO) has been implicated in mitochondrial transmembrane cholesterol transport, brain inflammation, and other mitochondrial functions. It is upregulated in glial cells during neuroinflammation in Alzheimer’s disease. High affinity TSPO imaging radioligands are utilized to visualize neuroinflammation. However, this is hampered by the common A147T polymorphism which compromises ligand binding. Furthermore, this polymorphism has been linked to increased risk of neuropsychiatric disorders, and possibly reduces TSPO protein stability. Here, we used immunoprecipitation coupled to mass-spectrometry (IP-MS) to establish a mitochondrial protein binding profile of wild-type (WT) TSPO and the A147T polymorphism variant. Using mitochondria from human glial cells expressing either WT or A147T TSPO, we identified 30 WT TSPO binding partners, yet only 23 for A147T TSPO. Confirming that A147T polymorphism of the TSPO might confer loss of function, we found that one of the identified interactors of WT TSPO, 14-3-3 theta (YWHAQ), a protein involved in regulating mitochondrial membrane proteins, interacts much less with A147T TSPO. Our data presents a network of mitochondrial interactions of TSPO and its A147T polymorphism variant in human glial cells and indicate functional relevance of A147T in mitochondrial protein networks.
Collapse
Affiliation(s)
- Prita R. Asih
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Yazi D. Ke
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M. Ittner
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
3
|
Katt WP, Aplin C, Cerione RA. Exploring the Role of Transglutaminase in Patients with Glioblastoma: Current Perspectives. Onco Targets Ther 2022; 15:277-290. [PMID: 35340676 PMCID: PMC8943831 DOI: 10.2147/ott.s329262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (tTG) is a rather unique GTP-binding/protein crosslinking enzyme that has been shown to play important roles in a number of cellular processes that impact both normal physiology and disease states. This is especially the case in the context of aggressive brain tumors, such as glioblastoma. The diverse roles played by tTG in cancer survival and progression have led to significant interest in recent years in using tTG as a therapeutic target. In this review, we provide a brief overview of the transglutaminase family, and then discuss the primary biochemical activities exhibited by tTG with an emphasis on the role it plays in glioblastoma progression. Finally, we consider current approaches to target tTG which might eventually have clinical impact.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA,Correspondence: Richard A Cerione, Tel +1 607-253-3650, Email
| |
Collapse
|
4
|
Sahin Z, Biltekin SN, Ozansoy M, Hemiş B, Ozansoy MB, Yurttaş L, Berk B, Demirayak Ş. Synthesis and
in vitro
Antitumor Activities of Novel Thioamide Substituted Piperazinyl‐1,2,
4‐Triazines. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zafer Sahin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| | - Sevde Nur Biltekin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Microbiology Istanbul Turkey
- Institute of Science Istanbul University Istanbul Turkey
| | - Mehmet Ozansoy
- Bahçeşehir University, School of Medicine, Department of Physiology Istanbul Turkey
| | - Bervis Hemiş
- Bahçeşehir University, School of Medicine Istanbul Turkey
| | | | - Leyla Yurttaş
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry Eskisehir Turkey
| | - Barkin Berk
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| | - Şeref Demirayak
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| |
Collapse
|
5
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
6
|
Puxeddu M, Shen H, Bai R, Coluccia A, Bufano M, Nalli M, Sebastiani J, Brancaccio D, Da Pozzo E, Tremolanti C, Martini C, Orlando V, Biagioni S, Sinicropi MS, Ceramella J, Iacopetta D, Coluccia AML, Hamel E, Liu T, Silvestri R, La Regina G. Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. Eur J Med Chem 2021; 221:113532. [PMID: 34052717 DOI: 10.1016/j.ejmech.2021.113532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
Long-term survivors of glioblastoma multiforme (GBM) are at high risk of developing second primary neoplasms, including leukemia. For these patients, the use of classic tyrosine kinase inhibitors (TKIs), such as imatinib mesylate, is strongly discouraged, since this treatment causes a tremendous increase of tumor and stem cell migration and invasion. We aimed to develop agents useful for the treatment of patients with GBM and chronic myeloid leukemia (CML) using an alternative mechanism of action from the TKIs, specifically based on the inhibition of tubulin polymerization. Compounds 7 and 25, as planned, not only inhibited tubulin polymerization, but also inhibited the proliferation of both GMB and CML cells, including those expressing the T315I mutation, at nanomolar concentrations. In in vivo experiments in BALB/cnu/nu mice injected subcutaneously with U87MG cells, in vivo, 7 significantly inhibited GBM cancer cell proliferation, in vivo tumorigenesis, and tumor growth, tumorigenesis and angiogenesis. Compound 7 was found to block human topoisomerase II (hTopoII) selectively and completely, at a concentration of 100 μM.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Hongliang Shen
- Department of Urology, Capital Medical University Beijing Friendship Hospital, Beijing, 100050, China
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples"Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Viviana Orlando
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | | | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Te Liu
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100, Lecce, Italy; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
7
|
Hsieh YH, Tsai JP, Yu CL, Lee CC, Hsu JC, Chen JC. Overexpression of Lipocalin-2 Inhibits Proliferation and Invasiveness of Human Glioblastoma Multiforme Cells by Activating ERK Targeting Cathepsin D Expression. BIOLOGY 2021; 10:biology10050390. [PMID: 34062746 PMCID: PMC8147321 DOI: 10.3390/biology10050390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Lipocalin-2 (LCN2) exhibits pro- and anti-carcinogenic effects in several cancers, but its role in the progression of glioblastoma multiforme (GBM) remains poorly understood. We observed that the overexpression of LCN2 inhibits GBM cell proliferation and invasion via activation of ERK-induced CTSD expression. LCN2 overexpression may be a treatment strategy and prognostic marker for GBM. Abstract Lipocalin-2 (LCN2) exhibits pro- and anti-carcinogenic effects in several cancers, but its role in the progression of glioblastoma multiforme (GBM) remains unclear. This study aims to elucidate the effect of LCN2 in human GBM cell, and the mechanism underlying its effects on GBM malignant progression. We observed that LCN2 expression was significantly lower in GBM than in normal tissues and was associated with poorer GBM patient survival. LCN2-overexpressing GBM cells showed significantly reduced proliferation and migration/invasion abilities. Human protease antibody array analysis showed that the expression of cathepsin D (CTSD) protein and mRNA was lower in LCN2-overexpressing GBM cells than in controls. Higher CTSD expression was observed in GBM tumors than in normal tissues, and higher CTSD expression was associated with poorer overall and disease-free survival. LCN2-overexpressing GBM cells exhibited increased ERK phosphorylation. Treatment of these cells with a MEK inhibitor (U0126) restored CTSD expression, cell migration, and cell invasiveness. In conclusion, LCN2 might be serving as a prognostic marker and promising anti-proliferative and anti-metastatic target for treating GBM.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (C.-L.Y.); (J.-C.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jen-Pi Tsai
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan; (J.-P.T.); (C.-C.L.)
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Chen-Lin Yu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (C.-L.Y.); (J.-C.H.)
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan; (J.-P.T.); (C.-C.L.)
| | - Jen-Chieh Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (C.-L.Y.); (J.-C.H.)
| | - Jin-Cherng Chen
- School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Wu J, Zhang J, Wei J, Zhao Y, Gao Y. Urinary biomarker discovery in gliomas using mass spectrometry-based clinical proteomics. Chin Neurosurg J 2020; 6:11. [PMID: 32922940 PMCID: PMC7398313 DOI: 10.1186/s41016-020-00190-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Gliomas are the most common primary malignant brain tumors and have a poor prognosis. Early detection of gliomas is crucial to improve patient outcomes. Urine accumulates systematic body changes and thus serves as an excellent early biomarker source. Methods At the biomarker discovery phase, we performed a self-controlled proteomics analysis by comparing urine samples collected from five glioma patients at the time of tumor diagnosis and after surgical removal of the tumor. At the biomarker validation phase, we further validated some promising proteins using parallel reaction monitoring (PRM)-based targeted proteomics in another cohort, including glioma, meningioma, and moyamoya disease patients as well as healthy controls. Results Using label-free proteome quantitation (LFQ), we identified twenty-seven urinary proteins that were significantly changed after tumor resection, many of which have been previously associated with gliomas. The functions of these proteins were significantly enriched in the autophagy and angiogenesis, which are associated with glioma development. After targeted proteomics validation, we identified a biomarker panel (AACT, TSP4, MDHM, CALR, LEG1, and AHSG) with an area under the curve (AUC) value of 0.958 for the detection of gliomas. Interestingly, AACT, LEG1, and AHSG are also potential cerebrospinal fluid or blood biomarkers of gliomas. Conclusions Using LFQ and PRM proteome quantification, we identified candidate urinary protein biomarkers with the potential to detect gliomas. This study will also provide clues for future biomarker studies involving brain diseases.
Collapse
Affiliation(s)
- Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Jun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, 102206 China
| | - Jing Wei
- Department of Biochemistry, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, School of Life Sciences, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875 China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, 102206 China.,Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing, 100050 China
| | - Youhe Gao
- Department of Biochemistry, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, School of Life Sciences, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875 China
| |
Collapse
|
9
|
Turkez H, Nóbrega FRD, Ozdemir O, Bezerra Filho CDSM, Almeida RND, Tejera E, Perez-Castillo Y, Sousa DPD. NFBTA: A Potent Cytotoxic Agent against Glioblastoma. Molecules 2019; 24:E2411. [PMID: 31261921 PMCID: PMC6651752 DOI: 10.3390/molecules24132411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Piplartine (PPL), also known as piperlongumine, is a biologically active alkaloid extracted from the Piper genus which has been found to have highly effective anticancer activity against several tumor cell lines. This study investigates in detail the antitumoral potential of a PPL analogue; (E)-N-(4-fluorobenzyl)-3-(3,4,5-trimethoxyphenyl) acrylamide (NFBTA). The anticancer potential of NFBTA on the glioblastoma multiforme (GBM) cell line (U87MG) was determined by 3-(4,5-dimethyl-2-thia-zolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) release analysis, and the selectivity index (SI) was calculated. To detect cell apoptosis, fluorescent staining via flow cytometry and Hoechst 33258 staining were performed. Oxidative alterations were assessed via colorimetric measurement methods. Alterations in expressions of key genes related to carcinogenesis were determined. Additionally, in terms of NFBTA cytotoxic, oxidative, and genotoxic damage potential, the biosafety of this novel agent was evaluated in cultured human whole blood cells. Cell viability analyses revealed that NFBTA exhibited strong cytotoxic activity in cultured U87MG cells, with high selectivity and inhibitory activity in apoptotic processes, as well as potential for altering the principal molecular genetic responses in U87MG cell growth. Molecular docking studies strongly suggested a plausible anti-proliferative mechanism for NBFTA. The results of the experimental in vitro human glioblastoma model and computational approach revealed promising cytotoxic activity for NFBTA, helping to orient further studies evaluating its antitumor profile for safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo, Italy
| | - Flávio Rogério da Nóbrega
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB 58051-085, Brazil
| | - Ozlem Ozdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
| | | | | | - Eduardo Tejera
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170125, Ecuador
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB 58051-085, Brazil.
| |
Collapse
|
10
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
11
|
Park YE, Yeom J, Kim Y, Lee HJ, Han KC, Lee ST, Lee C, Lee JE. Identification of Plasma Membrane Glycoproteins Specific to Human Glioblastoma Multiforme Cells Using Lectin Arrays and LC-MS/MS. Proteomics 2017; 18. [PMID: 29136334 DOI: 10.1002/pmic.201700302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/14/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low- and high-grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low-grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma-specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC-MS/MS. The identified proteins from the two cell types were quantified using label-free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin-based immunosorbent assay.
Collapse
Affiliation(s)
- Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - YoungSoo Kim
- Integrated Science and Engineering Division, Department of Pharmacy, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Cheol Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
12
|
Bi B, Li F, Guo J, Li C, Jing R, Lv X, Chen X, Wang F, Azadzoi KM, Wang L, Liu Y, Yang JH. Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy. Neuroscience 2017; 351:84-95. [PMID: 28341197 DOI: 10.1016/j.neuroscience.2017.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022]
Abstract
Glioma, one of the most common cancers in human, is classified to different grades according to the degrees of malignancy. Glioblastoma (GBM) is known to be the most malignant (Grade IV) whereas low-grade astrocytoma (LGA, Grade II) is relatively benign. The mechanism underlying the pathogenesis and progression of glioma malignancy remains unclear. Here we report a quantitative proteomic study to elucidate the differences between GBM and LGA using liquid chromatography and tandem mass spectrometry followed by label-free quantification. A total of 136 proteins were differentially expressed in GBM for at least five folds in comparison with LGA. Ontological analysis revealed a close correlation between GBM-associated proteins and RNA processing. Interaction network analysis indicated that the GBM-associated proteins in the RNA processing were linked to crucial signaling transduction modulators including epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 1 (STAT1), and mitogen-activated protein kinase 1 (MAPK1), which were further connected to the proteins important for neuronal structural integrity, development and functions. Upregulation of 40S ribosomal protein S5 (RPS5), Ferritin Heavy chain (FTH1) and STAT1, and downregulation of tenascin R (TNR) were validated as representatives by immune assays. In summary, we revealed a panel of GBM-associated proteins and the important modulators centered at the RNA-processing network in glioma malignancy that may become novel biomarkers and help elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Baibin Bi
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Feng Li
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Jisheng Guo
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Cuiling Li
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Ruirui Jing
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Xin Lv
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Xinjun Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Fengqin Wang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Kazem M Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA.
| | - Lin Wang
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Yuguang Liu
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Jing-Hua Yang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA.
| |
Collapse
|
13
|
Daniele S, Sestito S, Pietrobono D, Giacomelli C, Chiellini G, Di Maio D, Marinelli L, Novellino E, Martini C, Rapposelli S. Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells. ACS Chem Neurosci 2017; 8:100-114. [PMID: 27797168 DOI: 10.1021/acschemneuro.6b00251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Di Maio
- Scuola Normale Superiore, Piazza
dei Cavalieri 7, I-56126 Pisa, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | | |
Collapse
|
14
|
Proteomic analysis of β-asarone induced cytotoxicity in human glioblastoma U251 cells. J Pharm Biomed Anal 2015; 115:292-9. [DOI: 10.1016/j.jpba.2015.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/22/2023]
|
15
|
Evaluation of TAZ expression and its effect on tumor invasion and metastasis in human glioma. ASIAN PAC J TROP MED 2014; 7:757-60. [DOI: 10.1016/s1995-7645(14)60131-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
|