1
|
Hamadi N, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Nemmar A. Chronic Exposure to Two Regimens of Waterpipe Smoke Elicits Lung Injury, Genotoxicity, and Mitochondrial Impairment with the Involvement of MAPKs Activation in Mice. Int J Mol Sci 2025; 26:430. [PMID: 39796284 PMCID: PMC11722325 DOI: 10.3390/ijms26010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis. Only R-WPS increased the number of neutrophil polymorphs and plasma cells. R-WPS also significantly increased the chemokines CXCL1, CXCL2, and CCL2 in the lung, BALF, and plasma, while O-WPS increased CXCL1 and CXCL2 in the lung and CXCL1 in the plasma. Both exposure regimens significantly increased lung injury markers, including matrix metalloproteinase-9 and myeloperoxidase. Additionally, R-WPS induced a significant increase in the cytokines IL1β, IL6, and TNFα in the lung, BALF, and plasma, while O-WPS elevated IL1β and IL6 in the lung. Oxidative stress was observed, with increased levels of thiobarbituric acid reactive substances and superoxide dismutase in both the O-WPS and R-WPS groups. Exposure to either O-WPS or R-WPS triggered genotoxicity and altered mitochondrial complex activities. R-WPS exposure also resulted in elevated expression of p-JNK/JNK, p-ERK/ERK, and p-p38/p38, while O-WPS augmented the p-ERK/ERK ratio in the lungs. Taken together, these findings indicate that both O-WPS and R-WPS contribute to lung injury and induce inflammation, oxidative stress, genotoxicity, and mitochondrial dysfunction, with R-WPS having a more pronounced effect. These effects were associated with the activation of MAPKs.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Abderrahim Nemmar
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| |
Collapse
|
2
|
Norouzi A, Dehghani T, Eftekhar E. Water-pipe Tobacco Components and their Association with Oxidative Stress. ADDICTION & HEALTH 2024; 16:205-212. [PMID: 39439856 PMCID: PMC11491865 DOI: 10.34172/ahj.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress (OS) results from an imbalance between the formation and detoxification of reactive species. Although reactive species at low or moderate levels play numerous physiological roles, high concentrations can lead to disturbances in signaling and metabolic pathways and cause different metabolic, chronic, and age-related disorders. Several endogenous and exogenous processes may lead to the formation of reactive species. The severity of OS can be reduced with the help of antioxidants. Tobacco is one of the most important environmental factors contributing to reactive species production. After cigarette smoking, water-pipe tobacco (WPT) smoking is ranked as the second most popular tobacco product. Its popularity is proliferating due to flavored products, social acceptability, etc. However, studies have shown that WPT smoking is associated with an increased risk of arterial stiffness, ischemic heart disease, and several cancer types. In this study, we aimed to review the most recent evidence on WPT smoking constituents and their association with OS.
Collapse
Affiliation(s)
- Aida Norouzi
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tahereh Dehghani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Nemmar A, Beegam S, Zaaba NE, Elzaki O, Pathan A, Ali BH. Waterpipe smoke inhalation induces lung injury and aortic endothelial dysfunction in mice. Physiol Res 2023; 72:337-347. [PMID: 37449747 PMCID: PMC10669000 DOI: 10.33549/physiolres.935042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 08/26/2023] Open
Abstract
Waterpipe tobacco smoking (WPS) inhalation has been shown to trigger endothelial dysfunction and atherosclerosis. However, the mechanisms underlying these effects are still unknown. Here, we assessed the impact and underlying mechanism of WPS exposure for one month on endothelial dysfunction using aortic tissue of mice. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Inhalation of WPS induced an increase in the number of macrophages and neutrophils and the concentrations of protein, tumor necrosis factor alpha (TNF alpha), interleukin (IL)-1beta, and glutathione in bronchoalveolar lavage fluid. Moreover, the concentrations of proinflammatory cytokines (TNF alpha, IL-6 and IL-1beta), adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and P-selectin) and markers of oxidative stress (lipid peroxidation, glutathione, superoxide dismutase and nitric oxide) in aortic homogenates of mice exposed to WPS were significantly augmented compared with air exposed mice. Likewise, the concentration of galectin-3 was significantly increased in the aortic homogenates of mice exposed to WPS compared with control group. WPS inhalation induced vascular DNA damage assessed by comet assay and apoptosis characterized by a significant increase in cleaved caspase-3. While the aortic expression of phosphorylated nuclear factor kappaB (NF-kappaB) was significantly increased following WPS inhalation, the concentration of sirtuin 1 (SIRT1) was significantly decreased in WPS group compared with air-exposed group. In conclusion, our study provided evidence that WPS inhalation triggers lung injury and endothelial inflammation, oxidative stress and apoptosis which were associated with nuclear factor-kappaB activation and SIRT1 down-regulation.
Collapse
Affiliation(s)
- A Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. and
| | | | | | | | | | | |
Collapse
|
4
|
Hassane M, Rahal Z, Karaoghlanian N, Zhang J, Sinjab A, Wong JW, Lu W, Scheet P, Lee JJ, Raso MG, Solis LM, Fujimoto J, Chami H, Shihadeh AL, Kadara H. Chronic Exposure to Waterpipe Smoke Elicits Immunomodulatory and Carcinogenic Effects in the Lung. Cancer Prev Res (Phila) 2022; 15:423-434. [PMID: 35468191 PMCID: PMC9256796 DOI: 10.1158/1940-6207.capr-21-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023]
Abstract
Effects of waterpipe smoking on lung pathobiology and carcinogenesis remain sparse despite the worldwide emergence of this tobacco vector. To address this gap, we investigated the effects of chronic waterpipe smoke (WPS) exposure on lung pathobiology, host immunity, and tumorigenesis using an experimental animal model that is prone to tobacco carcinogens and an exploratory observational analysis of human waterpipe smokers and nonsmokers. Mice exhibited elevated incidence of lung tumors following heavy WPS exposure (5 days/week for 20 weeks) compared to littermates with light WPS (once/week for 20 weeks) or control air. Lungs of mice exposed to heavy WPS showed augmented CD8+ and CD4+ T cell counts along with elevated protumor immune phenotypes including increased IL17A in T/B cells, PD-L1 on tumor and immune cells, and the proinflammatory cytokine IL1β in myeloid cells. RNA-sequencing (RNA-seq) analysis showed reduced antitumor immune gene signatures in animals exposed to heavy WPS relative to control air. We also performed RNA-seq analysis of airway epithelia from bronchial brushings of cancer-free waterpipe smokers and nonsmokers undergoing diagnostic bronchoscopy. Transcriptomes of normal airway cells in waterpipe smokers, relative to waterpipe nonsmokers, harbored gene programs that were associated with poor clinical outcomes in patients with lung adenocarcinoma, alluding to a WPS-associated molecular injury, like that established in response to cigarette smoking. Our findings support the notion that WPS exhibits carcinogenic effects and constitutes a possible risk factor for lung cancer as well as warrant future studies that can guide evidence-based policies for mitigating waterpipe smoking. PREVENTION RELEVANCE Potential carcinogenic effects of waterpipe smoking are very poorly understood despite its emergence as a socially acceptable form of smoking. Our work highlights carcinogenic effects of waterpipe smoking in the lung and, thus, accentuate the need for inclusion of individuals with exclusive waterpipe smoking in prevention and smoking cessation studies.
Collapse
Affiliation(s)
- Maya Hassane
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jiexin Zhang
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin W. Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J. Jack Lee
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hassan Chami
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,School of Medicine, John Hopkins University, Baltimore, Maryland, USA
| | - Alan L. Shihadeh
- Faculty of Engineering, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Correspondence to Humam Kadara, PhD, Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, Telephone: 713-745-9396,
| |
Collapse
|
5
|
Schirone L, Loffredo L, Carnevale R, Battaglia S, Marti R, Pizzolo S, Bartimoccia S, Nocella C, Cammisotto V, Saade W, Tanzilli A, Sciarretta S, Chimenti I, De Falco E, Cavarretta E, Picchio V, Peruzzi M, Marullo A, Miraldi F, Violi F, Morelli A, Biondi-Zoccai G, Frati G. Sex-Related Differences in Oxidative, Platelet, and Vascular Function in Chronic Users of Heat-not-Burn vs. Traditional Combustion Cigarettes. Antioxidants (Basel) 2022; 11:1237. [PMID: 35883727 PMCID: PMC9311916 DOI: 10.3390/antiox11071237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Smoking is still a major cardiovascular risk factor, despite many public awareness campaigns and dedicated interventions. Recently, modified risk products (MRP), e.g., heat-not-burn cigarettes (HNBCs), have been introduced as surrogates of traditional combustion cigarettes (TCCs). Although these products are promoted as healthier than TCCs, few studies have been conducted to assess it. This work is a sex-focused sub-study of a prospective observational study in which apparently healthy chronic TCC smokers were age-matched with regular HNBC users. Blood samples were collected for biochemical assays and blood pressure and flow-mediated dilation (FMD) were measured. Out of 60 subjects, 33 (55%) were women, and 27 (45%) men, with 11 (33%) vs. 9 (33%) non-smokers, respectively, 10 (30%) vs. 10 (37%) TCC smokers, and 12 (36%) vs. 8 (30%) HNBC smokers (p = 0.946). Bivariate and multivariable analyses showed no statistically significant between-sex differences in NO, H2O2, sCD40L, sNox2-dp, sP-selectin, platelet aggregation, cotinine or FMD, overall, in non-smokers, in TCC smokers, or in HNBC smokers (all p > 0.05). HNBCs appeared safer than TCCs when focusing on Nox2-dp (p = 0.026) and sP-selectin (p = 0.050) but had similar levels of the other measured markers. In conclusion, HNBCs have similar detrimental effects on women and men’s oxidative stress (H2O2: p = 0.49; sNox2-dp: p = 0.31) and platelet activation (sP-selectin: p = 0.33; platelet aggregation p = 0.87).
Collapse
Affiliation(s)
- Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Simona Battaglia
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.B.); (R.M.); (S.P.)
| | - Roberta Marti
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.B.); (R.M.); (S.P.)
| | - Stefano Pizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.B.); (R.M.); (S.P.)
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Wael Saade
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Alessandra Tanzilli
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- IRCCS NeuroMed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Vittorio Picchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Antonino Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
| | - Fabio Miraldi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Andrea Morelli
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (L.L.); (S.B.); (C.N.); (V.C.); (W.S.); (A.T.); (M.P.); (F.M.); (F.V.); (A.M.)
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- Mediterranea Cardiocentro, Via Orazio 2, 80122 Napoli, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (R.C.); (S.S.); (I.C.); (E.D.F.); (E.C.); (V.P.); (A.M.); (G.B.-Z.); (G.F.)
- IRCCS NeuroMed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
6
|
Waterpipe tobacco smoke and health: What we have learned from rodent models? Life Sci 2021; 284:119898. [PMID: 34453942 DOI: 10.1016/j.lfs.2021.119898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
AIMS Waterpipe smoking (WPS) is a popular form of tobacco smoking. This is due to the misperception that WPS is less detrimental than cigarette smoking. This review aimed to present the adverse effects of WPS on health outcomes through utilizing animal models. MAIN METHODS The design of the current study is systematic review. PubMed, HINARI, Google, and SCOPUS databases were searched for the adverse effects of WPS on general health in rodents. Certain key information was extracted and collected from the included studies. KEY FINDINGS After screening different databases and removal of duplicates, 43 papers were included in this review. It was found that WPS was able to negatively affect the oxidative stress and inflammatory biomarkers in mice. Furthermore, WPS increased the levels of Tumor necrosis factor-α and 8-isoprostane, and DNA damage in mice lung homogenates. Additionally, chronic exposure to WPS increased the serum levels of creatinine and blood urea nitrogen in mice; indicating injury to renal tissues. The negative effect of WPS extends to affect offspring rats following prenatal WPS, in which WPS in utero lead to remarkable increase in the levels of testosterone, estrogen and follicle-stimulating hormones in WPS exposed animals. SIGNIFICANCE This systematic review highlighted the adverse effects of WPS on health outcomes at cellular and biochemical levels in different tissues and organs of rodents. The current reviews' findings highlighted the great hazards presented by WPS in the selected rodents' model and the essential necessity for future improved management of WPS indoor consumption.
Collapse
|
7
|
Nemmar A, Al-Salam S, Beegam S, Zaaba NE, Ali BH. Effect of smoking cessation on chronic waterpipe smoke inhalation-induced airway hyperresponsiveness, inflammation, and oxidative stress. Am J Physiol Lung Cell Mol Physiol 2021; 320:L791-L802. [PMID: 33719568 DOI: 10.1152/ajplung.00420.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Waterpipe smoking (WPS) prevalence is increasing globally. Clinical and laboratory investigations reported that WPS triggers impairment of pulmonary function, inflammation, and oxidative stress. However, little is known if smoking cessation (SC) would reverse the adverse pulmonary effects induced by WPS. Therefore, we evaluated the impact of WPS inhalation for 3 mo followed by 3 mo of SC (air exposure) compared with those exposed for either 3 or 6 mo to WPS or air (control) in C57BL/6 mice. To this end, various physiological, biochemical, and histological endpoints were evaluated in the lung tissue. Exposure to WPS caused focal areas of dilated alveolar spaces and foci of widening of interalveolar spaces with peribronchiolar moderate mixed inflammatory cells consisting of lymphocytes, macrophages, and neutrophil polymorphs. The latter effects were mitigated by SC. Likewise, SC reversed the increase of airway resistance and reduced the increase in the levels of myeloperoxidase, matrix metalloproteinase 9, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β in lung tissue induced by WPS. In addition, SC attenuated the increase of oxidative stress markers including 8-isoprostane, glutathione, and catalase induced by WPS. Similarly, DNA damage, apoptosis, and the expression of NF-κB in the lung induced by WPS inhalation were alleviated by CS. In conclusion, our data demonstrated, for the first time, to our knowledge, that SC-mitigated WPS inhalation induced an increase in airway resistance, inflammation, oxidative stress, DNA injury, and apoptosis, illustrating the benefits of SC on lung physiology.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nur E Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
8
|
Abi-Gerges A, Dagher-Hamalian C, Abou-Khalil P, Chahine JB, Hachem P, Khalil C. Evaluation of waterpipe smoke toxicity in C57BL/6 mice model. Pulm Pharmacol Ther 2020; 63:101940. [PMID: 32889155 DOI: 10.1016/j.pupt.2020.101940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
Waterpipe smoking is a popular pastime worldwide with statistics pointing to an alarming increase in consumption. In the current paper, the evaluation of sub-chronic waterpipe smoke exposure was undertaken using C57BL/6 female mice using a dynamic exposure setting to emulate smoke exposure. Mice were daily subjected to either one (single exposure, SE) or two sessions (double exposure, DE) of waterpipe-generated smoke (two-apple flavor) for a period of two months. Although lungs histopathological examination pointed to a minor inflammation in smoke-exposed mice compared to control air-exposed (CON) group, the lung weights of the waterpipe-exposed mice were significantly higher (+72% in SE and +39% in DE) (p < 0.01) when compared to CON group. Moreover, changes in the protein expression of several proteins such as iNOS and JNK were noted in the lungs of smoke-exposed mice. However, no changes in p38 and EGFR protein levels were noted between the three groups of mice. Our results mainly showed a significant increase in urea serum levels (+28%) in SE mice along with renal pathological damage in both SE and DE mice compared to CON. Additionally, severe significant DNA damages (p < 0.05) were reported in the lungs, kidneys, bone marrow and liver of waterpipe-exposed animals, using MTS and COMET assays. These findings highlighted the significant risks posed by sub-chronic waterpipe smoke exposure in the selected animal model and the pressing need for future better management of waterpipe indoor consumption.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Pamela Abou-Khalil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Joe Braham Chahine
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Pia Hachem
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Christian Khalil
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
9
|
Alomari MA, Alzoubi KH, Khabour OF. Differences in oxidative stress profile in adolescents smoking waterpipe versus cigarettes: The Irbid TRY Project. Physiol Rep 2020. [PMCID: PMC7484827 DOI: 10.14814/phy2.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mahmoud A. Alomari
- Department of Physical Education Qatar University Doha Qatar
- Division of Physical Therapy Department of Rehabilitation Sciences Jordan University of Science and Technology Irbid Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy Jordan University of Science and Technology Irbid Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|
10
|
Wang Q, Sundar IK, Li D, Lucas JH, Muthumalage T, McDonough SR, Rahman I. E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR α7 receptor: role of nAChR α7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation. Respir Res 2020; 21:154. [PMID: 32552811 PMCID: PMC7301079 DOI: 10.1186/s12931-020-01396-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanisms that mediate toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChRα7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lung tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased SARS-Cov-2 Covid-19 ACE2 receptor, whereas nAChRα7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8 and MMP9, were altered both at the protein and mRNA transcript levels in female and male KO mice, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChRα7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin, significantly in a sex-dependent manner, but without the direct role of nAChRα7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChRα7 in a sex-dependent manner.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph H Lucas
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Samantha R McDonough
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
Wang Q, Sundar I, Li D, Lucas J, Muthumalage T, McDonough S, Rahman I. E-cigarette-Induced Pulmonary Inflammation and Dysregulated Repair are Mediated by nAChR α7 Receptor: Role of nAChR α7 in ACE2 Covid-19 receptor regulation. RESEARCH SQUARE 2020:rs.2.23829. [PMID: 32702718 PMCID: PMC7336696 DOI: 10.21203/rs.2.23829/v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanism that mediate, toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChR α7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lungs tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased the inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased ACE2 Covid-19 receptor, whereas nAChR α7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8, and MMP9 were altered both at the protein and mRNA transcript levels in female and male, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChR α7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin significantly in a sex-dependent manner, but without the direct role of nAChR α7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChR α7 in a sex-dependent manner.
Collapse
|
12
|
Alarabi AB, Karim ZA, Ramirez JEM, Hernandez KR, Lozano PA, Rivera JO, Alshbool FZ, Khasawneh FT. Short-Term Exposure to Waterpipe/Hookah Smoke Triggers a Hyperactive Platelet Activation State and Increases the Risk of Thrombogenesis. Arterioscler Thromb Vasc Biol 2020; 40:335-349. [PMID: 31941383 DOI: 10.1161/atvbaha.119.313435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cardiovascular disease is a major public health problem. Among cardiovascular disease's risk factors, tobacco smoking is considered the single most preventable cause of death, with thrombosis being the main mechanism of cardiovascular disease mortality in smokers. While tobacco smoking has been on the decline, the use of waterpipes/hookah has been rising, mainly due to the perception that they are less harmful than regular cigarettes. Strikingly, there are few studies on the negative effects of waterpipes on the cardiovascular system, and none regarding their direct contribution to thrombus formation. Approach and Results: We used a waterpipe whole-body exposure protocol that mimics real-life human exposure scenarios and investigated its effects, relative to clean air, on platelet function, hemostasis, and thrombogenesis. We found that waterpipe smoke (WPS)-exposed mice exhibited both shortened thrombus occlusion and bleeding times. Further, our results show that platelets from WPS-exposed mice are hyperactive, with enhanced agonist-induced aggregation, dense and α-granule secretion, αIIbβ3 integrin activation, phosphatidylserine expression, and platelet spreading, when compared with clean air-exposed platelets. Finally, at the molecular level, it was found that Akt (protein kinase B) and ERK (extracellular signal-regulated kinases) phosphorylation are enhanced in the WPS and in nicotine-treated platelets. CONCLUSIONS Our findings demonstrate that WPS exposure directly modulates hemostasis and increases the risk of thrombosis and that this is mediated, in part, via a state of platelet hyperactivity. The negative health impact of WPS/hookah, therefore, should not be underestimated. Moreover, this study should also help in raising public awareness of the toxic effects of waterpipe/hookah.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Zubair A Karim
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Jean E Montes Ramirez
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Keziah R Hernandez
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Patricia A Lozano
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - José O Rivera
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Fatima Z Alshbool
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Fadi T Khasawneh
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| |
Collapse
|
13
|
Reyes-Caballero H, Park B, Loube J, Sanchez I, Vinayachandran V, Choi Y, Woo J, Edwards J, Brinkman MC, Sussan T, Mitzner W, Biswal S. Immune modulation by chronic exposure to waterpipe smoke and immediate-early gene regulation in murine lungs. Tob Control 2019; 29:s80-s89. [PMID: 31852817 DOI: 10.1136/tobaccocontrol-2019-054965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We investigated the effects of chronic waterpipe (WP) smoke on pulmonary function and immune response in a murine model using a research-grade WP and the effects of acute exposure on the regulation of immediate-early genes (IEGs). METHODS WP smoke was generated using three WP smoke puffing regimens based on the Beirut regimen. WP smoke samples generated under these puffing regimens were quantified for nicotine concentration. Mice were chronically exposed for 6 months followed by assessment of pulmonary function and airway inflammation. Transcriptomic analysis using RNAseq was conducted after acute exposure to characterise the IEG response. These biomarkers were then compared with those generated after exposure to dry smoke (without water added to the WP bowl). RESULTS We determined that nicotine composition in WP smoke ranged from 0.4 to 2.5 mg per puffing session. The lung immune response was sensitive to the incremental severity of chronic exposure, with modest decreases in airway inflammatory cells and chemokine levels compared with air-exposed controls. Pulmonary function was unmodified by chronic WP exposure. Acute WP exposure was found to activate the immune response and identified known and novel IEG as potential biomarkers of WP exposure. CONCLUSION Chronic exposure to WP smoke leads to immune suppression without significant changes to pulmonary function. Transcriptomic analysis of the lung after acute exposure to WP smoke showed activation of the immune response and revealed IEGs that are common to WP and dry smoke, as well as pools of IEGs unique to each exposure, identifying potential biomarkers specific to WP exposure.
Collapse
Affiliation(s)
- Hermes Reyes-Caballero
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bongsoo Park
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey Loube
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ian Sanchez
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vinesh Vinayachandran
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Youngshim Choi
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Juhyung Woo
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Edwards
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Thomas Sussan
- Toxicology Directorate, US Army Public Health Command, Aberdeen Proving Ground, Maryland, USA
| | - Wayne Mitzner
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shyam Biswal
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Khan NA, Lawyer G, McDonough S, Wang Q, Kassem NO, Kas-Petrus F, Ye D, Singh KP, Kassem NO, Rahman I. Systemic biomarkers of inflammation, oxidative stress and tissue injury and repair among waterpipe, cigarette and dual tobacco smokers. Tob Control 2019; 29:s102-s109. [PMID: 31494573 DOI: 10.1136/tobaccocontrol-2019-054958] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Waterpipe tobacco (WPT) smoking is associated with deleterious effects on cardio-pulmonary systems which may have adverse repercussions in pathophysiology and progression of chronic lung and cardiovascular diseases. We compared the biomarkers of systemic inflammation, lipid mediators, injury/repair and oxidative stress between groups of non-smokers (NS), exclusive WPT smokers (WPS), exclusive cigarette smokers (CS) and dual WPS and CS (DS). METHODS Two cohorts were recruited. Cohort I consisted of WPS (n=12), CS (n=26), DS (n=10) and NS (n=25). Cohort II consisted of WPS (n=33) and NS (n=24). Plasma and urine samples were collected and analysed for various systemic biomarkers. RESULTS Compared with NS, plasma levels of inflammatory mediators (interleukin (IL)-6, IL-8, IL1β and tumor necrosis factor-α) were significantly higher in WPS and CS, and were further augmented in DS. Endothelial biomarkers (intracellular adhesion molecule-1, prostaglandin E-2 and metalloproteinase-9) were significantly higher in CS. Most notably, pro-resolving lipid mediator (resolvin E1) and biomarkers of immunity, tissue injury, and repair were significantly lower in WPS and CS. Urinary levels of 8-isoprostane were significantly higher in all smoking groups in cohort I, while 8-isoprostane, myeloperoxidase, receptor for advanced glycation end products (RAGE), En-RAGE and matrix metalloproteinase-9 were significantly higher in all smoking groups in cohort II. CONCLUSIONS Biomarkers of inflammation, oxidative stress, immunity, tissue injury and repair were elevated in WPS and CS groups. Furthermore, concurrent use of WPT and cigarettes is more harmful than cigarette or WPT smoking alone. These data may help inform the public and policy-makers about the dangers of WPT smoking and dual use of tobacco products.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Gina Lawyer
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Samantha McDonough
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Noura O Kassem
- Hookah Studies Division, Center for Behavioral Epidemiology and Community Health, San Diego State University, San Diego, California, USA
| | - Flora Kas-Petrus
- Hookah Studies Division, Center for Behavioral Epidemiology and Community Health, San Diego State University, San Diego, California, USA
| | - Dongxia Ye
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Nada Of Kassem
- Hookah Studies Division, Center for Behavioral Epidemiology and Community Health, San Diego State University, San Diego, California, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
15
|
Wang Q, Khan NA, Muthumalage T, Lawyer GR, McDonough SR, Chuang TD, Gong M, Sundar IK, Rehan VK, Rahman I. Dysregulated repair and inflammatory responses by e-cigarette-derived inhaled nicotine and humectant propylene glycol in a sex-dependent manner in mouse lung. FASEB Bioadv 2019; 1:609-623. [PMID: 31825014 PMCID: PMC6902908 DOI: 10.1096/fba.2019-00048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nicotine inhalation via electronic cigarettes (e‐cigs) is an emerging concern. However, little is known about the acute toxicity in the lungs following inhalation of nicotine‐containing e‐cig aerosols. We hypothesized that acute exposure to aerosolized nicotine causes lung toxicity by eliciting inflammatory and dysregulated repair responses. Adult C57BL/6J mice were exposed 2 hours daily for 3 days to e‐cig aerosols containing propylene glycol (PG) with or without nicotine. Acute exposure to nicotine‐containing e‐cig aerosols induced inflammatory cell influx (neutrophils and CD8a+ T lymphocytes), and release of pro‐inflammatory cytokines in bronchoalveolar lavage fluid in a sex‐dependent manner. Inhalation of e‐cig aerosol containing PG alone significantly augmented the lung levels of various homeostasis/repair mediators (PPARγ, ADRP, ACTA2, CTNNB1, LEF1, β‐catenin, E‐cadherin, and MMP2) in a sex‐dependent manner when compared to air controls. These findings were accompanied by an increase in protein abundance and altered gene expression of lipogenic markers (PPARγ, ADRP) and myogenic markers (fibronectin, α‐smooth muscle actin and β‐catenin), suggesting a dysregulated repair response in mouse lungs. Furthermore, exposure to nicotine‐containing e‐cig aerosols or PG alone differentially affected the release of pro‐inflammatory cytokines in healthy and COPD human 3D EpiAirway tissues. Overall, acute exposure to nicotine‐containing e‐cig aerosols was sufficient to elicit a pro‐inflammatory response and altered mRNA and protein levels of myogenic, lipogenic, and extracellular matrix markers in mouse lung in a sex‐dependent manner. Thus, acute exposure to inhaled nicotine via e‐cig leads to dysregulated repair and inflammatory responses, which may lead to airway remodeling in the lungs.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Naushad Ahmad Khan
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Gina R Lawyer
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Samantha R McDonough
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tsai-Der Chuang
- Department of Pediatrics and Molecular Toxicology, David Geffen School of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ming Gong
- Department of Pediatrics and Molecular Toxicology, David Geffen School of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Virender K Rehan
- Department of Pediatrics and Molecular Toxicology, David Geffen School of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
16
|
Khan NA, Yogeswaran S, Wang Q, Muthumalage T, Sundar IK, Rahman I. Waterpipe smoke and e-cigarette vapor differentially affect circadian molecular clock gene expression in mouse lungs. PLoS One 2019; 14:e0211645. [PMID: 30811401 PMCID: PMC6392409 DOI: 10.1371/journal.pone.0211645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
The use of emerging tobacco products, such as waterpipe or hookah and electronic cigarettes (e-cigs), has gained significant popularity and are promoted as safer alternatives to conventional cigarettes. Circadian systems are internal biological oscillations that are considered important regulators of immune functions in mammals. Tobacco induced inflammatory lung diseases frequently exhibit time-of-day/night variation in lung function and symptom severity. We investigated the impact of inhaled e-cig vapor and waterpipe smoke (WPS) on pulmonary circadian molecular clock disruption by determining the changes in expression levels and abundance of core clock component genes (BMAL1, CLOCK) and clock-controlled output genes (Rev-erbα, Per2, Rev-erbβ, Cry2, Rorα) in mouse lungs. We showed that the expression levels of these pulmonary core clock genes and clock-controlled output genes were altered significantly following exposure to WPS (Bmal1, Clock, and Rev-erbα). We further showed a significant yet differential effect on expression levels of core clock and clock-controlled genes (Bmal1, Per2) in the lungs of mice exposed to e-cig vapor containing nicotine. Thus, acute exposure to WPS and e-cig vapor containing nicotine contributes to altered expression of circadian molecular clock genes in mouse lungs, which may have repercussions on lung cellular and biological functions.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Isaac K. Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
17
|
Rychlik KA, Secrest JR, Lau C, Pulczinski J, Zamora ML, Leal J, Langley R, Myatt LG, Raju M, Chang RCA, Li Y, Golding MC, Rodrigues-Hoffmann A, Molina MJ, Zhang R, Johnson NM. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc Natl Acad Sci U S A 2019; 116:3443-3448. [PMID: 30808738 PMCID: PMC6397543 DOI: 10.1073/pnas.1816103116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early life exposure to fine particulate matter (PM) in air is associated with infant respiratory disease and childhood asthma, but limited epidemiological data exist concerning the impacts of ultrafine particles (UFPs) on the etiology of childhood respiratory disease. Specifically, the role of UFPs in amplifying Th2- and/or Th17-driven inflammation (asthma promotion) or suppressing effector T cells (increased susceptibility to respiratory infection) remains unclear. Using a mouse model of in utero UFP exposure, we determined early immunological responses to house dust mite (HDM) allergen in offspring challenged from 0 to 4 wk of age. Two mice strains were exposed throughout gestation: C57BL/6 (sensitive to oxidative stress) and BALB/C (sensitive to allergen exposure). Offspring exposed to UFPs in utero exhibited reduced inflammatory response to HDM. Compared with filtered air (FA)-exposed/HDM-challenged mice, UFP-exposed offspring had lower white blood cell counts in bronchoalveolar lavage fluid and less pronounced peribronchiolar inflammation in both strains, albeit more apparent in C57BL/6 mice. In the C57BL/6 strain, offspring exposed in utero to FA and challenged with HDM exhibited a robust response in inflammatory cytokines IL-13 and Il-17. In contrast, this response was lost in offspring exposed in utero to UFPs. Circulating IL-10 was significantly up-regulated in C57BL/6 offspring exposed to UFPs, suggesting increased regulatory T cell expression and suppressed Th2/Th17 response. Our results reveal that in utero UFP exposure at a level close to the WHO recommended PM guideline suppresses an early immune response to HDM allergen, likely predisposing neonates to respiratory infection and altering long-term pulmonary health.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Jeremiah R Secrest
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jairus Pulczinski
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Misti L Zamora
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843
| | - Jeann Leal
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Rebecca Langley
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Louise G Myatt
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Muppala Raju
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843
| | - Richard C-A Chang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | | | - Mario J Molina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843;
| |
Collapse
|