1
|
Papanikolaou M, Paul J, Nattkemper LA, Kirsner RS, Yosipovitch G. Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review. J Clin Med 2025; 14:2877. [PMID: 40363908 PMCID: PMC12072805 DOI: 10.3390/jcm14092877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Itch is a commonly experienced problem by individuals with chronic wounds and greatly compromises their quality of life. Scratching can further hinder the wound healing process. Despite this being a clinically recognized issue, our knowledge of its exact prevalence in chronic wounds of different types and the molecular mechanisms driving it is limited. The multifactorial nature of wound itch makes its characterization particularly challenging. The present review is based on a thorough PubMed search, and it aims to provide an overview of existing evidence on the epidemiology, impact, and pathophysiology of wound itch, along with general recommendations on its management. Importantly, our work highlights the merit of screening chronic wound patients for associated pruritus and incorporating anti-itch measures in mainstream wound care.
Collapse
Affiliation(s)
- Marieta Papanikolaou
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.A.N.); (G.Y.)
| | - Julia Paul
- School of Nursing, Oakland University, Rochester, MI 48309, USA;
| | - Leigh A. Nattkemper
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.A.N.); (G.Y.)
| | - Robert S. Kirsner
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Gil Yosipovitch
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.A.N.); (G.Y.)
| |
Collapse
|
2
|
Lu W, Teoh A, Waters M, Haug G, Shakeel I, Hassan I, Shahzad AM, Callerfelt AKL, Piccari L, Sohal SS. Pathology of idiopathic pulmonary fibrosis with particular focus on vascular endothelium and epithelial injury and their therapeutic potential. Pharmacol Ther 2025; 265:108757. [PMID: 39586361 DOI: 10.1016/j.pharmthera.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a challenging disease with no drugs available to change the trajectory. It is a condition associated with excessive and highly progressive scarring of the lungs with remodelling and extracellular matrix deposition. It is a highly "destructive" disease of the lungs. The diagnosis of IPF is challenging due to continuous evolution of the disease, which also makes early interventions very difficult. The role of vascular endothelial cells has not been explored in IPF in great detail. We do not know much about their contribution to arterial or vascular remodelling, extracellular matrix changes and contribution to pulmonary hypertension and lung fibrosis in general. Endothelial to mesenchymal transition appears to be central to such changes in IPF. Similarly, for epithelial changes, the process of epithelial to mesenchymal transition seem to be the key both for airway epithelial cells and type-2 pneumocytes. We focus here on endothelial and epithelial cell changes and its contributions to IPF. In this review we revisit the pathology of IPF, mechanistic signalling pathways, clinical definition, update on diagnosis and new advances made in treatment of this disease. We discuss ongoing clinical trials with mode of action. A multidisciplinary collaborative approach is needed to understand this treacherous disease for new therapeutic targets.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Alan Teoh
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Maddison Waters
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Ilma Shakeel
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Imtaiyaz Hassan
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Medical School, Oceania University of Medicine, Apia, Samoa
| | | | - Lucilla Piccari
- Department of Pulmonology, Hospital del Mar, Barcelona, Spain
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
3
|
Li LN, Li WW, Xiao LS, Lai WN. Lactylation signature identifies liver fibrosis phenotypes and traces fibrotic progression to hepatocellular carcinoma. Front Immunol 2024; 15:1433393. [PMID: 39257588 PMCID: PMC11383765 DOI: 10.3389/fimmu.2024.1433393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Precise staging and classification of liver fibrosis are crucial for the hierarchy management of patients. The roles of lactylation are newly found in the progression of liver fibrosis. This study is committed to investigating the signature genes with histone lactylation and their connection with immune infiltration among liver fibrosis with different phenotypes. Methods Firstly, a total of 629 upregulated and 261 downregulated genes were screened out of 3 datasets of patients with liver fibrosis from the GEO database and functional analysis confirmed that these differentially expressed genes (DEGs) participated profoundly in fibrosis-related processes. After intersecting with previously reported lactylation-related genes, 12 DEGs related to histone lactylation were found and narrowed down to 6 core genes using R algorithms, namely S100A6, HMGN4, IFI16, LDHB, S100A4, and VIM. The core DEGs were incorporated into the Least absolute shrinkage and selection operator (LASSO) model to test their power to distinguish the fibrotic stage. Results Advanced fibrosis presented a pattern of immune infiltration different from mild fibrosis, and the core DEGs were significantly correlated with immunocytes. Gene set and enrichment analysis (GSEA) results revealed that core DEGs were closely linked to immune response and chemokine signaling. Samples were classified into 3 clusters using the LASSO model, followed by gene set variation analysis (GSVA), which indicated that liver fibrosis can be divided into status featuring lipid metabolism reprogramming, immunity immersing, and intermediate of both. The regulatory networks of the core genes shared several transcription factors, and certain core DEGs also presented dysregulation in other liver fibrosis and idiopathic pulmonary fibrosis (IPF) cohorts, indicating that lactylation may exert comparable functions in various fibrotic pathology. Lastly, core DEGs also exhibited upregulation in HCC. Discussion Lactylation extensively participates in the pathological progression and immune infiltration of fibrosis. Lactylation and related immune infiltration could be a worthy focus for the investigation of HCC developed from liver fibrosis.
Collapse
Affiliation(s)
- Lin-Na Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Wen Li
- Guangzhou Wondfo Health Science and Technology Co., Ltd, Guangzhou, China
| | - Lu-Shan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Nan Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Löfdahl A, Nybom A, Wigén J, Dellgren G, Brunnström H, Wenglén C, Westergren-Thorsson G. Pulmonary 5-HT 2B receptor expression in fibrotic interstitial lung diseases. Acta Histochem 2023; 125:152024. [PMID: 36958084 DOI: 10.1016/j.acthis.2023.152024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary fibrosis is a severe condition in interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-ILD, where the underlying mechanism is not well defined and with no curative treatments available. Serotonin (5-HT) signaling via the 5-HT2B receptor has been recognized as a promising preclinical target for fibrosis. Despite this, the involvement of the 5-HT2B receptor in fibrotic ILD is widely unexplored. This work highlights the spatial pulmonary distribution of the 5-HT2B receptor in patients with IPF and systemic sclerosis-ILD. We show that the 5-HT2B receptor is located in typical pathological structures e.g. honeycomb cysts and weakly in fibroblast foci. Together with immunohistochemistry and immunofluorescence stainings of patient derived distal lung tissues, we identified cell targets for 5-HT2B receptor interference in type II alveolar epithelial cells, endothelial cells and M2 macrophages. Our results emphasize the role of 5-HT2B receptor as a target in lung fibrosis, warranting further consideration in targeting fibrotic ILDs.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Annika Nybom
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Wigén
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | | | | |
Collapse
|
5
|
Schieferdecker S, Vock E. Development of Pharmacophore Models for the Important Off-Target 5-HT 2B Receptor. J Med Chem 2023; 66:1509-1521. [PMID: 36621987 DOI: 10.1021/acs.jmedchem.2c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Toxicity is a major cause of attrition in the development of pharmaceuticals, and the off-target effects are a frequent contributor. The 5-HT2B receptor agonism is known to be responsible for a variety of safety concerns including valvular heart disease which was the cause for the withdrawal of several compounds from the market. An early detection of potential binding to this receptor is thus desirable. Herein, we present the identification of key amino acid residues in the active site of 5-HT2B by molecular dynamics simulations, the development of pharmacophore models and their performance on in-house data, and a structurally highly diverse subset of Enamine REAL labeled for 5-HT2B activity by a machine learning model. These models may be used as filters employed on screening compound sets for the early filtration of compounds with potential 5-HT2B off-target liabilities.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Department of Nonclinical Drug Safety, Germany, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach88397, Germany
| | - Esther Vock
- Department of Nonclinical Drug Safety, Germany, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach88397, Germany
| |
Collapse
|
6
|
The Role of Platelets in the Pathogenesis and Pathophysiology of Adenomyosis. J Clin Med 2023; 12:jcm12030842. [PMID: 36769489 PMCID: PMC9918158 DOI: 10.3390/jcm12030842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Widely viewed as an enigmatic disease, adenomyosis is a common gynecological disease with bewildering pathogenesis and pathophysiology. One defining hallmark of adenomyotic lesions is cyclic bleeding as in eutopic endometrium, yet bleeding is a quintessential trademark of tissue injury, which is invariably followed by tissue repair. Consequently, adenomyotic lesions resemble wounds. Following each bleeding episode, adenomyotic lesions undergo tissue repair, and, as such, platelets are the first responder that heralds the subsequent tissue repair. This repeated tissue injury and repair (ReTIAR) would elicit several key molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets interact with adenomyotic cells and actively participate in these events, promoting the lesional progression and fibrogenesis. Lesional fibrosis may also be propagated into their neighboring endometrial-myometrial interface and then to eutopic endometrium, impairing endometrial repair and causing heavy menstrual bleeding. Moreover, lesional progression may result in hyperinnervation and an enlarged uterus. In this review, the role of platelets in the pathogenesis, progression, and pathophysiology is reviewed, along with the therapeutic implication. In addition, I shall demonstrate how the notion of ReTIAR provides a much needed framework to tether to and piece together many seemingly unrelated findings and how it helps to make useful predictions.
Collapse
|
7
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Vorobyeva N, Kozlova AA. Three Naturally-Occurring Psychedelics and Their Significance in the Treatment of Mental Health Disorders. Front Pharmacol 2022; 13:927984. [PMID: 35837277 PMCID: PMC9274002 DOI: 10.3389/fphar.2022.927984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 12/20/2022] Open
Abstract
Classical psychedelics represent a family of psychoactive substances with structural similarities to serotonin and affinity for serotonin receptors. A growing number of studies have found that psychedelics can be effective in treating various psychiatric conditions, including post-traumatic stress disorder, major depressive disorder, anxiety, and substance use disorders. Mental health disorders are extremely prevalent in the general population constituting a major problem for the public health. There are a wide variety of interventions for mental health disorders, including pharmacological therapies and psychotherapies, however, treatment resistance still remains a particular challenge in this field, and relapse rates are also quite high. In recent years, psychedelics have become one of the promising new tools for the treatment of mental health disorders. In this review, we will discuss the three classic serotonergic naturally occurring psychedelics, psilocybin, ibogaine, and N, N-dimethyltryptamine, focusing on their pharmacological properties and clinical potential. The purpose of this article is to provide a focused review of the most relevant research into the therapeutic potential of these substances and their possible integration as alternative or adjuvant options to existing pharmacological and psychological therapies.
Collapse
Affiliation(s)
- Nataliya Vorobyeva
- Hive Bio Life Sciences Ltd., London, United Kingdom
- *Correspondence: Nataliya Vorobyeva,
| | - Alena A. Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Kalafatis D, Löfdahl A, Näsman P, Dellgren G, Wheelock ÅM, Elowsson Rendin L, Sköld M, Westergren-Thorsson G. Distal Lung Microenvironment Triggers Release of Mediators Recognized as Potential Systemic Biomarkers for Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms222413421. [PMID: 34948231 PMCID: PMC8704101 DOI: 10.3390/ijms222413421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model’s applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.
Collapse
Affiliation(s)
- Dimitrios Kalafatis
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (Å.M.W.); (M.S.)
- Correspondence: ; Tel.: +46-72-3416617
| | - Anna Löfdahl
- Department of Experimental Medical Science, Lung Biology, Lund University, SE-221 84 Lund, Sweden; (A.L.); (L.E.R.); (G.W.-T.)
| | - Per Näsman
- Center for Safety Research, KTH, Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden;
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (Å.M.W.); (M.S.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Linda Elowsson Rendin
- Department of Experimental Medical Science, Lung Biology, Lund University, SE-221 84 Lund, Sweden; (A.L.); (L.E.R.); (G.W.-T.)
| | - Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (Å.M.W.); (M.S.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Gunilla Westergren-Thorsson
- Department of Experimental Medical Science, Lung Biology, Lund University, SE-221 84 Lund, Sweden; (A.L.); (L.E.R.); (G.W.-T.)
| |
Collapse
|
10
|
Wang Q, Zhou Y, Huang J, Huang N. Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. Pharmaceuticals (Basel) 2021; 14:76. [PMID: 33498477 PMCID: PMC7909583 DOI: 10.3390/ph14020076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Since the first characterization of the 5-hydroxytryptamine 2B receptor (5-HT2BR) in 1992, significant progress has been made in 5-HT2BR research. Herein, we summarize the biological function, structure, and small-molecule pharmaceutical ligands of the 5-HT2BR. Emerging evidence has suggested that the 5-HT2BR is implicated in the regulation of the cardiovascular system, fibrosis disorders, cancer, the gastrointestinal (GI) tract, and the nervous system. Eight crystal complex structures of the 5-HT2BR bound with different ligands provided great insights into ligand recognition, activation mechanism, and biased signaling. Numerous 5-HT2BR antagonists have been discovered and developed, and several of them have advanced to clinical trials. It is expected that the novel 5-HT2BR antagonists with high potency and selectivity will lead to the development of first-in-class drugs in various therapeutic areas.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.H.)
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China;
| | - Yu Zhou
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China;
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.H.)
| | - Niu Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China;
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
11
|
Bagher M, Rosmark O, Elowsson Rendin L, Nybom A, Wasserstrom S, Müller C, Zhou XH, Dellgren G, Hallgren O, Bjermer L, Larsson-Callerfelt AK, Westergren-Thorsson G. Crosstalk between Mast Cells and Lung Fibroblasts Is Modified by Alveolar Extracellular Matrix and Influences Epithelial Migration. Int J Mol Sci 2021; 22:ijms22020506. [PMID: 33419174 PMCID: PMC7825515 DOI: 10.3390/ijms22020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mast cells play an important role in asthma, however, the interactions between mast cells, fibroblasts and epithelial cells in idiopathic pulmonary fibrosis (IPF) are less known. The objectives were to investigate the effect of mast cells on fibroblast activity and migration of epithelial cells. Lung fibroblasts from IPF patients and healthy individuals were co-cultured with LAD2 mast cells or stimulated with the proteases tryptase and chymase. Human lung fibroblasts and mast cells were cultured on cell culture plastic plates or decellularized human lung tissue (scaffolds) to create a more physiological milieu by providing an alveolar extracellular matrix. Released mediators were analyzed and evaluated for effects on epithelial cell migration. Tryptase increased vascular endothelial growth factor (VEGF) release from fibroblasts, whereas co-culture with mast cells increased IL-6 and hepatocyte growth factor (HGF). Culture in scaffolds increased the release of VEGF compared to culture on plastic. Migration of epithelial cells was reduced by IL-6, while HGF and conditioned media from scaffold cultures promoted migration. In conclusion, mast cells and tryptase increased fibroblast release of mediators that influenced epithelial migration. These data indicate a role of mast cells and tryptase in the interplay between fibroblasts, epithelial cells and the alveolar extracellular matrix in health and lung disease.
Collapse
Affiliation(s)
- Mariam Bagher
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Oskar Rosmark
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Linda Elowsson Rendin
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Annika Nybom
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | | | - Catharina Müller
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Xiao-Hong Zhou
- Bioscience Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, 431 53 Mölndal, Sweden;
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Oskar Hallgren
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Anna-Karin Larsson-Callerfelt
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
- Correspondence: ; Tel.: +46-46-222-8580 or +46-733-525420
| | - Gunilla Westergren-Thorsson
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| |
Collapse
|
12
|
Löfdahl A, Tornling G, Wigén J, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G. Pathological Insight into 5-HT 2B Receptor Activation in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 22:ijms22010225. [PMID: 33379351 PMCID: PMC7796180 DOI: 10.3390/ijms22010225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
- Correspondence:
| | - Göran Tornling
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jenny Wigén
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Christina Wenglén
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
| | - Gunilla Westergren-Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| |
Collapse
|
13
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
14
|
Davizon‐Castillo P, Allawzi A, Sorrells M, Fisher S, Baltrunaite K, Neeves K, Nozik‐Grayck E, DiPaola J, Delaney C. Platelet activation in experimental murine neonatal pulmonary hypertension. Physiol Rep 2020; 8:e14386. [PMID: 32163236 PMCID: PMC7066872 DOI: 10.14814/phy2.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) contributes to the pathogenesis of experimental neonatal pulmonary hypertension (PH) associated with bronchopulmonary dysplasia (BPD). Platelets are the primary source of circulating 5-HT and is released upon platelet activation. Platelet transfusions are associated with neonatal mortality and increased rates of BPD. As BPD is often complicated by PH, we tested the hypothesis that circulating platelets are activated and also increased in the lungs of neonatal mice with bleomycin-induced PH associated with BPD. Newborn wild-type mice received intraperitoneal bleomycin (3 units/kg) three times weekly for 3 weeks. Platelets from mice with experimental PH exhibited increased adhesion to collagen under flow (at 300 s-1 and 1,500 s-1 ) and increased expression of the αIIbβ3 integrin and phosphatidylserine, markers of platelet activation. Platelet-derived factors 5-HT and platelet factor 4 were increased in plasma from mice with experimental PH. Pharmacologic blockade of the 5-HT 2A receptor (5-HT 2A R) prevents bleomycin-induced PH and pulmonary vascular remodeling. Here, platelets from mice with bleomycin-induced PH demonstrate increased 5-HT 2A R expression providing further evidence of both platelet activation and increased 5-HT signaling in this model. In addition, bleomycin treatment increased lung platelet accumulation. In summary, platelets are activated, granule factors are released, and are increased in numbers in the lungs of mice with experimental neonatal PH. These results suggest platelet activation and release of platelet-derived factors may increase vascular tone, promote aberrant angiogenesis, and contribute to the development of neonatal PH.
Collapse
Affiliation(s)
- Pavel Davizon‐Castillo
- Section of Pediatric Hematology, Oncology, and Bone Marrow TransplantUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ayed Allawzi
- Section of Pediatric Critical Care and Cardiovascular Pulmonary Research LaboratoryUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Matthew Sorrells
- Department of Chemical and Biological EngineeringColorado School of MinesGoldenCOUSA
| | - Susan Fisher
- Section of NeonatologyDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Kristina Baltrunaite
- Section of NeonatologyDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Keith Neeves
- Section of Pediatric Hematology, Oncology, and Bone Marrow TransplantUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of BioengineeringUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Eva Nozik‐Grayck
- Section of Pediatric Critical Care and Cardiovascular Pulmonary Research LaboratoryUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Jorge DiPaola
- Division of Pediatric Hematology OncologyWashington University in St. LouisSt. LouisMOUSA
| | - Cassidy Delaney
- Section of NeonatologyDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
15
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [PMID: 31712723 DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
16
|
Sadiq A, Menchetti I, Shah A, Jeschke MG, Belo C, Carlos-Alcalde W, Hayat MQ, Amini-Nik S. 5-HT1A Receptor Function Makes Wound Healing a Happier Process. Front Pharmacol 2018; 9:1406. [PMID: 30618734 PMCID: PMC6297675 DOI: 10.3389/fphar.2018.01406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Skin wound healing is a multistage phenomenon that is regulated by cell–cell interplay and various factors. Endogenous serotonin is an important neurotransmitter and cytokine. Its interaction with the serotonin 1A receptor (5-HTR1A) delivers downstream cellular effects. The role of serotonin (5-hydroxytryptamine, 5-HT) and the 5-HT1A receptor has been established in the regeneration of tissues such as the liver and spinal motor neurons, prompting the investigation of the role of 5-HT1A receptor in skin healing. This study assessed the role of 5-HT1A receptor in excisional wound healing by employing an excisional punch biopsy model on 5-Ht1a receptor knockout mice. Post-harvest analysis revealed 5-Ht1a receptor knockout mice showed impaired skin healing, accompanied by a greater number of F4/80 macrophages, which prolongs the inflammatory phase of wound healing. To further unravel this phenomenon, we employed the 5-HT1A receptor agonist [(R)-(+)-8-Hydroxy-DPAT hydrobromide] as a topical cream treatment in an excisional punch biopsy model. The 5-HT1A receptor agonist treated group showed a smaller wound area, scar size, and improved neovascularization, which contributed to improve healing outcomes as compared to the control. Collectively, these findings revealed that serotonin and 5-HT1A receptor play an important role during the healing process. These findings may open new lines of investigation for the potential treatment alternatives to improve skin healing with minimal scarring.
Collapse
Affiliation(s)
- Alia Sadiq
- Sunnybrook Research Institute, Toronto, ON, Canada.,Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Ahmed Shah
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Wendolyn Carlos-Alcalde
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
18
|
Abstract
Psilocybin is found in a family of mushrooms commonly known as "magic mushrooms" that have been used throughout history to induce hallucinations. In the late 1950s Albert Hofmann, of Sandoz Laboratories, identified and synthesized the psychoactive compounds psilocybin and psilocin which are found in psilocybe mushrooms. Psilocybin was marketed by Sandoz as Indocybin for basic psychopharmacological and therapeutic clinical research. Psilocybin saw a rapid rise in popularity during the 1960s and was classed as a Schedule I drug in 1970. This led to a significant decrease in psilocybin research. Recently, however, preliminary studies with psilocybin have shown promise as potential for the treatment of obsessive compulsive disorder, alcohol addiction, tobacco addiction, and major depressive disorder, and the treatment of depression in terminally ill cancer patients. This review describes in detail the synthesis, metabolism, pharmacology, adverse drug reactions, and importance of psilocybin to neuroscience in the past and present.
Collapse
Affiliation(s)
- Haden A. Geiger
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Madeline G. Wurst
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - R. Nathan Daniels
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
19
|
Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018; 75:3663-3681. [PMID: 30027295 PMCID: PMC11105268 DOI: 10.1007/s00018-018-2880-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.
Collapse
Affiliation(s)
- David M Dolivo
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Sara A Larson
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Tanja Dominko
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
20
|
Löfdahl A, Wenglén C, Rydell-Törmänen K, Westergren-Thorsson G, Larsson-Callerfelt AK. Effects of 5-Hydroxytryptamine Class 2 Receptor Antagonists on Bronchoconstriction and Pulmonary Remodeling Processes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1113-1119. [PMID: 29454752 DOI: 10.1016/j.ajpath.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is associated with several chronic pulmonary diseases, recognizing 5-HT2 receptor antagonists as potential inhibitors of tissue remodeling. However, the effects of 5-HT2 receptors, especially 5-HT2B receptors on airway function and remodeling, are unclear. We investigated the role of 5-HT2B receptors on airway smooth muscle contractility and remodeling processes. Murine precision-cut lung slices were pretreated with 5-HT2B receptor antagonists (EXT5, EXT9, RS 127445, and PRX 08066), as well as ketanserin (5-HT2A/2C receptor antagonist) (1, 10 μmol/L), before addition of cumulative concentrations of 5-HT to induce bronchoconstriction. Remodeling effects after treatment with 10 μmol/L 5-HT and 5-HT2 receptor antagonists were further studied in distal lung tissue by examining release of profibrotic transforming growth factor (TGF)-β1 and proliferation of human bronchial smooth muscle cells (HBSMCs). 5-HT-induced bronchoconstriction was significantly reduced by EXT5, EXT9, and ketanserin, but not by RS 127445 or PRX 08066. The 5-HT2B receptor antagonists significantly reduced TGF-β1 release. 5-HT, in combination with TGF-β1, increased proliferation of HBSMCs, a process reduced by EXT5 and EXT9. Our results indicate that EXT5 and EXT9 may relieve bronchoconstriction in murine airways and serve as an add-on effect in attenuating pulmonary remodeling by improving airway function. The antiproliferative effect on HBSMCs and the inhibition of TGF-β1 release further support a role of 5-HT2B receptors in pathologic remodeling processes.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology Group, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Drugs which influence serotonin transporter and serotonergic receptors: Pharmacological and clinical properties in the treatment of depression. Pharmacol Rep 2018; 70:37-46. [DOI: 10.1016/j.pharep.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
|
22
|
Pulmonary fibrosis in vivo displays increased p21 expression reduced by 5-HT 2B receptor antagonists in vitro - a potential pathway affecting proliferation. Sci Rep 2018; 8:1927. [PMID: 29386571 PMCID: PMC5792547 DOI: 10.1038/s41598-018-20430-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) has repeatedly been associated with the development of fibrotic disorders such as pulmonary fibrosis. By blocking the binding of 5-HT to 5-HT2B receptors with receptor antagonists, several pro-fibrotic mechanisms can be inhibited. Bleomycin-induced pulmonary fibrosis is a model used to evaluate pathological mechanisms and pharmacological interventions. Previously we have shown attenuated fibrosis in systemic bleomycin-treated mice following treatment with two 5-HT2B receptor antagonists (EXT5 and EXT9). Our aim is to further identify cellular effects and signaling pathways associated with the anti-fibrotic effects of EXT5/9. Gene expressions in lung tissues from systemic bleomycin-treated mice were examined, revealing significant increased expression of Cdkn1α (a gene coding for p21), particularly in distal regions of the lung. In vitro studies in human lung fibroblasts revealed increased levels of p21 (p = 0.0032) and pAkt (p = 0.12) following treatment with 5-HT (10 µM). The induction of p21 and pAkt appears to be regulated by 5-HT2B receptors, with diminished protein levels following EXT9-treatment (p21 p = 0.0024, pAkt p = 0.15). Additionally, 5-HT induced fibroblast proliferation, an event significantly reduced by EXT5 (10 µM) and EXT9 (10 µM). In conclusion, our results suggest that 5-HT2B receptor antagonism attenuates pulmonary fibrosis in part by anti-proliferative effects, associated with inhibited pAkt/p21 signaling pathway.
Collapse
|
23
|
Löfdahl A, Rydell-Törmänen K, Müller C, Martina Holst C, Thiman L, Ekström G, Wenglén C, Larsson-Callerfelt AK, Westergren-Thorsson G. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep 2017; 4:4/15/e12873. [PMID: 27482070 PMCID: PMC4985542 DOI: 10.14814/phy2.12873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis is characterized by excessive accumulation of connective tissue, along with activated extracellular matrix (ECM)‐producing cells, myofibroblasts. The pathological mechanisms are not well known, however serotonin (5‐HT) and 5‐HT class 2 (5‐HT2) receptors have been associated with fibrosis. The aim of the present study was to investigate the role of 5‐HT2B receptors in fibrosis, using small molecular 5‐HT2B receptor antagonists EXT5 and EXT9, with slightly different receptor affinity. Myofibroblast differentiation [production of alpha‐smooth muscle actin (α‐SMA)] and ECM synthesis were quantified in vitro, and the effects of the receptor antagonists were evaluated. Pulmonary fibrosis was also modeled in mice by subcutaneous bleomycin administrations (under light isoflurane anesthesia), and the effects of receptor antagonists on tissue density, collagen‐producing cells, myofibroblasts and decorin expression were investigated. In addition, cytokine expression was analyzed in serum. Lung fibroblasts displayed an increased α‐SMA (P < 0.05) and total proteoglycan production (P < 0.01) when cultured with TGF‐β1 together with 5‐HT, which were significantly reduced with both receptor antagonists. Following treatment with EXT5 or EXT9, tissue density, expression of decorin, number of collagen‐producing cells, and myofibroblasts were significantly decreased in vivo compared to bleomycin‐treated mice. Receptor antagonization also significantly reduced systemic levels of TNF‐α and IL‐1β, indicating a role in systemic inflammation. In conclusion, 5‐HT2B receptor antagonists have potential to prevent myofibroblast differentiation, in vitro and in vivo, with subsequent effect on matrix deposition. The attenuating effects of 5‐HT2B receptor antagonists on fibrotic tissue remodeling suggest these receptors as novel targets for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Catharina Müller
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - C Martina Holst
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Thiman
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|