1
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2025; 125:277-301. [PMID: 39607529 PMCID: PMC11829912 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
2
|
Iba T, Kondo Y, Maier CL, Helms J, Ferrer R, Levy JH. Impact of hyper- and hypothermia on cellular and whole-body physiology. J Intensive Care 2025; 13:4. [PMID: 39806520 PMCID: PMC11727703 DOI: 10.1186/s40560-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes. Key factors in heatstroke pathophysiology involve mitochondrial thermal damage and excessive oxidative stress, which drive apoptosis and necrosis. While the kinetics of cellular damage from heat have been extensively studied, the mechanisms driving heat-induced organ damage and death are not yet fully understood. Converse to hyperthermia, hypothermia is generally protective, as seen in therapeutic hypothermia. However, accidental hypothermia presents another environmental threat due to arrhythmias, cardiac arrest, and coagulopathy. From a cellular physiology perspective, hypothermia generally supports mitochondrial homeostasis and enhances cell preservation, aiding whole-body recovery following resuscitation. This review summarizes recent findings on temperature-related cellular damage and preservation and suggests future research directions for understanding the tempo-physiologic axis.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Yutaka Kondo
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg University Hospital, Medical Intensive Care Unit-NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Yang B, Wang Q, Wei C, Sun Y, Li Y, Wei Y, Jiang Q, Huang Y. EGCG Alleviates Skeletal Muscle Oxidative Damage in Heat-Stressed Pigs via Keap1/PGAM5 Complex-Mediated Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:425-437. [PMID: 39693506 DOI: 10.1021/acs.jafc.4c06573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The heat stress (HS) induced by high temperatures can result in oxidative damage to muscles, thereby compromising both muscle growth and immune function within the organism. Mitophagy serves as a pivotal pathway in alleviating excessive ROS production and subsequent oxidative damage. However, the potential role of epigallocatechin-3-gallate (EGCG), a natural antioxidant found in tea, in mitophagy under HS remains unexplored. Here, we present evidence of EGCG mitigating the oxidative-redox imbalance in porcine skeletal muscles induced by HS involving the antioxidant enzyme system mediated by the Keap1/Nrf2 pathway and mitophagy mediated by the PINK1/Parkin pathway. Importantly, we identified phosphate mutase 5 (PGAM5) for the first time as a key protein modulated by EGCG under HS conditions, regulating mitophagy. Inhibition of PGAM5 significantly attenuated the activation of mitophagy by EGCG. Molecular docking and dynamics simulations further suggested that EGCG directly binds to Keap1, disrupting the Keap1-PGAM5 protein interaction and thus promoting the release of PGAM5 and subsequently activating mitophagy. In summary, this study represents the first discovery of EGCG directly targeting Keap1/PGAM5-mediated mitophagy, which serves as a potential functional supplement for regulating the antioxidant capacity in pigs.
Collapse
Affiliation(s)
- Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chongwan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yangyang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Roths M, Rudolph TE, Krishna S, Michael A, Selsby JT. One day of environment-induced heat stress damages the murine myocardium. Am J Physiol Heart Circ Physiol 2024; 327:H978-H988. [PMID: 39212770 PMCID: PMC11482254 DOI: 10.1152/ajpheart.00180.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The physiological consequences of environment-induced heat stress (EIHS), caused by prolonged exposure to excess heat and humidity, are largely unknown. The purpose of this investigation was to determine the extent to which EIHS alters cardiac health. We hypothesized that 24 h of EIHS would cause cardiac injury and cellular dysfunction in a murine EIHS model. To test this hypothesis, 7-wk-old female mice were housed under thermoneutral (TN) conditions (n = 12; 31.2 ± 1.01°C, 35 ± 0.7% humidity) or EIHS conditions (n = 14; 37.6 ± 0.01°C, 42.0 ± 0.06% humidity) for 24 h. Environment-induced heat stress increased rectal temperature by 2.1°C (P < 0.01) and increased subcutaneous temperature by 1.8°C (P < 0.01). Body weight was decreased by 10% (P = 0.03), heart weight/body weight was increased by 26% (P < 0.01), and tissue water content was increased by 11% (P < 0.05) in EIHS compared with TN. In comparison with TN, EIHS increased protein abundance of heat shock protein (HSP) 27 by 84% (P = 0.01); however, HSPs 90, 60, 70, and phosphorylated HSP 27 were similar between groups. Histological inspection of the heart revealed that EIHS animals had increased myocyte vacuolation in the left ventricle (P = 0.01), right ventricle (P < 0.01), and septum (P = 0.01) compared with TN animals. Biochemical indices are suggestive of mitochondrial remodeling, increased autophagic flux, and robust activation of endoplasmic reticulum stress in hearts from EIHS mice compared with TN mice. These data demonstrate that 1 day of EIHS is sufficient to induce myocardial injury and biochemical dysregulation.NEW & NOTEWORTHY The consequences of prolonged environment-induced heat stress (EIHS) on heart health are largely unknown. We discovered that a 24-h exposure to environmental conditions sufficient to cause EIHS resulted in cardiac edema and histopathologic changes in the right and left ventricles. Furthermore, among other biochemical changes, EIHS increased autophagic flux and caused endoplasmic reticulum stress. These data raise the possibility that thermic injury, even when insufficient to cause heat stroke, can damage the myocardium.
Collapse
Affiliation(s)
- Melissa Roths
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyona Michael
- Veterinary Diagnostic Laboratory, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
5
|
Rudolph TE, Roths M, Freestone AD, Yap SQ, Michael A, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. Biological sex impacts oxidative stress in skeletal muscle in a porcine heat stress model. Am J Physiol Regul Integr Comp Physiol 2024; 326:R578-R587. [PMID: 38708546 PMCID: PMC11381024 DOI: 10.1152/ajpregu.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; n = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; n = 8/sex) or 7 days (HS7; n = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; P < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (P = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (P = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (P ≤ 0.03) and HS7 males (P = 0.02). Notably, HS increased skeletal muscle Ca2+ deposition (P = 0.05) and was greater in HS1 females compared with TN females (P < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA)2a protein abundance (P < 0.01); however, Ca2+ ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.NEW & NOTEWORTHY Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Sau Qwan Yap
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyona Michael
- Department of Vet Diagnostic & Production Animal Med, Iowa State University, Ames, Iowa, United States
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, Texas, United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
6
|
Rudolph TE, Roths M, Freestone AD, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. The contribution of biological sex to heat stress-mediated outcomes in growing pigs. Animal 2024; 18:101168. [PMID: 38762992 DOI: 10.1016/j.animal.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Heat stress (HS) negatively impacts a variety of production parameters in growing pigs; however, the impact of biological sex on the HS response is largely unknown. To address this, 48 crossbred barrows and gilts (36.8 ± 3.7 kg BW) were individually housed and assigned to one of three constant environmental conditions: (1) thermoneutral (TN) (20.8 ± 1.6 °C; 62.0 ± 4.7% relative humidity; n = 8/sex), (2) HS (39.4 ± 0.6 °C; 33.7 ± 6.3% relative humidity) for 1 d (HS1; n = 8/sex), or (3) or for 7 d (HS7; n = 8/sex). As expected, HS increased rectal temperature (Tr) following 1 d of HS (1.0 °C; P < 0.0001) and 7 d of HS (0.9 °C; P < 0.0001). By 7 d, heat-stressed gilts were cooler than barrows (0.4 °C; P = 0.016), despite identical heating conditions. There was a main effect of sex such that barrows had higher Tr than gilts (P = 0.031). Heat-stressed pigs on d 1 had marked reductions in feed intake and BW compared to TN (P < 0.0001). One day of HS resulted in negative gain to feed (G:F) in barrows and gilts and was reduced compared to TN (P < 0.0001). Notably, following 1 d of HS, the variability of G:F was greater in gilts than in barrows. Between 1 and 7 d of HS, G:F improved in barrows and gilts and were similar to TN pigs, even though HS barrows had higher Tr than gilts over this period. Heat stress for 1 and 7 d reduced empty gastrointestinal tract weight compared to TN (P < 0.0001). Interestingly, HS7 gilts had decreased gastrointestinal tract weight compared to HS1 gilts (2.43 vs 2.72 kg; P = 0.03), whereas it was similar between HS1 and HS7 barrows. Lastly, a greater proportion of gastrointestinal contents was in the stomach of HS1 pigs compared to TN and HS7 (P < 0.05), which is suggestive of decreased gastric emptying. Overall, HS barrows maintained an elevated Tr compared to HS gilts through the duration of the experiment but also maintained similar growth and production metrics compared to gilts, despite this higher temperature.
Collapse
Affiliation(s)
- T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - R P Rhoads
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - S H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA; Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA. %
| |
Collapse
|
7
|
Hong C, Huang Y, Cao S, Wang L, Yang X, Hu S, Gao K, Jiang Z, Xiao H. Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production? J Anim Sci Biotechnol 2024; 15:11. [PMID: 38273345 PMCID: PMC10811888 DOI: 10.1186/s40104-023-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress has been associated with a number of physiological problems in swine, including reduced production efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hao Xiao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou, 510640, China.
| |
Collapse
|
8
|
Rudolph TE, Roths M, Freestone AD, White-Springer SH, Rhoads RP, Baumgard LH, Selsby JT. Heat stress alters hematological parameters in barrows and gilts. J Anim Sci 2024; 102:skae123. [PMID: 38706303 PMCID: PMC11141298 DOI: 10.1093/jas/skae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
The purpose of this investigation was to establish the role biological sex plays in circulating factors following heat stress (HS). Barrows and gilts (36.8 ± 3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ± 1.6 °C; 62.0% ± 4.7% relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ± 0.6 °C; 33.7% ± 6.3% relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) d. Circulating glucose decreased as a main effect of the environment (P = 0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P < 0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P = 0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P = 0.02) and HS7 barrows (P = 0.04). Cortisol, insulin, glucagon, T3, and T4 were reduced as a main effect of environment (P ≤ 0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P ≤ 0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P ≤ 0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P ≤ 0.01) and HS7 barrows had less neutrophils compared to TN barrows (P = 0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte numbers were similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P ≤ 0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, 77843, USA
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
9
|
Wen H, Johnson JS, Freitas PHF, Maskal JM, Gloria LS, Araujo AC, Pedrosa VB, Tiezzi F, Maltecca C, Huang Y, Schinckel AP, Brito LF. Longitudinal genomic analyses of automatically-recorded vaginal temperature in lactating sows under heat stress conditions based on random regression models. Genet Sel Evol 2023; 55:95. [PMID: 38129768 PMCID: PMC10734178 DOI: 10.1186/s12711-023-00868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ˚C). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, USA
| | - Pedro H F Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D, Agostinelli E. The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 2023; 52:106. [PMID: 37772383 PMCID: PMC10558216 DOI: 10.3892/ijmm.2023.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of heat shock proteins (HSPs) on protein quality control systems in cardiomyocytes is currently under investigation. The effect of HSPs on the regulated cell death of cardiomyocytes (CMCs) is of great importance, since they play a major role in the implementation of compensatory and adaptive mechanisms in the event of cardiac damage. HSPs mediate a number of mechanisms that activate the apoptotic cascade, playing both pro‑ and anti‑apoptotic roles depending on their location in the cell. Another type of cell death, autophagy, can in some cases lead to cell death, while in other situations it acts as a cell survival mechanism. The present review considered the characteristics of the expression of HSPs of different molecular weights in CMCs in myocardial damage caused by heart failure, as well as their role in the realization of certain types of regulated cell death.
Collapse
Affiliation(s)
| | | | - Anna Ryabinina
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | | | - Sergey Syatkin
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Sergey Chibisov
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Karina Akhmetova
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Daniil Prokofiev
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation, ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
11
|
Roths M, Abeyta MA, Wilson B, Rudolph TE, Hudson MB, Rhoads RP, Baumgard LH, Selsby JT. Effects of heat stress on markers of skeletal muscle proteolysis in dairy cattle. J Dairy Sci 2023:S0022-0302(23)00356-9. [PMID: 37349209 DOI: 10.3168/jds.2022-22678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/20/2023] [Indexed: 06/24/2023]
Abstract
Heat stress (HS) markedly affects postabsorptive energetics and protein metabolism. Circulating urea nitrogen increases in multiple species during HS and it has been traditionally presumed to stem from increased skeletal muscle proteolysis; however, this has not been empirically established. We hypothesized HS would increase activation of the calpain and proteasome systems as well as increase degradation of autophagosomes in skeletal muscle. To test this hypothesis, lactating dairy cows (∼139 d in milk; parity ∼2.4) were exposed to thermal neutral (TN) or HS conditions for 7 d (8 cows/environment). To induce HS, cattle were fitted with electric blankets for the duration of the heating period and the semitendinosus was biopsied on d 7. Heat stress increased rectal temperature (1.3°C) and respiratory rate (38 breaths per minute) while it decreased dry matter intake (34%) and milk yield (32%). Plasma urea nitrogen (PUN) peaked following 3 d (46%) and milk urea nitrogen (MUN) peaked following 4 d of environmental treatment and while both decreased thereafter, PUN and MUN remained elevated compared with TN (PUN: 20%; MUN: 27%) on d 7 of HS. Contrary to expectations, calpain I and II abundance and activation and calpain activity were similar between groups. Likewise, relative protein abundance of E3 ligases, muscle atrophy F-box protein/atrogin-1 and muscle ring-finger protein-1, total ubiquitinated proteins, and proteasome activity were similar between environmental treatments. Finally, autophagosome degradation was also unaltered by HS. Counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7 d of HS and call into question the presumed dogma that elevated skeletal muscle proteolysis, per se, drives increased AA mobilization.
Collapse
Affiliation(s)
- M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716
| | - T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716
| | - R P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
12
|
McCormick JJ, Côté MD, King KE, McManus MK, Goulet N, Dokladny K, Moseley PL, Kenny GP. The autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. Am J Physiol Regul Integr Comp Physiol 2022; 323:R467-R482. [PMID: 35993558 DOI: 10.1152/ajpregu.00110.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy is essential to maintaining cellular homeostasis in all eukaryotic cells and to tolerance of acute stressors such as starvation, heat, and recovery following exercise. Limited information exists regarding the exercise intensity-dependent autophagic response in humans, and it is unknown how environmental heat stress may modulate this response. Therefore, we evaluated autophagy and accompanying pathways of cellular stress (the heat shock response [HSR], apoptosis, and acute inflammation) in peripheral blood mononuclear cells (PBMCs) from 10 young men (mean [SD]; 22 [2] years) before, immediately after and up to 6h post-exercise recovery from 30 minutes of low-, moderate-, and high-intensity semi-recumbent cycling (40, 55 and 70% of maximal oxygen consumption (VO2max), respectively)in a temperate environment (25°C) and at 70% of VO2max in a hot environment (40°C). Changes in protein content were analyzed via Western blot. Each increase in exercise intensity was associated with elevations in mean body temperature. LC3-II increased following moderate-intensity exercise, with further increases following high-intensity exercise (p < 0.05). However, an increase in beclin-2 and ULK1, with a decrease in p62 was only observed after high-intensity exercise, which was paralleled by elevated TNF-α and cleaved-caspase-3, with the HSR peaking at 6h after exercise (p < 0.05). When exercise was performed in the heat, greater LC3-II and cleaved-caspase-3 accumulation was observed, however beclin-2 declined in recovery (p < 0.05). Therefore, our findings indicate that autophagy in PBMCs during exercise may be associated with greater heat strain exhibited during increasing exercise intensities, which is modulated by exposure to heat.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Melissa D Côté
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Pope L Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,College of Health Solutions, Arizona State University, Phoenix, Arizona, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Rudolph TE, Roach CM, Baumgard LH, Ross JW, Keating AF, Selsby JT. The impact of Zearalenone on heat-stressed skeletal muscle in pigs. J Anim Sci 2022; 100:6652325. [PMID: 35908787 PMCID: PMC9339304 DOI: 10.1093/jas/skac215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) and Zearalenone (ZEN) exposure affect growth, production efficiency, and animal welfare; and, under extreme situations, both can be lethal. Given that both HS and ZEN independently cause oxidative stress, we hypothesized that simultaneous exposure to HS and ZEN would cause greater oxidative stress in porcine skeletal muscle than either condition, alone. To address this hypothesis, crossbred, prepubertal gilts were treated with either vehicle control (cookie dough) or ZEN (40 μg/kg) and exposed to either thermoneutral (TN; 21.0 °C) or 12-h diurnal HS conditions (night: 32.2 °C; day: 35.0 °C) for 7 d. Pigs were euthanized immediately following the environmental challenge and the glycolytic (STW) and oxidative (STR) portions of the semitendinosus muscle were collected for analysis. In STR, malondialdehyde (MDA) concentration, a marker of oxidative stress, tended to increase following ZEN exposure (P = 0.08). HS increased CAT (P = 0.019) and SOD1 (P = 0.049) protein abundance, while ZEN decreased GPX1 protein abundance (P = 0.064) and activity (P = 0.036). In STR, HS did not alter protein expression of HSP27, HSP70, or HSP90. Conversely, in STW, MDA-modified proteins remained similar between all groups. Consistent with STR, ZEN decreased GPX1 (P = 0.046) protein abundance in STW. In STW, ZEN decreased protein abundance of HSP27 (P = 0.032) and pHSP27 (P = 0.0068), while HS increased protein expression of HSP70 (P = 0.04) and HSP90 (P = 0.041). These data suggest a muscle fiber type-specific response to HS or ZEN exposure, potentially rendering STR more susceptible to HS- and/or ZEN-induced oxidative stress, however, the combination of HS and ZEN did not augment oxidative stress.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Josh T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Two hours of heat stress induces MAP-kinase signaling and autophagasome accumulation in C2C12 myotubes. Cell Biochem Biophys 2022; 80:367-373. [PMID: 35122618 DOI: 10.1007/s12013-021-01054-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 12/09/2022]
Abstract
Short bouts of heat can induce a hormetic stress response, whereas prolonged or excessive exposure can elicit detrimental effects. We previously demonstrated an increase in autophagic signaling in C2C12 myotubes in response to 1 h of heat at 40 °C. In opposition, longer durations of heat exposure (e.g., 12 and 24 h) lead to an accumulation of autophagasomes and elevations in markers of cellular inflammation, oxidative stress, and apoptosis. Whether a longer, yet moderate, duration of 2 h of heat further enhances autophagic flux and attenuates stress and inflammatory signaling, or transitions the cell toward a dysregulation of autophagy is unclear. In this study, C2C12 myotubes were maintained at 37 °C or exposed to 40 °C (HT) for 2 h, and harvested immediately or following 2, 8, or 24 h of recovery. Two hours of HT immediately increased pAMPK (T172; p = 0.001), and subsequently increased pULK1 (S555) at 2 h of recovery (p = 0.028). LC3 II was increased at 8 h (p = 0.043) and 24 h (p = 0.015) of recovery, whereas p62 was elevated at 2 h (p = 0.002) and 8 h (p < 0.001) of recovery, but returned to baseline by 24 h. In Bafilomycin A1 treated cells, p62 was further increased immediately following HT (p = 0.041). There was also a significant elevation in p-p38 (Thr180/Try182), pJNK (Thr183/Tyr185), and pNFκB (Ser536). These findings suggest that as short as 2 h of heat exposure contributes to cell stress and accumulation of autophagasomes in skeletal muscle.
Collapse
|
15
|
Tardo-Dino PE, Taverny C, Siracusa J, Bourdon S, Baugé S, Koulmann N, Malgoyre A. Effect of heat acclimation on metabolic adaptations induced by endurance training in soleus rat muscle. Physiol Rep 2021; 9:e14686. [PMID: 34405575 PMCID: PMC8371354 DOI: 10.14814/phy2.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
Aerobic training leads to well‐known systemic metabolic and muscular alterations. Heat acclimation may also increase mitochondrial muscle mass. We studied the effects of heat acclimation combined with endurance training on metabolic adaptations of skeletal muscle. Thirty‐two rats were divided into four groups: control (C), trained (T), heat‐acclimated (H), and trained with heat acclimation (H+T) for 6 weeks. Soleus muscle metabolism was studied, notably by the in situ measurement of mitochondrial respiration with pyruvate (Pyr) or palmitoyl‐coenzyme A (PCoA), under phosphorylating conditions (V˙max) or not (V˙0). Aerobic performance increased, and retroperitoneal fat mass decreased with training, independently of heat exposure (p < 0.001 and p < 0.001, respectively). Citrate synthase and hydroxyl‐acyl‐dehydrogenase activity increased with endurance training (p < 0.001 and p < 0.01, respectively), without any effect of heat acclimation. Training induced an increase of the V˙0 and V˙max for PCoA (p < .001 and p < .01, respectively), without interference with heat acclimation. The training‐induced increase of V˙0 (p < 0.01) for pyruvate oxidation was limited when combined with heat acclimation (−23%, p < 0.01). Training and heat acclimation independently increased the V˙max for pyruvate (+60% p < 0.001 and +50% p = 0.01, respectively), without an additive effect of the combination. Heat acclimation doubled the training effect on muscle glycogen storage (p < 0.001). Heat acclimation did not improve mitochondrial adaptations induced by endurance training in the soleus muscle, possibly limiting the alteration of carbohydrate oxidation while not facilitating fatty‐acid utilization. Furthermore, the increase in glycogen storage observed after HA combined with endurance training, without the improvement of pyruvate oxidation, appears to be a hypoxic metabolic phenotype.
Collapse
Affiliation(s)
- Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Cindy Taverny
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Julien Siracusa
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphanie Bourdon
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphane Baugé
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Nathalie Koulmann
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Alexandra Malgoyre
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| |
Collapse
|
16
|
Mayorga EJ, Horst EA, Goetz BM, Rodríguez-Jiménez S, Abeyta MA, Al-Qaisi M, Lei S, Rhoads RP, Selsby JT, Baumgard LH. Rapamycin administration during an acute heat stress challenge in growing pigs. J Anim Sci 2021; 99:6265784. [PMID: 33950189 DOI: 10.1093/jas/skab145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
17
|
Del Corvo M, Lazzari B, Capra E, Zavarez L, Milanesi M, Utsunomiya YT, Utsunomiya ATH, Stella A, de Paula Nogueira G, Garcia JF, Ajmone-Marsan P. Methylome Patterns of Cattle Adaptation to Heat Stress. Front Genet 2021; 12:633132. [PMID: 34122501 PMCID: PMC8194315 DOI: 10.3389/fgene.2021.633132] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heat stress has a detrimental impact on cattle health, welfare and productivity by affecting gene expression, metabolism and immune response, but little is known on the epigenetic mechanisms mediating the effect of temperature at the cellular and organism level. In this study, we investigated genome-wide DNA methylation in blood samples collected from 5 bulls of the heat stress resilient Nellore breed and 5 bulls of the Angus that are more heat stress susceptible, exposed to the sun and high temperature-high humidity during the summer season of the Brazilian South-East region. The methylomes were analyzed during and after the exposure by Reduced Representation Bisulfite Sequencing, which provided genome-wide single-base resolution methylation profiles. Significant methylation changes between stressful and recovery periods were observed in 819 genes. Among these, 351 were only seen in Angus, 366 were specific to Nellore, and 102 showed significant changes in methylation patterns in both breeds. KEGG and Gene Ontology (GO) enrichment analyses showed that responses were breed-specific. Interestingly, in Nellore significant genes and pathways were mainly involved in stress responses and cellular defense and were under methylated during heat stress, whereas in Angus the response was less focused. These preliminary results suggest that heat challenge induces changes in methylation patterns in specific loci, which should be further scrutinized to assess their role in heat tolerance.
Collapse
Affiliation(s)
- Marcello Del Corvo
- Department of Animal Science Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Centre - PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy.,Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Ludmilla Zavarez
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Marco Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Yuri Tani Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Adam Taiti Harth Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Guilherme de Paula Nogueira
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil
| | - Josè Fernando Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Paolo Ajmone-Marsan
- Department of Animal Science Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Centre - PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
18
|
Han Z, Chang C, Zhu W, Zhang Y, Zheng J, Kang X, Jin G, Gong Z. Role of SIRT2 in regulating the dexamethasone-activated autophagy pathway in skeletal muscle atrophy. Biochem Cell Biol 2021; 99:562-569. [PMID: 33481678 DOI: 10.1139/bcb-2020-0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proteolytic autophagy system is involved in a major regulatory pathway in dexamethasone (Dex)-induced muscle atrophy. Sirtuin 2 (SIRT2) is known to modulate autophagy signaling, exerting effects in skeletal muscle atrophy. We examined the effects of SIRT2 on autophagy in Dex-induced myoatrophy. Tostudy this, mice were randomly distributed among the normal, Dex, and sirtinol groups. C2C12 cells were differentiated into myotubes and transduced with lentivirus carrying Sirt2-green fluorescent protein (GFP) or Sirt2 short hairpin RNA (Sirt2-shRNA)-GFP. To evaluate the mass and function of skeletal muscles, we measured myofiber cross-sectional area, myotube size, gastrocnemius (GA) muscle wet mass:body mass ratio (%), and time to exhaustion. The expression levels of SIRT2, myosin heavy chain, microtubule-associated protein 1 light chain 3 (LC3), and Beclin-1 were measured using Western blotting and quantitative reverse transcription - polymerase chain reaction. Inhibition of SIRT2 markedly attenuated GA muscle mass and endurance capacity. The same phenotype was observed in Sirt2-shRNA-treated myotubes, as evidenced by their decreased size. Conversely, overexpression of SIRT2 alleviated Dex-induced myoatrophy in vitro. Moreover, SIRT2 negatively regulated the expression of LC3b and Beclin-1 in skeletal muscles. These findings suggest that SIRT2 activation protects myotubes against Dex-induced atrophy through inhibition of the autophagy system; this phenomenon may serve as a target for treating glucocorticoid-induced myopathy.
Collapse
Affiliation(s)
- Ziqiu Han
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Cen Chang
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weiyi Zhu
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanlei Zhang
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jing Zheng
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiangping Kang
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Guoqin Jin
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhangbin Gong
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
19
|
McCormick JJ, Dokladny K, Moseley PL, Kenny GP. Autophagy and heat: a potential role for heat therapy to improve autophagic function in health and disease. J Appl Physiol (1985) 2021; 130:1-9. [DOI: 10.1152/japplphysiol.00542.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a crucial cell survival mechanism that involves the degradation and recycling of old or damaged organelles and proteins to maintain cellular homeostasis. Impairments in autophagy are central to the pathogenesis of many conditions including metabolic and neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, and aging. Although various pharmacological agents may be able to stimulate autophagic function, to our knowledge, few interventions exist that have been deemed safe and effective in humans. An emerging body of evidence suggests that targeting the autophagic pathway via passive heating (heat therapy) may stimulate autophagic function. Therefore, the primary focus of the present review is to analyze the mechanisms in which passive heating induces autophagy as defined by in vitro and in vivo (animal and human) models. Our secondary focus is to examine the implications of utilizing passive heating to restore dysfunctional autophagy in chronic disease and aging. Finally, we discuss potential therapeutic strategies to implement passive heating to stimulate autophagic function in humans.
Collapse
Affiliation(s)
- James J. McCormick
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Karol Dokladny
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico
| | - Pope L. Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Srikanth K, Park JE, Ji SY, Kim KH, Lee YK, Kumar H, Kim M, Baek YC, Kim H, Jang GW, Choi BH, Lee SD. Genome-Wide Transcriptome and Metabolome Analyses Provide Novel Insights and Suggest a Sex-Specific Response to Heat Stress in Pigs. Genes (Basel) 2020; 11:genes11050540. [PMID: 32403423 PMCID: PMC7291089 DOI: 10.3390/genes11050540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) negatively impacts pig production and swine health. Therefore, to understand the genetic and metabolic responses of pigs to HS, we used RNA-Seq and high resolution magic angle spinning (HR-MAS) NMR analyses to compare the transcriptomes and metabolomes of Duroc pigs (n = 6, 3 barrows and 3 gilts) exposed to heat stress (33 °C and 60% RH) with a control group (25 °C and 60% RH). HS resulted in the differential expression of 552 (236 up, 316 down) and 879 (540 up, 339 down) genes and significant enrichment of 30 and 31 plasma metabolites in female and male pigs, respectively. Apoptosis, response to heat, Toll-like receptor signaling and oxidative stress were enriched among the up-regulated genes, while negative regulation of the immune response, ATP synthesis and the ribosomal pathway were enriched among down-regulated genes. Twelve and ten metabolic pathways were found to be enriched (among them, four metabolic pathways, including arginine and proline metabolism, and three metabolic pathways, including pantothenate and CoA biosynthesis), overlapping between the transcriptome and metabolome analyses in the female and male group respectively. The limited overlap between pathways enriched with differentially expressed genes and enriched plasma metabolites between the sexes suggests a sex-specific response to HS in pigs.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Jong-Eun Park
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Yoo Kyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Himansu Kumar
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Youl Chang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Hana Kim
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Gul-Won Jang
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Bong-Hwan Choi
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
21
|
Ramos PM, Li C, Elzo MA, Wohlgemuth SE, Scheffler TL. Mitochondrial oxygen consumption in early postmortem permeabilized skeletal muscle fibers is influenced by cattle breed. J Anim Sci 2020; 98:skaa044. [PMID: 32171017 PMCID: PMC7071943 DOI: 10.1093/jas/skaa044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Functional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo. We measured mt oxygen consumption rate (OCR) in fresh-permeabilized muscle fibers from Longissimus lumborum (LL) at 2 temperatures (38.5 and 40.0 °C) and determined citrate synthase (CS) activity and expression of several mt proteins. The main effects of breed, temperature, and their interaction were tested for mt respiration, and breed effect was tested for CS activity and protein expression. Breed, but not temperature (P > 0.40), influenced mt OCR (per tissue weight), with Brahman exhibiting greater complex I+II-mediated oxidative phosphorylation capacity (P = 0.05). Complex I- and complex II-mediated OCR also tended to be greater in Brahman (P = 0.07 and P = 0.09, respectively). Activity of CS was higher in LL from Brahman compared to Angus (P = 0.05). Expression of specific mt proteins did not differ between breeds, except for higher expression of adenosine triphosphate (ATP) synthase subunit 5 alpha in Brahman muscle (P = 0.04). Coupling control ratio differed between breeds (P = 0.05), revealing greater coupling between oxygen consumption and phosphorylation in Brahman. Our data demonstrate that both Angus and Brahman mt retained functional capacity and integrity 1-h postmortem; greater oxidative phosphorylation capacity and coupling in Brahman mt could be related to heat tolerance and impact early postmortem metabolism.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Summers CM, Valentine RJ. Acute Heat Exposure Alters Autophagy Signaling in C2C12 Myotubes. Front Physiol 2020; 10:1521. [PMID: 31969827 PMCID: PMC6960406 DOI: 10.3389/fphys.2019.01521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/03/2019] [Indexed: 11/18/2022] Open
Abstract
Autophagy is a major intracellular degradation process that is essential for the clearance of unnecessary proteins/organelles and the maintenance of cellular homeostasis. The inhibition of autophagy results in cellular consequences associated with many skeletal muscle pathologies, and therapies designed to elevate autophagic activity may provide protection from such pathologies. Acute exposure to low levels of heat has therapeutic effects; however, the impact of heat on skeletal muscle autophagy remains unclear. In the present study, C2C12 myotubes were maintained at 37°C thermoneutral (TN) or heated at 40°C heat treatment (HT) for 1 h. Myotubes were harvested immediately after heating, or returned to 37°C for recovery of 2 or 24 h. HT resulted in an elevation in pAMPK (T172), Beclin-1, and LC3 II, a marker for autophagosome formation, but no change in p62. In the context of autophagy inhibition with Bafilomycin A1, HT resulted in lower LC3 II compared to TN. The applied heat load induced the heat shock response, as evidenced by immediate upregulation of HSF1 and Hsp70. Hsp70 continued to increase during recovery, whereas pHsp27 was downregulated acutely in response to HT, but retuned to TN levels by 2 h of recovery. HT also reduced the phosphorylation of the MAP-kinases p38 and JNK. These findings suggest that an acute, short bout of mild heat may be beneficial to skeletal muscle by increasing AMPK activity, markers of autophagasome formation, and the heat shock response.
Collapse
Affiliation(s)
- Corey M Summers
- Department of Kinesiology, Iowa State University, Ames, IA, United States.,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States.,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Alpha-Lipoic Acid Protects Cardiomyocytes against Heat Stroke-Induced Apoptosis and Inflammatory Responses Associated with the Induction of Hsp70 and Activation of Autophagy. Mediators Inflamm 2019; 2019:8187529. [PMID: 31885498 PMCID: PMC6914879 DOI: 10.1155/2019/8187529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Heat stroke (HS) is a life-threatening illness and defined as when body temperature elevates above 40°C accompanied by the systemic inflammatory response syndrome that results in multiple organ dysfunctions. α-Lipoic acid (ALA) acts as a cofactor of mitochondrial enzymes and exerts anti-inflammatory and antioxidant properties in a variety of diseases. This study investigates the beneficial effects of ALA on myocardial injury and organ damage caused by experimental HS and further explores its underlying mechanism. Male Wistar rats were exposed to 42°C until their rectal core temperature reached 42.9°C and ALA was pretreared 40 or 80 mg/kg (i.v.) 1.5 h prior to heat exposure. Results showed that HS-induced lethality and hypothermia were significantly alleviated by ALA treatment that also improved plasma levels of CRE, LDH, and CPK and myocardial injury biomarkers myoglobin and troponin. In addition, ALA reduced cardiac superoxide anion formation and protein expression of cleaved caspase 3 caused by HS. Proinflammatory cytokine TNF-α and NF-κB pathways were significantly reduced by ALA treatment which may be associated with the upregulation of Hsp70. ALA significantly increased the Atg5-12 complex and LC3B II/LC3B I ratio, whereas the p62 and p-mTOR expression was attenuated in HS rats, indicating the activation of autophagy by ALA. In conclusion, ALA ameliorated the deleterious effects of HS by exerting antioxidative and anti-inflammatory capacities. Induction of Hsp70 and activation of autophagy contribute to the protective effects of ALA in HS-induced myocardial injury.
Collapse
|
24
|
Ullah S, Zhang M, Yu H, Mustafa S, Shafiq M, Wei Q, Wang W, Jan M, Mao D. Heat exposure affected the reproductive performance of pregnant mice: Enhancement of autophagy and alteration of subcellular structure in the corpus luteum. Reprod Biol 2019; 19:261-269. [PMID: 31285134 DOI: 10.1016/j.repbio.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 01/07/2023]
Abstract
To investigate whether autophagy and subcellular changes are involved in the corpus luteum after heat exposure, a total of 30 early pregnant mice were divided equally into heat stress (HS) and non-HS (NHS) groups (n = 15). Mice in the HS group were exposed to 40.5 ± 0.2 ℃ for 7 consecutive days. Ovaries were collected for immunohistochemistry (IHC), western blot (WB) analysis and transmission electron microscopy (TEM). Serum was collected to determine progesterone by RIA and uteri were collected to count the implantation sites. Results showed that heat exposure increased rectal temperature, decreased body weight and number of implantation sites. WB analysis revealed that ovarian expression of LC3B and Atg7 was up-regulated, while p62 was down-regulated in the HS group. IHC results demonstrated that ovarian staining intensity of LC3B was more intense in the HS group than that of the NHS group. LC3B was mainly localized in the granulosa cells, oocytes and luteal steroidogenic cells of the HS group. TEM results revealed double-layered separated membranes indicative of autophagosomes in the luteal steroidogenic cells of the HS group. Moreover, TEM showed that the mitochondrial cristae became dearth, structure-less, swollen after HS. Additionally, the nucleus expanded and accumulation of lipid droplets increased after HS. Results also showed that heat exposure decreased serum progesterone level and ovarian P450scc expression. These results indicate that HS enhanced autophagy and altered the subcellular structure of luteal steroidogenic cells, which may contribute to interfering with the maintenance of luteal function in early pregnant mice.
Collapse
Affiliation(s)
- Saif Ullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Faculty of Veterinary and Animal Science, Lasbela University of Agriculture Water and Marine Science, Uthal, Balochistan, 90150, Pakistan
| | - Maoduo Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Sheeraz Mustafa
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Muhammad Shafiq
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wei Wang
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Muhammad Jan
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture Water and Marine Science, Uthal, Balochistan, 90150, Pakistan
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
25
|
Brownstein AJ, Ganesan S, Summers CM, Pearce S, Hale BJ, Ross JW, Gabler N, Seibert JT, Rhoads RP, Baumgard LH, Selsby JT. Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiol Rep 2018. [PMID: 28646096 PMCID: PMC5492206 DOI: 10.14814/phy2.13317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously established that 24 h of environmental hyperthermia causes oxidative stress and have implicated mitochondria as likely contributors to this process. Given this, we hypothesized that heat stress would lead to increased autophagy/mitophagy and a reduction in mitochondrial content. To address this hypothesis pigs were housed in thermoneutral (TN; 20°C) or heat stress (35°C) conditions for 1- (HS1) or 3- (HS3) days and the red and white portions of the semitendinosus collected. We did not detect differences in glycolytic muscle. Counter to our hypothesis, upstream activation of autophagy was largely similar between groups as were markers of autophagosome nucleation and elongation. LC3A/B-I increased 1.6-fold in HS1 and HS3 compared to TN (P < 0.05), LC3A/B-II was increased 4.1-fold in HS1 and 4.8-fold in HS3 relative to TN, (P < 0.05) and the LC3A/B-II/I ratio was increased 3-fold in HS1 and HS3 compared to TN suggesting an accumulation of autophagosomes. p62 was dramatically increased in HS1 and HS3 compared to TN Heat stress decreased mitophagy markers PINK1 7.0-fold in HS1 (P < 0.05) and numerically by 2.4-fold in HS3 compared to TN and BNIP3L/NIX by 2.5-fold (P < 0.05) in HS1 and HS3. Markers of mitochondrial content were largely increased without activation of PGC-1α signaling. In total, these data suggest heat-stress-mediated suppression of activation of autophagy and autophagosomal degradation, which may enable the persistence of damaged mitochondria in muscle cells and promote a dysfunctional intracellular environment.
Collapse
Affiliation(s)
| | - Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Corey M Summers
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Sarah Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Nicholas Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
26
|
Ganesan S, Brownstein AJ, Pearce SC, Hudson MB, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Prolonged environment-induced hyperthermia alters autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol 2018; 74:160-169. [PMID: 29801622 DOI: 10.1016/j.jtherbio.2018.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 11/26/2022]
Abstract
Prolonged heat stress represents a continuing threat to human health and agricultural production. Despite the broad, negative impact of prolonged hyperthermia little is known about underlying pathological mechanisms leading to negative health outcomes, which has limited the development of etiological interventions and left clinicians and producers with only cooling and rehydration strategies. The purpose of this investigation was to determine the extent to which prolonged environment-induced hyperthermia altered autophagy in oxidative skeletal muscle in a large animal model, serving the dual purpose of accurately modeling human physiology as well as agricultural production. We hypothesized that prolonged hyperthermia would induce autophagy in skeletal muscle, independent of the accompanying caloric restriction. To test this hypothesis pigs were treated as follows: thermoneutral (20 °C), heat stress (35 °C), or were held under thermoneutral conditions but pair-fed to the heat stress group for seven days. Upon euthanasia the red portion of the semitendinosus was collected. We found that prolonged hyperthermic exposure increased oxidative stress without a corresponding change in antioxidant enzyme activities. Hyperthermia prevented initiation of autophagy despite increased markers of nucleation, elongation and autophagosome formation. However, p62 relative protein abundance, which is inversely correlated with autophagic degradation, was strongly increased suggesting suppressed degradation of autophagosomes. Markers of mitophagy and mitochondrial abundance were largely similar between groups. These data indicate that faulty autophagy plays a key role in hyperthermic muscle dysfunction.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, 19716, USA
| | - Nicolas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
27
|
Ganesan S, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol 2018; 72:73-80. [PMID: 29496018 DOI: 10.1016/j.jtherbio.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/30/2022]
Abstract
Prolonged environment-induced hyperthermia causes morbidities and mortality in humans and animals and appears to cause organ-specific injury and dysfunction. We have previously determined autophagic dysfunction and apoptotic signaling in oxidative skeletal muscle following prolonged hyperthermia. The aim of this investigation was to extend our knowledge regarding the early chronology of heat stress-mediated apoptotic and autophagic signaling in oxidative skeletal muscle. We hypothesized that 2, 4, and 6 h of hyperthermia would increase apoptosis and autophagy in oxidative skeletal muscle compared to thermoneutral (TN) conditions. Pigs were assigned to four groups (n = 8/group) and exposed to environmental heat stress (37 °C) for 0, 2, 4, or 6 h. Immediately following environmental exposure animals were euthanized and the red portion of the semitendinosus was collected. Markers of apoptotic signaling were increased following 2 h of heating but returned to baseline thereafter, while caspase 3 activity remained elevated 2-3 fold (p < .05) throughout the hyperthermic period. Heat stress increased (p < .05) markers of autophagic activation, and nucleation as well as autophagosome formation and degradation linearly throughout the heating intervention. In addition, 6 h of hyperthermia increased (p < .05) markers of mitophagy. These data suggest that apoptotic signaling precedes increased autophagy during acute heat stress in oxidative skeletal muscle.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
28
|
Hashem HE, Fikry AA. Modulation of heat shock protein immunolocalization in cerebral cortex by melatonin therapy in heat stressed rats. Histol Histopathol 2018. [DOI: 10.7243/2055-091x-5-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|