1
|
Suzuki J. Exercise performance in well-trained male mice is promoted by intermittent hyperoxia via improving metabolic properties and capillary profiles. Physiol Rep 2025; 13:e70341. [PMID: 40260844 PMCID: PMC12012744 DOI: 10.14814/phy2.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Although training under intermittent hyperoxia has been shown to improve exercise performance, its effect on well-trained mice remains undetermined. Voluntary run for 7 weeks increased maximal work values by 7.4-fold (Bayes factor, BF ≥ 30). Subsequently, mice underwent 4 weeks of treadmill training with (INT) or without (ET) intermittent hyperoxia (30% O2). INT training significantly increased maximal exercise capacity compared to ET (BF ≥ 30). INT group exhibited significantly higher levels of cytochrome-c-oxidase (COX) in soleus muscle (SOL, BF ≥ 3.0). Additionally, INT enhanced 3-hydroxyacyl-CoA-dehydrogenase (HAD) levels in white gastrocnemius (Gw) and plantaris (PL) muscles compared to ET (BF ≥ 3.0). Pyruvate dehydrogenase complex (PDHc) levels were significantly higher in the INT group compared to the ET group in red gastrocnemius and left ventricle (BF ≥ 30). Capillary-to-fiber ratio (C/F) was significantly higher in the INT group than in the ET group in SOL and PL muscles (BF ≥ 3.0). COX, PDHc, capillary density (CD), and catalase protein values in SOL, HAD, and C/F levels in Gw and PL, as well as CD values in Gw showed a significant positive correlation with maximal work values using data from ET and INT groups (p < 0.05). These findings suggest that training under intermittent hyperoxia promotes endurance performance probably by improving metabolic enzyme levels and capillary profiles in well-trained mice.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationMidorigaoka, IwamizawaHokkaidoJapan
| |
Collapse
|
2
|
Voss AC, Chambers TL, Gries KJ, Jemiolo B, Raue U, Minchev K, Begue G, Lee GA, Trappe TA, Trappe SW. Exercise microdosing for skeletal muscle health applications to spaceflight. J Appl Physiol (1985) 2024; 136:1040-1052. [PMID: 38205550 PMCID: PMC11365549 DOI: 10.1152/japplphysiol.00491.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Findings from a recent 70-day bedrest investigation suggested intermittent exercise testing in the control group may have served as a partial countermeasure for skeletal muscle size, function, and fiber-type shifts. The purpose of the current study was to investigate the metabolic and skeletal muscle molecular responses to the testing protocols. Eight males (29 ± 2 yr) completed muscle power (6 × 4 s; peak muscle power: 1,369 ± 86 W) and V̇o2max (13 ± 1 min; 3.2 ± 0.2 L/min) tests on specially designed supine cycle ergometers during two separate trials. Blood catecholamines and lactate were measured pre-, immediately post-, and 4-h postexercise. Muscle homogenate and muscle fiber-type-specific [myosin heavy chain (MHC) I and MHC IIa] mRNA levels of exercise markers (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4) and MHC I, IIa, and IIx were measured from vastus lateralis muscle biopsies obtained pre- and 4-h postexercise. The muscle power test altered (P ≤ 0.05) norepinephrine (+124%), epinephrine (+145%), lactate (+300%), and muscle homogenate mRNA (IκBα, myogenin, MuRF-1, RRAD, Fn14). The V̇o2max test altered (P ≤ 0.05) norepinephrine (+1,394%), epinephrine (+1,412%), lactate (+736%), and muscle homogenate mRNA (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4). In general, both tests influenced MHC IIa muscle fibers more than MHC I with respect to the number of genes that responded and the magnitude of response. Both tests also influenced MHC mRNA expression in a muscle fiber-type-specific manner. These findings provide unique insights into the adaptive response of skeletal muscle to small doses of exercise and could help shape exercise dosing for astronauts and Earth-based individuals.NEW & NOTEWORTHY Declines in skeletal muscle health are a concern for astronauts on long-duration spaceflights. The current findings add to the growing body of exercise countermeasures data, suggesting that small doses of specific exercise can be beneficial for certain aspects of skeletal muscle health. This information can be used in conjunction with other components of existing exercise programs for astronauts and might translate to other areas focused on skeletal muscle health (e.g., sports medicine, rehabilitation, aging).
Collapse
Affiliation(s)
- Adam C Voss
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
3
|
Chambers TL, Stroh AM, Chavez C, Brandt AR, Claiborne A, Fountain WA, Gries KJ, Jones AM, Kuszmaul DJ, Lee GA, Lester BE, Lynch CE, Minchev K, Montenegro CF, Naruse M, Raue U, Trappe TA, Trappe S. Multitissue responses to exercise: a MoTrPAC feasibility study. J Appl Physiol (1985) 2023; 135:302-315. [PMID: 37318985 PMCID: PMC10393343 DOI: 10.1152/japplphysiol.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
We assessed the feasibility of the Molecular Transducers of Physical Activity Consortium (MoTrPAC) human adult clinical exercise protocols, while also documenting select cardiovascular, metabolic, and molecular responses to these protocols. After phenotyping and familiarization sessions, 20 subjects (25 ± 2 yr, 12 M, 8 W) completed an endurance exercise bout (n = 8, 40 min cycling at 70% V̇o2max), a resistance exercise bout (n = 6, ∼45 min, 3 sets of ∼10 repetition maximum, 8 exercises), or a resting control period (n = 6, 40 min rest). Blood samples were taken before, during, and after (10 min, 2 h, and 3.5 h) exercise or rest for levels of catecholamines, cortisol, glucagon, insulin, glucose, free fatty acids, and lactate. Heart rate was recorded throughout exercise (or rest). Skeletal muscle (vastus lateralis) and adipose (periumbilical) biopsies were taken before and ∼4 h following exercise or rest for mRNA levels of genes related to energy metabolism, growth, angiogenesis, and circadian processes. Coordination of the timing of procedural components (e.g., local anesthetic delivery, biopsy incisions, tumescent delivery, intravenous line flushes, sample collection and processing, exercise transitions, and team dynamics) was reasonable to orchestrate while considering subject burden and scientific objectives. The cardiovascular and metabolic alterations reflected a dynamic and unique response to endurance and resistance exercise, whereas skeletal muscle was transcriptionally more responsive than adipose 4 h postexercise. In summary, the current report provides the first evidence of protocol execution and feasibility of key components of the MoTrPAC human adult clinical exercise protocols. Scientists should consider designing exercise studies in various populations to interface with the MoTrPAC protocols and DataHub.NEW & NOTEWORTHY This study highlights the feasibility of key aspects of the MoTrPAC adult human clinical protocols. This initial preview of what can be expected from acute exercise trial data from MoTrPAC provides an impetus for scientists to design exercise studies to interlace with the rich phenotypic and -omics data that will populate the MoTrPAC DataHub at the completion of the parent protocol.
Collapse
Affiliation(s)
- Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Andrew M Stroh
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Clarisa Chavez
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Anna R Brandt
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alex Claiborne
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - William A Fountain
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Andrew M Jones
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Dillon J Kuszmaul
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bridget E Lester
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | | | - Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
4
|
Chiang TL, Chen C, Lin YC, Chan SH, Wu HJ. Effect of Polarized Training on Cardiorespiratory Fitness of Untrained Healthy Young Adults: A Randomized Control Trial with Equal Training Impulse. J Sports Sci Med 2023; 22:263-272. [PMID: 37293419 PMCID: PMC10244991 DOI: 10.52082/jssm.2023.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Abstract
To explore the effects of 8-week polarized training (POL), high-intensity interval training (HIIT), and threshold training (THR) interventions on the cardiorespiratory fitness (CRF) of untrained healthy young adults. This study recruited 36 young adults and randomly assigned them to POL, HIIT, THR, or control (CG) groups to undergo an 8-week training intervention. The training impulse applied to all three intervention groups was identical. The training intensity was divided into Zone 1, 2, and 3 (Z1, Z2 and Z3) on the basis of the ventilatory thresholds (VT). The weekly training intensity distribution for POL was 75% of Z1 and 25% of Z3; HIIT was 100% of Z3 and THR was 50% of Z1 and 50% of Z2. Each group underwent Bruce protocol testing and supramaximal testing before, during, and after the intervention; relevant CRF parameters were assessed. 8 weeks of POL and HIIT significantly increased VT2 (p < 0.05); 8 weeks of POL, HIIT, THR and significantly increased VO2max and TTE (p < 0.05). The effect size of POL in relation to VO2max and TTE improvements was greater than that of HIIT and THR (g = 2.67 vs. 1.26 and 1.49; g = 2.75 vs. 2.05 and 1.60). Aerobic training models with different intensity distributions have different time effects on improving CRF. Relative to HIIT and THR, POL improved more variables of CRF. Therefore, POL is a feasible aerobic training method for improving CRF.
Collapse
Affiliation(s)
- Tsung-Lin Chiang
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei City, Taiwan (R.O.C.)
| | - Chu Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan (R.O.C.)
| | - Yu-Chin Lin
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei City, Taiwan (R.O.C.)
| | - Shih-Hsuan Chan
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei City, Taiwan (R.O.C.)
| | - Huey-June Wu
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei City, Taiwan (R.O.C.)
| |
Collapse
|
5
|
Nava RC, McKenna Z, Fennel Z, Berkemeier Q, Ducharme J, de Castro Magalhães F, Amorim FT, Mermier C. Repeated sprint exercise in hypoxia stimulates HIF-1-dependent gene expression in skeletal muscle. Eur J Appl Physiol 2022; 122:1097-1107. [PMID: 35190865 DOI: 10.1007/s00421-022-04909-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Our aim was to determine the effect of repeated sprint exercise in hypoxia on HIF-1 and HIF-1-regulated genes involved in glycolysis, mitochondrial turnover and oxygen transport. We also determined whether genes upregulated by exercise in hypoxia were dependent on the activation of HIF-1 in an in vitro model of exercise in hypoxia. METHODS Eight endurance athletes performed bouts of repeated sprint exercise in control and hypoxic conditions. Skeletal muscle was sampled pre, post and 3 h post-exercise. HIF-1α protein and HIF1A, PDK1, GLUT4, VEGFA, BNIP3, PINK1 and PGC1A mRNA were measured. C2C12 myotubes were exposed to hypoxia and muscle contraction following treatment with a HIF-1α inhibitor to determine whether hypoxia-sensitive gene expression was dependent on HIF-1α. RESULTS Sprint exercise in hypoxia increased HIF-1α protein expression immediately post-exercise [fold change (FC) = 3.5 ± 2.0]. Gene expression of PDK1 (FC = 2.1 ± 1.2), BNIP3 (FC = 2.4 ± 1.4) and VEGFA (FC = 2.7 ± 1.7) increased 3 h post-exercise in hypoxia but not control. PGC1A mRNA increased 3 h post-exercise in control (FC = 5.16) and hypoxia (FC = 5.7 ± 4.1) but there was no difference between the trials. Results from the in vitro experiment showed that hypoxia plus contraction also increased PDK1, BNIP3, and VEGFA gene expression. These responses were inhibited when HIF-1 protein activity was suppressed. CONCLUSION Repeated sprint exercise in hypoxia upregulates some genes involved in glycolytic metabolism, mitochondrial turnover, and oxygen transport. HIF-1α is necessary for the expression of these genes in skeletal muscle cells.
Collapse
Affiliation(s)
- Roberto Carlos Nava
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA.
- Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Zachary McKenna
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Zachary Fennel
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Quint Berkemeier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jeremy Ducharme
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Flávio de Castro Magalhães
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Physical Education, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Mello-Silva BN, Protzen GV, Del Vecchio F. Inclusion of sprints during moderate-intensity continuous exercise enhances post-exercise fat oxidation in young males. Appl Physiol Nutr Metab 2021; 47:165-172. [PMID: 34637645 DOI: 10.1139/apnm-2021-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the physiological demand of including high-intensity efforts during continuous exercise, we designed a randomized crossover study, where 12 physically active young males executed three different exercises in random order: FATmax - continuous exercise at the highest fat oxidation zone (FATmax); 2min-130% - FATmax interspersed by a 2-min bout at 130% of the maximal oxygen uptake associated intensity (iV̇O2max); and 20s:10s-170% - FATmax interspersed by four 20-s bouts at 170%iV̇O2max interpolated by 10s of passive recovery. We measured oxygen uptake (V̇O2), blood lactate concentration ([LAC]), respiratory exchange rate (RER), fat and carbohydrate (CHO) oxidation. For statistical analyses, repeated measures ANOVA was applied. Although no differences were found for average V̇O2 or carbohydrate oxidation rate, the post-exercise fat oxidation rate was 37.5% and 50% higher during 2min-130% and 20s:10s-170%, respectively, compared to FATmax, which also presented lower values of RER during exercise compared to 2min-130% and 20s:10s-170% (p<0.001 in both), and higher values post-exercise (p=0.04 and p=0.002, respectively). The [LAC] was higher during exercise when high-intensity bouts were applied (p<0.001 for both) and higher post-exercise on the intermittent one compared to FATmax (p=0.016). The inclusion of high-intensity efforts during moderate-intensity continuous exercise promoted higher physiological demand and post-exercise fat oxidation. Novelty bullets • The inclusion of 2-min efforts modifies continuous exercise demands • Maximal efforts can increase post-exercise fat oxidation • 2-min maximal efforts, continuous or intermittent, presents similar demands.
Collapse
|
7
|
Burton HM, Wolfe AS, Vardarli E, Satiroglu R, Coyle EF. Background Inactivity Blunts Metabolic Adaptations to Intense Short-Term Training. Med Sci Sports Exerc 2021; 53:1937-1944. [PMID: 34398061 DOI: 10.1249/mss.0000000000002646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study determined if the level of background physical inactivity (steps per day) influences the acute and short-term adaptations to intense aerobic training. METHODS Sixteen untrained participants (23.6 ± 1.7 yr) completed intense (80%-90% V˙O2peak) short-term training (5 bouts of exercise over 9 d) while taking either 4767 ± 377 steps per day (n = 8; low step) or 16,048 ± 725 steps per day (n = 8; high step). At baseline and after 1 d of acute exercise and then after the short-term training (posttraining), resting metabolic responses to a high-fat meal (i.e., plasma triglyceride concentration and fat oxidation) were assessed during a 6-h high-fat tolerance test. In addition, responses during submaximal exercise were recorded both before and after training during 15 min of cycling (~79% of pretraining V˙O2peak). RESULTS High step displayed a reduced incremental area under the curve for postprandial plasma triglyceride concentrations by 31% after acute exercise and by 27% after short-term training compared with baseline (P < 0.05). This was accompanied by increased whole-body fat oxidation (24% and 19%; P < 0.05). Furthermore, stress during submaximal exercise as reflected by heart rate, blood lactate, and deoxygenated hemoglobin were all reduced in high step (P < 0.05), indicating classic training responses. Despite completing the same training regimen, low step showed no significant improvements in postprandial fat metabolism or any markers of stress during submaximal exercise after training (P > 0.05). However, the two groups showed a similar 7% increase in V˙O2peak (P < 0.05). CONCLUSION When completing an intense short-term exercise training program, decreasing daily background steps from 16,000 to approximately 5000 steps per day blunts some of the classic cardiometabolic adaptations to training. The blunting might be more pronounced regarding metabolic factors (i.e., fat oxidation and blood lactate concentration) compared with cardiovascular factors (i.e., V˙O2peak).
Collapse
Affiliation(s)
- Heath M Burton
- Human Performance Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX
| | | | | | | | | |
Collapse
|
8
|
Carneiro MAS, Oliveira Júnior GND, de Sousa JFR, Orsatti CL, Murta EFC, Michelin MA, Cyrino ES, Orsatti FL. Effect of whole-body resistance training at different load intensities on circulating inflammatory biomarkers, body fat, muscular strength, and physical performance in postmenopausal women. Appl Physiol Nutr Metab 2021; 46:925-933. [PMID: 34283660 DOI: 10.1139/apnm-2020-0746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The primary purpose of this study was to identify the impact of whole-body resistance training (RT) at different load intensities on adipokines, adhesion molecules, and extracellular heat shock proteins in postmenopausal women. As secondary purpose, we analyzed the impact of RT at different load intensities on body fat, muscular strength, and physical performance. Forty participants were randomized into lower-load intensity RT (LIRT, n = 20, 30-35 repetition maximum in the first set of each exercise) or higher-load intensity RT (HIRT, n = 20, 8-12 repetition maximum in the first set of each exercise). Adipokines (adiponectin and leptin), adhesion molecules (MCP-1 and ICAM-1), extracellular heat shock proteins (HO-1 and eHSP60), body fat, muscular strength (1RM), and physical performance [400-meter walking test (400-M) and 6-minute walking test (6MWT)] were analyzed at baseline and after 12-weeks RT. There was a significant time-by-group interaction for eHSP60 (P = 0.049) and 400-M (P = 0.003), indicating superiority of HIRT (d = 0.47 and 0.55). However, both groups similarly improved adiponectin, ICAM-1, HO-1, body fat, 1RM, and 6MWT (P < 0.05). Our study suggests that load intensity does not seem to determine the RT effect on several obesity-related pro-inflammatory and chemotactic compounds, body fat, 1RM, and 6MWT in postmenopausal women, although a greater improvement has been revealed for eHSP60 and 400-M in HIRT. Novelty: Higher-load intensity resistance training improves eHSP60 and 400-M in postmenopausal women. Resistance training improves the inflammatory profile, body fat, muscle strength, and 6MWT, regardless of load intensity.
Collapse
Affiliation(s)
- Marcelo A S Carneiro
- Applied Physiology, Nutrition and Exercise Research Group, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.,Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Paraná, Brazil
| | - Gersiel N de Oliveira Júnior
- Applied Physiology, Nutrition and Exercise Research Group, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Jairo F R de Sousa
- Applied Physiology, Nutrition and Exercise Research Group, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Claudio L Orsatti
- Applied Physiology, Nutrition and Exercise Research Group, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.,Department of Health Science, Oeste Paulista University - UNOESTE, Jaú, SP, Brazil
| | - Eddie F C Murta
- Research Institute of Oncology, Departament of Gynecology and Obstetrics, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Márcia A Michelin
- Research Institute of Oncology, Departament of Gynecology and Obstetrics, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Edilson S Cyrino
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Paraná, Brazil
| | - Fábio L Orsatti
- Applied Physiology, Nutrition and Exercise Research Group, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.,Department of Sport Sciences, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
9
|
Horner KM, Byrne NM, King NA. Effect of Combined Interval and Continuous Exercise Training on Gastric Emptying, Appetite, and Adaptive Responses in Men With Overweight and Obesity. Front Nutr 2021; 8:654902. [PMID: 34124120 PMCID: PMC8192796 DOI: 10.3389/fnut.2021.654902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background/Objectives: Characterizing compensatory and adaptive responses to exercise assists in understanding changes in energy balance and health outcomes with exercise interventions. This study investigated the effects of a short-term exercise intervention (combining high intensity interval (HII) and continuous exercise) on (1) gastric emptying, appetite and energy intake; and (2) other adaptive responses including cardiorespiratory fitness, in inactive men with overweight/obesity. Methods: Fifteen men (BMI: 29.7 ± 3.3 kg/m-2) completed a 4-wk supervised exercise intervention, consisting of 5 exercise sessions per week alternating between HII (30 s at 100% VO2max followed by 30 s recovery) and continuous (at 50% VO2max) training on a cycle ergometer, progressing from 30 to 45 min session duration. Gastric emptying (13C-octanoic acid breath test), appetite (visual analog scale), energy intake (ad libitum lunch meal), body composition (air displacement plethysmography), non-exercise activity (accelerometery) VO2max, blood pressure, and fasting concentrations of glucose, insulin, and ghrelin were measured before and after (≥48 h) the intervention. Results: Gastric emptying, glucose, insulin and ghrelin were unchanged, but energy intake at the ad libitum lunch test meal significantly increased at post-intervention (+171 ± 116 kcal, p < 0.01). Body weight (-0.9 ± 1.1 kg), waist circumference (-2.3 ± 3.5 cm) and percent body fat (-0.9 ± 1.1%) were modestly reduced (P < 0.05). VO2max increased (+4.4 ± 2.1 ml.kg.min-1) by 13% and systolic (-6.2 ± 8.4 mmHg) and diastolic (-5.8 ± 2.2 mmHg) blood pressure were significantly reduced (P ≤ 0.01 for all). Conclusions: Four weeks of exercise training did not alter gastric emptying, indicating gastric emptying may only adapt to a higher volume/longer duration of exercise or changes in other characteristics associated with regular exercise. The combination of HII and continuous exercise training had beneficial effects on body composition, cardiorespiratory fitness, and blood pressure and warrants further investigation in larger randomized controlled trials.
Collapse
Affiliation(s)
- Katy M. Horner
- School of Public Health, Physiotherapy and Sport Sciences, Institute for Sport and Health and Institute of Food and Health, University College Dublin, Dublin, Ireland
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nuala M. Byrne
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Neil A. King
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Suzuki J. Effects of hyperbaric environment on endurance and metabolism are exposure time-dependent in well-trained mice. Physiol Rep 2021; 9:e14780. [PMID: 33650813 PMCID: PMC7923584 DOI: 10.14814/phy2.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022] Open
Abstract
Hyperbaric exposure (1.3 atmospheres absolute with 20.9% O2 ) for 1 h a day was shown to improve exercise capacity. The present study was designed to reveal whether the daily exposure time affects exercise performance and metabolism in skeletal and cardiac muscles. Male mice in the training group were housed in a cage with a wheel activity device for 7 weeks from 5 weeks old. Trained mice were then subjected to hybrid training (HT, endurance exercise for 30 min followed by sprint interval exercise for 30 min). Hyperbaric exposure was applied following daily HT for 15 min (15HT), 30 min (30HT), or 60 min (60HT) for 4 weeks. In the endurance capacity test, maximal work values were significantly increased by 30HT and 60HT. In the left ventricle (LV), activity levels of 3-hydroxyacyl-CoA-dehydrogenase, citrate synthase, and carnitine palmitoyl transferase (CPT) 2 were significantly increased by 60HT. CPT2 activity levels were markedly increased by hyperbaric exposure in red gastrocnemius (Gr) and plantaris muscle (PL). Pyruvate dehydrogenase complex activity values in PL were enhanced more by 30HT and 60HT than by HT. Protein levels of N-terminal isoform of PGC1α (NT-PGC1α) protein were significantly enhanced in three hyperbaric exposed groups in Gr, but not in LV. These results indicate that hyperbaric exposure for 30 min or longer has beneficial effects on endurance, and 60-min exposure has the potential to further increase performance by facilitating fatty acid metabolism in skeletal and cardiac muscles in highly trained mice. NT-PGC1α may have important roles for these adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise PhysiologyHealth and Sports SciencesCourse of Sports EducationDepartment of EducationHokkaido University of EducationIwamizawaJapan
| |
Collapse
|
11
|
Skelly LE, Gillen JB, Frankish BP, MacInnis MJ, Godkin FE, Tarnopolsky MA, Murphy RM, Gibala MJ. Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. J Appl Physiol (1985) 2021; 130:1001-1014. [PMID: 33630680 DOI: 10.1152/japplphysiol.00862.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are limited and equivocal data regarding potential fiber type-specific differences in the human skeletal muscle response to sprint interval training (SIT), including how this compares with moderate-intensity continuous training (MICT). We examined mixed-muscle and fiber type-specific responses to a single session (study 1) and to 12 wk (study 2) of MICT and SIT using Western blot analysis. MICT consisted of 45 min of cycling at ∼70% of maximal heart rate, and SIT involved 3 × 20-s "all-out" sprints interspersed with 2 min of recovery. Changes in signaling proteins involved in mitochondrial biogenesis in mixed-muscle and pooled fiber samples were similar after acute MICT and SIT. This included increases in the ratios of phosphorylated to total acetyl-CoA carboxylase and p38 mitogen-activated protein kinase protein content (main effects, P < 0.05). Following training, mitochondrial content markers including the protein content of cytochrome c oxidase subunit IV and NADH:ubiquinone oxidoreductase subunit A9 were increased similarly in mixed-muscle and type IIa fibers (main effects, P < 0.05). In contrast, only MICT increased these markers of mitochondrial content in type I fibers (interactions, P < 0.05). MICT and SIT also similarly increased the content of mitochondrial fusion proteins optic atrophy 1 (OPA1) and mitofusin 2 in mixed-muscle, and OPA1 in pooled fiber samples (main effects, P < 0.02). In summary, acute MICT and SIT elicited similar fiber type-specific responses of signaling proteins involved in mitochondrial biogenesis, whereas 12 wk of training revealed differential responses of mitochondrial content markers in type I but not type IIa fibers.NEW & NOTEWORTHY We examined mixed-muscle and fiber type-specific responses to a single session and to 12 wk of moderate-intensity continuous training (MICT) and sprint interval training (SIT) in humans. Both interventions elicited generally similar responses, although the training-induced increases in type I fiber-specific markers of mitochondrial content were greater in MICT than in SIT. These findings advance our understanding of the potential role of fiber type-specific changes in determining the human skeletal muscle response to intermittent and continuous exercise.
Collapse
Affiliation(s)
- Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jenna B Gillen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| | - Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - F Elizabeth Godkin
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Almquist NW, Ellefsen S, Sandbakk Ø, Rønnestad BR. Effects of including sprints during prolonged cycling on hormonal and muscular responses and recovery in elite cyclists. Scand J Med Sci Sports 2020; 31:529-541. [PMID: 33113253 PMCID: PMC7984145 DOI: 10.1111/sms.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022]
Abstract
This study investigated the acute effects of including 30‐second sprints during prolonged low‐intensity cycling on muscular and hormonal responses and recovery in elite cyclists. Twelve male cyclists (VO2max, 73.4 ± 4.0 mL/kg/min) completed a randomized crossover protocol, wherein 4 hours of cycling at 50% of VO2max were performed with and without inclusion of three sets of 3 × 30 seconds maximal sprints (E&S vs E, work‐matched). Muscle biopsies (m. vastus lateralis) and blood were sampled at Pre, immediately after (Post) and 3 hours after (3 h) finalizing sessions. E&S led to greater increases in mRNA levels compared with E for markers of fat metabolism (PDK4, Δ‐Log2 fold change between E&S and E ± 95%CI Post; 2.1 ± 0.9, Δ3h; 1.3 ± 0.7) and angiogenesis (VEGFA, Δ3h; 0.3 ± 0.3), and greater changes in markers of muscle protein turnover (myostatin, ΔPost; −1.4 ± 1.2, Δ3h; −1.3 ± 1.3; MuRF1, ΔPost; 1.5 ± 1.2, all P < .05). E&S showed decreased mRNA levels for markers of ion transport at 3h (Na+‐K+ α1; −0.6 ± 0.6, CLC1; −1.0 ± 0.8 and NHE1; −0.3 ± 0.2, all P < .05) and blunted responses for a marker of mitochondrial biogenesis (PGC‐1α, Post; −0.3 ± 0.3, 3h; −0.4 ± 0.3, P < .05) compared with EE&S and E showed similar endocrine responses, with exceptions of GH and SHBG, where E&S displayed lower responses at Post (GH; −4.1 ± 3.2 μg/L, SHBG; −2.2 ± 1.9 nmol/L, P < .05). Both E&S and E demonstrated complete recovery in isokinetic knee extension torque 24 hours after exercise. In conclusion, we demonstrate E&S to be an effective exercise protocol for elite cyclists, which potentially leads to beneficial adaptations in skeletal muscle without impairing muscle recovery 24 hours after exercise.
Collapse
Affiliation(s)
- Nicki Winfield Almquist
- Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Center for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Ellefsen
- Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Øyvind Sandbakk
- Center for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R Rønnestad
- Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
13
|
Del Vecchio FB, Coswig VS, Cabistany LD, Orcy RB, Gentil P. Effects of exercise cessation on adipose tissue physiological markers related to fat regain: A systematic review. SAGE Open Med 2020; 8:2050312120936956. [PMID: 32655863 PMCID: PMC7331762 DOI: 10.1177/2050312120936956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Tissues usually super compensate during the period that follow physical exercise. Although this is widely accepted for muscle and glycogen, the compensatory effect is not usually applied to fat tissues. Notwithstanding, evidence for this has been present since the 1970s when it was first suggested that the increased lipogenic activity in response to training might be an adaptation that enables to restore an energy reserve that can be used in times of need. In this context, the present review aimed to summarize information about the effect of detraining on fat metabolism and the physiological responses associated with fat regain. A systematic search on PubMed and Scielo was performed using "training cessation," "detraining," "exercise detraining," and "exercise cessation" combined with "fat tissue," "adipose tissue," "adipose metabolism," and "fat metabolism," as descriptors. From 377 results, 25 were included in this review, 12 humans and 13 rodents, resulting in a sample of 6772 humans and 613 animals. The analysis provided evidence for fat super compensation, as well as differences in humans and rodents, among different protocols and possible mechanisms for fat gain after exercise cessation. In summary, exercise cessation appears to increase the ability of the adipose tissue to store energy. However, caution should be taken, especially regarding conclusions based on investigations on humans, considering the multiple factors that could affect fat metabolism.
Collapse
Affiliation(s)
| | | | - Leo Dutra Cabistany
- Superior School of Physical Education, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael Bueno Orcy
- Superior School of Physical Education, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
14
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Gibala MJ. Physiological basis of interval training for performance enhancement. Exp Physiol 2020; 106:2324-2327. [PMID: 32362039 DOI: 10.1113/ep088190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review considers the physiological basis of interval training for performance enhancement, with an emphasis on the capacity for aerobic energy provision. What advances does it highlight? It highlights advances regarding the effect of interval training on primary physiological determinants of aerobic energy provision, which are associated with performance. ABSTRACT Interval training refers to an intermittent style of exercise, in which bouts of more intense effort are interspersed with recovery periods within a given training session. Physiological responses to interval training depend on numerous factors, including the specific nature of the intervention and the initial training state of the individual. Interval training improves performance in part by enhancing the capacity for aerobic energy provision, even in those who are already trained. Two primary mechanisms in this regard are an increased whole-body maximal oxygen uptake and an enhanced capacity for oxidative metabolism in skeletal muscle owing to an increase in mitochondria. In comparison to moderate-intensity continuous exercise, interval training can elicit superior responses when total work is matched, and similar responses despite a reduced training volume and time commitment.
Collapse
Affiliation(s)
- Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
|
17
|
|
18
|
Suzuki J. Effects of exercise training with short-duration intermittent hypoxia on endurance performance and muscle metabolism in well-trained mice. Physiol Rep 2019; 7:e14182. [PMID: 31328438 PMCID: PMC6643079 DOI: 10.14814/phy2.14182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/16/2023] Open
Abstract
The author previously reported that short-duration intermittent hypoxia had additive effects on improvements in endurance capacity by enhancing fatty acid metabolism. The present study was designed to investigate the effects of short-duration intermittent hypoxia on endurance capacity, metabolic enzyme activity, and protein levels associated with mitochondrial biogenesis in well-trained mice. Mice in the training group were housed in a cage with a running wheel for 7 weeks from 5 weeks old. Voluntary running markedly increased maximal work values by 5.0-fold. Trained mice were then subjected to either endurance treadmill training (ET) for 60 min or hybrid training (HT, ET for 30 min followed by sprint interval exercise (5-sec run-10-sec rest) for 30 min) with (H-ET or H-HT) or without (ET or HT) short-duration intermittent hypoxia (4 cycles of 12-13% O2 for 15 min and 20.9% O2 for 10 min) for 4 weeks. Maximal endurance capacity was markedly greater in the H-ET and H-HT than ET and HT groups, respectively. H-ET and H-HT increased activity levels of 3-hydroxyacyl-CoA-dehydrogenase in oxidative muscle portion and pyruvate dehydrogenase complex in glycolytic muscle portion. These activity levels were significantly correlated with maximal endurance capacity. Protein levels of dynamin-related protein-1 were increased more by H-ET and H-HT than by ET and HT, but were not significantly correlated with maximal work. These results suggest that intermittent hypoxic exposure has beneficial effects on endurance and hybrid training to improve the endurance capacity via improving fatty acid and pyruvate oxidation in highly trained mice.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationIwamizawaHokkaidoJapan
| |
Collapse
|
19
|
Gunnarsson TP, Brandt N, Fiorenza M, Hostrup M, Pilegaard H, Bangsbo J. Inclusion of sprints in moderate intensity continuous training leads to muscle oxidative adaptations in trained individuals. Physiol Rep 2019; 7:e13976. [PMID: 30793541 PMCID: PMC6384299 DOI: 10.14814/phy2.13976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
This study examined adaptations in muscle oxidative capacity and exercise performance induced by two work- and duration-matched exercise protocols eliciting different muscle metabolic perturbations in trained individuals. Thirteen male subjects ( V ˙ O2 -max 53.5 ± 7.0 mL·kg-1 ·min-1 ) (means ± SD) performed 8 weeks (three sessions/week) of training consisting of 60 min of moderate intensity continuous cycling (157 ± 20 W) either without (C) or with (C+S) inclusion of 30-s sprints (473 ± 79 W) every 10 min. Total work performed during training was matched between groups. Muscle biopsies and arm venous blood were collected before as well as immediately and 2 h after exercise during the first and last training session. Plasma epinephrine and lactate concentrations after the first and last training session were 2-3-fold higher in C+S than in C. After the first and last training session, muscle phosphocreatine and pH were lower (12-25 mmol·kg d.w.-1 and 0.2-0.4 units, respectively) and muscle lactate higher (48-64 mmol·kg d.w.-1 ) in C+S than in C, whereas exercise-induced changes in muscle PGC-1α mRNA levels were similar within- and between-groups. Muscle content of cytochrome c oxidase IV and citrate synthase (CS) increased more in C+S than in C, and content of CS in type II muscle fibers increased in C+S only (9-17%), with no difference between groups. Performance during a 45-min time-trial improved by 4 ± 3 and 9 ± 3% in C+S and C, respectively, whereas peak power output at exhaustion during an incremental test increased by 3 ± 3% in C+S only, with no difference between groups. In conclusion, addition of sprints in moderate intensity continuous exercise causes muscle oxidative adaptations in trained male individuals which appear to be independent of the exercise-induced PGC-1α mRNA response. Interestingly, time-trial performance improved similarly between groups, suggesting that changes in content of mitochondrial proteins are of less importance for endurance performance in trained males.
Collapse
Affiliation(s)
- Thomas P. Gunnarsson
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Nina Brandt
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Matteo Fiorenza
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | | | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
20
|
Fiorenza M, Gunnarsson TP, Hostrup M, Iaia FM, Schena F, Pilegaard H, Bangsbo J. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol 2018; 596:2823-2840. [PMID: 29727016 DOI: 10.1113/jp275972] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Low-volume high-intensity exercise training promotes muscle mitochondrial adaptations that resemble those associated with high-volume moderate-intensity exercise training. These training-induced mitochondrial adaptations stem from the cumulative effects of transient transcriptional responses to each acute exercise bout. However, whether metabolic stress is a key mediator of the acute molecular responses to high-intensity exercise is still incompletely understood. Here we show that, by comparing different work-matched low-volume high-intensity exercise protocols, more marked metabolic perturbations were associated with enhanced mitochondrial biogenesis-related muscle mRNA responses. Furthermore, when compared with high-volume moderate-intensity exercise, only the low-volume high-intensity exercise eliciting severe metabolic stress compensated for reduced exercise volume in the induction of mitochondrial biogenic mRNA responses. The present results, besides improving our understanding of the mechanisms mediating exercise-induced mitochondrial biogenesis, may have implications for applied and clinical research that adopts exercise as a means to increase muscle mitochondrial content and function in healthy or diseased individuals. ABSTRACT The aim of the present study was to examine the impact of exercise-induced metabolic stress on regulation of the molecular responses promoting skeletal muscle mitochondrial biogenesis. Twelve endurance-trained men performed three cycling exercise protocols characterized by different metabolic profiles in a randomized, counter-balanced order. Specifically, two work-matched low-volume supramaximal-intensity intermittent regimes, consisting of repeated-sprint (RS) and speed endurance (SE) exercise, were employed and compared with a high-volume continuous moderate-intensity exercise (CM) protocol. Vastus lateralis muscle samples were obtained before, immediately after, and 3 h after exercise. SE produced the most marked metabolic perturbations as evidenced by the greatest changes in muscle lactate and pH, concomitantly with higher post-exercise plasma adrenaline levels in comparison with RS and CM. Exercise-induced phosphorylation of CaMKII and p38 MAPK was greater in SE than in RS and CM. The exercise-induced PGC-1α mRNA response was higher in SE and CM than in RS, with no difference between SE and CM. Muscle NRF-2, TFAM, MFN2, DRP1 and SOD2 mRNA content was elevated to the same extent by SE and CM, while RS had no effect on these mRNAs. The exercise-induced HSP72 mRNA response was larger in SE than in RS and CM. Thus, the present results suggest that, for a given exercise volume, the initial events associated with mitochondrial biogenesis are modulated by metabolic stress. In addition, high-intensity exercise seems to compensate for reduced exercise volume in the induction of mitochondrial biogenic molecular responses only when the intense exercise elicits marked metabolic perturbations.
Collapse
Affiliation(s)
- M Fiorenza
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - T P Gunnarsson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - F M Iaia
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - F Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - H Pilegaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - J Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
de Souza-Teixeira F, Alonso-Molero J, Ayán C, Vilorio-Marques L, Molina AJ, González-Donquiles C, Dávila-Batista V, Fernández-Villa T, de Paz JA, Martín V. PGC-1α as a Biomarker of Physical Activity-Protective Effect on Colorectal Cancer. Cancer Prev Res (Phila) 2018; 11:523-534. [PMID: 29789344 DOI: 10.1158/1940-6207.capr-17-0329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/08/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is a significant public health concern. As a multistage and multifactorial disease, environmental and genetic factors interact at each stage of the process, and an individual's lifestyle also plays a relevant role. We set out to review the scientific evidence to study the need to investigate the role of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) gene as a biomarker of the physical activity's (PA) effect on colorectal cancer. PA is a protective factor against colorectal cancer and usually increases the expression of PGC-1α This gene has pleiotropic roles and is the main regulator of mitochondrial functions. The development of colorectal cancer has been associated with mitochondrial dysfunction; in addition, alterations in this organelle are associated with colorectal cancer risk factors, such as obesity, decreased muscle mass, and the aging process. These are affected by PA acting, among other aspects, on insulin sensitivity and oxygen reactive species/redox balance. Therefore, this gene demands special attention in the understanding of its operation in the consensual protective effect of PA in colorectal cancer. A significant amount of indirect evidence points to PGC-1α as a potential biomarker in the PA-protective effect on colorectal cancer. The article focuses on the possible involvement of PGC-1α in the protective role that physical activity has on colorectal cancer. This is an important topic both in relation to advances in prevention of the development of this widespread disease and in its therapeutic treatment. We hope to generate an initial hypothesis for future studies associated with physical activity-related mechanisms that may be involved in the development or prevention of colorectal cancer. PGC-1α is highlighted because it is the main regulator of mitochondrial functions. This organelle, on one hand, is positively stimulated by physical activity; on the other hand, its dysfunction or reduction increases the probability of developing colorectal cancer. Therefore, we consider the compilation of existing information about the possible ways to understand the mechanisms of this gene to be highly relevant. This study is based on evidence of PGC-1α and physical activity, on PGC-1α and colorectal cancer, on colorectal cancer and physical activity/inactivity, and the absence of studies that have sought to relate all of these variables. Cancer Prev Res; 11(9); 523-34. ©2018 AACR.
Collapse
Affiliation(s)
- Fernanda de Souza-Teixeira
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain. .,Research Group of Exercise and Neuromuscular System, Superior Physical Education School, Federal University of Pelotas, Pelotas, Brazil
| | - Jéssica Alonso-Molero
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain.,University of Cantabria, Santander, Spain
| | - Carlos Ayán
- Faculty of Education and Sport Science, Department of Special Didactics, University of Vigo, Pontevedra, Spain
| | - Laura Vilorio-Marques
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain
| | - Antonio Jose Molina
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain.,Preventive Medicine and Public Health Area, University of León, León, Spain.,Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Carmen González-Donquiles
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Veronica Dávila-Batista
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain.,Preventive Medicine and Public Health Area, University of León, León, Spain.,Institute of Biomedicine (IBIOMED), University of León, León, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Tania Fernández-Villa
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain.,Preventive Medicine and Public Health Area, University of León, León, Spain.,Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Vicente Martín
- The Research Group of Gene-Environment and Health Interactions, University of León, León, Spain.,Preventive Medicine and Public Health Area, University of León, León, Spain.,Institute of Biomedicine (IBIOMED), University of León, León, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
22
|
Kuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One 2018; 13:e0196438. [PMID: 29746477 PMCID: PMC5944930 DOI: 10.1371/journal.pone.0196438] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 02/04/2023] Open
Abstract
Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content.
Collapse
Affiliation(s)
- Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Amanda J. Genders
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Cesare Granata
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- * E-mail:
| |
Collapse
|
23
|
Skovgaard C, Christiansen D, Christensen PM, Almquist NW, Thomassen M, Bangsbo J. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners. Physiol Rep 2018; 6:e13601. [PMID: 29417745 PMCID: PMC5803184 DOI: 10.14814/phy2.13601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P < 0.05) and dystrophin was higher (P < 0.05) in ST muscle fibers, and sarcoplasmic reticulum calcium ATPase 1 (SERCA1) was lower (P < 0.05) in fast twitch muscle fibers. Running economy at 60% vVO2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P < 0.05) after the intervention in the normal condition, but unchanged in the ST glycogen-depleted condition. Ten kilometer performance was improved (P < 0.01) by 3.2% (43.7 ± 1.0 vs. 45.2 ± 1.2 min) and 3.9% (45.8 ± 1.2 vs. 47.7 ± 1.3 min) in the normal and the ST glycogen-depleted condition, respectively. VO2 -max was the same, but vVO2 -max was 2.0% higher (P < 0.05; 19.3 ± 0.3 vs. 18.9 ± 0.3 km/h) after than before the intervention. Thus, improved running economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers.
Collapse
Affiliation(s)
- Casper Skovgaard
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
- Team Danmark (Danish Elite Sports Organization)CopenhagenDenmark
| | - Danny Christiansen
- Institute of Sport, Exercise and Active Living (ISEAL)Victoria UniversityMelbourneAustralia
| | - Peter M. Christensen
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
- Team Danmark (Danish Elite Sports Organization)CopenhagenDenmark
| | - Nicki W. Almquist
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
24
|
Satellite cell activation and mTOR signaling pathway response to resistance and combined exercise in elite weight lifters. Eur J Appl Physiol 2017; 117:2355-2363. [PMID: 28940037 DOI: 10.1007/s00421-017-3722-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/13/2017] [Indexed: 01/20/2023]
Abstract
PURPOSE Our aim was to compare the effects of a single exercise training mode (resistance exercise) with a combined exercise training (resistance and plyometric exercise) mode on satellite cell activity and anabolic signaling at the molecular level. METHODS Eighteen male weight lifters (20 ± 4 years, BMI 27 ± 6 kg/m2) were randomly assigned to either a series of resistance exercise or a series of combined exercise group. The intensity of the exercise was set at 60% of their 1 RM weight and subjects completed three sets each of six repetitions. The combined exercise group performed three different types of resistance exercise alternating with three different types of plyometric exercise, whereas the resistance exercise group performed only the three different types of resistance exercise which was repeated twice. Muscle biopsies were obtained the vastus lateralis muscle immediately before and 3 h after one bout of exercise. RESULTS Exercise induced increases in satellite cell activation and myofibrillar protein synthesis following both exercise modes, but the resistance exercise group was superior compared to the combined exercise group in satellite cell activity expressed by Ki67/CD56 (165 vs 232%) and PI3K/Akt protein expression (121 vs 157%), mTOR protein expression (117 vs 288%), p70S6K protein expression (253 vs 809%), and 4E-BP1 protein expression (70 vs 139%) of anabolic signaling pathway. CONCLUSIONS These results suggest that the previous findings showing a greater effect of combined as opposed to a single exercise mode could be the effect of a greater training volume rather than a true-training effect of a combined exercise program.
Collapse
|
25
|
Hofmann P, Tschakert G. Intensity- and Duration-Based Options to Regulate Endurance Training. Front Physiol 2017; 8:337. [PMID: 28596738 PMCID: PMC5442222 DOI: 10.3389/fphys.2017.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/08/2017] [Indexed: 02/01/2023] Open
Abstract
The regulation of endurance training is usually based on the prescription of exercise intensity. Exercise duration, another important variable of training load, is rarely prescribed by individual measures and mostly set from experience. As the specific exercise duration for any intensity plays a substantial role regarding the different kind of cellular stressors, degree, and kind of fatigue as well as training effects, concepts integrating the prescription of both intensity and duration within one model are needed. An according recent approach was the critical power concept which seems to have a physiological basis; however, the mathematical approach of this concept does not allow applying the three zones/two threshold model of metabolism and its different physiological consequences. Here we show the combination of exercise intensity and duration prescription on an individual basis applying the power/speed to distance/time relationship. The concept is based on both the differentiation of intensities by two lactate or gas exchange variables derived turn points, and on the relationship between power (or velocity) and duration (or distance). The turn points define three zones of intensities with distinct acute metabolic, hormonal, and cardio-respiratory responses for endurance exercise. A maximal duration exists for any single power or velocity such as described in the power-duration relationship. Using percentages of the maximal duration allows regulating fatigue, recovery time, and adaptation for any single endurance training session. Four domains of duration with respect to induced fatigue can be derived from maximal duration obtained by the power-duration curve. For any micro-cycle, target intensities and durations may be chosen on an individual basis. The model described here is the first conceptual framework of integrating physiologically defined intensities and fatigue related durations to optimize high-performance exercise training.
Collapse
Affiliation(s)
- Peter Hofmann
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of GrazGraz, Austria
| | - Gerhard Tschakert
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of GrazGraz, Austria
| |
Collapse
|
26
|
Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity. Eur J Appl Physiol 2017; 117:721-730. [PMID: 28251397 DOI: 10.1007/s00421-017-3562-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. METHODS Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. RESULTS The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher in the muscle of football-trained men vs untrained men. Also citrate synthase activity was higher in trained than in untrained men (109.3 ± 9.2 vs 75.1 ± 9.2 mU/mg). These findings were associated with a healthier body composition in trained than in untrained men [body weight: 78.2 ± 6.5 vs 91.2 ± 11.2 kg; body mass index BMI: 24.4 ± 1.6 vs 28.8 ± 4.0 kg m-2; fat%: 22.6 ± 8.0 vs 31.4 ± 5.0%)] and with a higher maximal oxygen uptake (VO2max: 34.7 ± 3.8 vs 27.3 ± 4.0 ml/min/kg). Also the expression of proteins involved in DNA repair and in senescence suppression (Erk1/2, Akt and FoxM1) was higher in trained than in untrained men. At BMI- and age-adjusted multiple linear regression analysis, fat percentage was independently associated with Akt protein expression, and VO2max was independently associated with TFAM mRNA and with Erk1/2 protein expression. CONCLUSIONS Lifelong football training increases the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity.
Collapse
|
27
|
Skovgaard C, Brandt N, Pilegaard H, Bangsbo J. Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle. Physiol Rep 2016; 4:4/14/e12864. [PMID: 27456910 PMCID: PMC4962071 DOI: 10.14814/phy2.12864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen trained male subjects (maximum oxygen uptake (VO2-max): 57.2 ± 3.7 (mean ± SD) mL·min(-1)·kg(-1)) performed S (6 × 30 sec all-out), E (60 min ~60% VO2-max), and S + E on a cycle ergometer on separate occasions. Muscle biopsies were obtained at rest and 1, 2, and 3 h after the speed endurance exercise (S and S + E) and at rest, 0, 1, and 2 h after exercise in E In S and S + E, muscle peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1α) and pyruvate dehydrogenase kinase-4 (PDK4) mRNA were higher (P < 0.05) 2 and 3 h after speed endurance exercise than at rest. Muscle PGC-1α and PDK4 mRNA levels were higher (P < 0.05) after exercise in S + E than in S and E, and higher (P < 0.05) in S than in E after exercise. In S and S + E, muscle vascular endothelial growth factor mRNA was higher (P < 0.05) 1 (S only), 2 and 3 h after speed endurance exercise than at rest. In S + E, muscle regulatory factor-4 and muscle heme oxygenase-1 mRNA were higher (P < 0.05) 1, 2, and 3 h after speed endurance exercise than at rest. In S, muscle hexokinase II mRNA was higher (P < 0.05) 2 and 3 h after speed endurance exercise than at rest and higher (P < 0.05) than in E after exercise. These findings suggest that in trained subjects, speed endurance exercise provides a stimulus for muscle mitochondrial biogenesis, substrate regulation, and angiogenesis that is not evident with endurance exercise. These responses are reinforced when speed endurance exercise is followed by endurance exercise.
Collapse
Affiliation(s)
- Casper Skovgaard
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark Team Danmark (Danish elite sports institution), Copenhagen, Denmark
| | - Nina Brandt
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|