1
|
Qin J, Yang T, Li K, Liu T, Zhang W. Pharyngeal mechanosensory neurons control food swallow in Drosophila melanogaster. eLife 2024; 12:RP88614. [PMID: 39630079 PMCID: PMC11616994 DOI: 10.7554/elife.88614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.
Collapse
Affiliation(s)
- Jierui Qin
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Tingting Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Kexin Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Wei Zhang
- Tsinghua-Peking Center for Life ScienceBeijingChina
| |
Collapse
|
2
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Aitken CM, Jaramillo JCM, Davis W, Brennan‐Xie L, McDougall SJ, Lawrence AJ, Ryan PJ. Feeding signals inhibit fluid-satiation signals in the mouse lateral parabrachial nucleus to increase intake of highly palatable, caloric solutions. J Neurochem 2023; 167:648-667. [PMID: 37855271 PMCID: PMC10952698 DOI: 10.1111/jnc.15991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
Chemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (OxtrPBN neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating OxtrPBN neurons on satiation for different types of fluids. Chemogenetic activation of OxtrPBN neurons in male and female transgenic OxtrCre mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.72 g protein, 3.27 g fat, 13.42 g carbohydrates, and 1.01 g dietary fibre per 100 mL). OxtrPBN neuron activation also suppressed cumulative, longer-term (2-h) intake of lower caloric, less palatable solutions, but not highly caloric, palatable solutions. These results suggest that OxtrPBN neurons predominantly control initial fluid-satiation responses after rehydration, but not longer-term intake of highly caloric, palatable solutions. The suppression of fluid intake was not because of anxiogenesis, but because OxtrPBN neuron activation decreased anxiety-like behaviour. To investigate the role of different PBN subdivisions on the intake of different solutions, we examined FOS as a proxy marker of PBN neuron activation. Different PBN subdivisions were activated by different solutions: the dorsolateral PBN similarly by all fluids; the external lateral PBN by caloric but not non-caloric solutions; and the central lateral PBN primarily by highly palatable solutions, suggesting PBN subdivisions regulate different aspects of fluid intake. To explore the possible mechanisms underlying the minimal suppression of Ensure® after OxtrPBN neuron activation, we demonstrated in in vitro slice recordings that the feeding-associated agouti-related peptide (AgRP) inhibited OxtrPBN neuron firing in a concentration-related manner, suggesting possible inhibition by feeding-related neurocircuitry of fluid satiation neurocircuitry. Overall, this research suggests that although palatable beverages like sucrose- and ethanol-containing beverages activate fluid satiation signals encoded by OxtrPBN neurons, these neurons can be inhibited by hunger-related signals (agouti-related peptide, AgRP), which may explain why these fluids are often consumed in excess of what is required for fluid satiation.
Collapse
Affiliation(s)
- Connor M. Aitken
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Department of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Janine C. M. Jaramillo
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Department of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Warren Davis
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Department of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Liam Brennan‐Xie
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Stuart J. McDougall
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Department of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Philip J. Ryan
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Department of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Tsai HY, Chao A, Hsiao WL. The effectiveness of cold oral stimuli in quenching postoperative thirst: A systematic review and meta-analysis. Intensive Crit Care Nurs 2023; 75:103359. [PMID: 36535871 DOI: 10.1016/j.iccn.2022.103359] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To examine the effectiveness of cold oral stimuli in quenching postoperative thirst in patients undergoing surgery. DESIGN A systematic review and meta-analysis of interventional studies. SETTING Postoperative care units. METHODS Seven electronic databases (Medline, Scopus, Web of Science, PubMed, CINHAL, PsycInfo, and EMBASE) were systematically searched from their inception to January 12, 2022. The Cochrane Handbook for Systematic Reviews of Interventions was followed. Two researchers examined the study quality using the Cochrane risk of bias tools. A meta-analysis with a subgroup analysis was performed. Sensitivity analysis, funnel plots and Egger's test were used to examine publication bias. MAIN OUTCOME MEASURE A thirst intensity score was used to rate postoperative thirst. RESULTS Data were collected from 11 interventional studies for this systematic review. Eight studies underwent a meta-analysis with a total of 1504 patients. Our meta-analysis showed that the thirst intensity scores decreased in the experimental groups by 1.42 points (95% confidence interval: -2.162 to -0.684) more than those of the control groups. Subgroup analysis indicated that Asian patients and age were two factors that moderated the thirst intensity score after applying cold oral stimuli. CONCLUSION Cold oral stimuli were effective in mitigating postoperative thirst. Ice products such as ice cubes, or ice chips are easily available in postoperative units. When applying cold oral stimuli, health professionals should be aware of that in Asian and older patients. Cultural acceptance and physiological degeneration, respectively, may influence the thirst ratings. Future research should investigate various factors underlying the perioperative period. Network meta-analysis can be used to examine multiple strategies for thirst management.
Collapse
Affiliation(s)
- Han-Yi Tsai
- School of Nursing, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Rd, Taipei 10051, Taiwan; Department of Nursing, Taipei Veterans General Hospital, No 201, Sec 2, Shipai Rd, Beitou District, Taipei 11217, Taiwan.
| | - Anne Chao
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd, Zhongzheng Dist., Taipei 100225, Taiwan; School of Medicine, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Rd, Taipei 10051, Taiwan
| | - Wei-Ling Hsiao
- School of Nursing, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Rd, Taipei 10051, Taiwan; Department of Nursing, National Taiwan University Hospital, No. 7, Zhongshan S. Rd, Zhongzheng Dist., Taipei 100225, Taiwan.
| |
Collapse
|
5
|
Durst und Trinken – Physiologie und Bedeutung für die Störungen des Wasserhaushalts. JOURNAL FÜR KLINISCHE ENDOKRINOLOGIE UND STOFFWECHSEL 2022. [DOI: 10.1007/s41969-022-00179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
7
|
Chrobok L, Ahern J, Piggins HD. Ticking and talking in the brainstem satiety centre: Circadian timekeeping and interactions in the diet-sensitive clock of the dorsal vagal complex. Front Physiol 2022; 13:931167. [PMID: 36117684 PMCID: PMC9481231 DOI: 10.3389/fphys.2022.931167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood. Here, we evaluate how intrinsic circadian signals regulate molecular and cellular activity in the area postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus (DMV) of the DVC. The hierarchy and potential interactions among these oscillators and their response to changes in diet are considered a simple framework in which to model these oscillators and their interactions is suggested. We propose possible functions of the DVC in the circadian control of feeding behaviour and speculate on future research directions including the translational value of knowledge of intrinsic circadian timekeeping the brainstem.
Collapse
|
8
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
9
|
Yang T, Yuan Z, Liu C, Liu T, Zhang W. A neural circuit integrates pharyngeal sensation to control feeding. Cell Rep 2021; 37:109983. [PMID: 34758309 DOI: 10.1016/j.celrep.2021.109983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Swallowing is an essential step of eating and drinking. However, how the quality of a food bolus is sensed by pharyngeal neurons is largely unknown. Here we find that mechanical receptors along the Drosophila pharynx are required for control of meal size, especially for food of high viscosity. The mechanical force exerted by the bolus passing across the pharynx is detected by neurons expressing the mechanotransduction channel NOMPC (no mechanoreceptor potential C) and is relayed, together with gustatory information, to IN1 neurons in the subesophageal zone (SEZ) of the brain. IN1 (ingestion neurons) neurons act directly upstream of a group of peptidergic neurons that encode satiety. Prolonged activation of IN1 neurons suppresses feeding. IN1 neurons receive inhibition from DSOG1 (descending subesophageal neurons) neurons, a group of GABAergic neurons that non-selectively suppress feeding. Our results reveal the function of pharyngeal mechanoreceptors and their downstream neural circuits in the control of food ingestion.
Collapse
Affiliation(s)
- Tingting Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zixuan Yuan
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chenxi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
10
|
Associations between ultraprocessed food consumption and total water intake in the US population. J Acad Nutr Diet 2021; 121:1695-1703. [PMID: 33745880 DOI: 10.1016/j.jand.2021.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Longitudinal studies have shown significant dose-response associations between dietary share of ultraprocessed foods and the incidence of several noncommunicable diseases and all-cause mortality. Several attributes of ultraprocessed foods are potential mechanisms for their link with health outcomes, including their typically unbalanced nutrient profile, high glycemic loads, high energy intake rate, and the presence of food additives, neoformed substances, and substances released by synthetic packaging materials. However, no studies have assessed the plausibility of reduced water intake as an additional association of diets rich in ultraprocessed foods. OBJECTIVE To assess the association between ultraprocessed food consumption and total water intake. DESIGN This cross-sectional secondary analysis used data from the National Health and Nutrition Examination Survey, cycles 2011 to 2016, in the United States. PARTICIPANTS/SETTINGS This study included 24,505 participants aged ≥1 year who completed the first 24-hour dietary recall interview. MAIN OUTCOMES MEASURES The main outcome evaluated was the mean of total water intake. STATISTICAL ANALYSIS Crude and adjusted linear regressions were applied to investigate the association between quintiles of the dietary share of ultraprocessed foods and the total water intake. RESULTS A significant linear reduction in the daily mean total water intake was observed across ultraprocessed food quintiles, amounting to 706 mL between the lower and the upper quintiles. Important increases across quintiles were observed for the intake of sugar-sweetened and artificially sweetened drinks, whereas important reductions occurred for unsweetened drinks, plain water, and water present in solid foods and dishes. CONCLUSIONS Reduced total water intake and an imbalance between sources of water that favors energy-dense and nutrient-poor sources were associated with increased consumption of ultraprocessed food, suggesting that decreased total water consumption might be a negative outcome of diets rich in ultraprocessed foods. This relationship should be further investigated in longitudinal or clinical trials.
Collapse
|
11
|
Iovino M, Messana T, De Pergola G, Iovino E, Guastamacchia E, Licchelli B, Vanacore A, Giagulli VA, Triggiani V. Brain Angiotensinergic Regulation of the Immune System: Implications for Cardiovascular and Neuroendocrine Responses. Endocr Metab Immune Disord Drug Targets 2020; 20:15-24. [PMID: 31237219 DOI: 10.2174/1871530319666190617160934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The Renin-Angiotensin-Aldosterone System (RAAS) plays a major role in the regulation of cardiovascular functions, water and electrolytic balance, and hormonal responses. We perform a review of the literature, aiming at providing the current concepts regarding the angiotensin interaction with the immune system in the brain and the related implications for cardiovascular and neuroendocrine responses. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS Angiotensin II (ANG II), beside stimulating aldosterone, vasopressin and CRH-ACTH release, sodium and water retention, thirst, and sympathetic nerve activity, exerts its effects on the immune system via the Angiotensin Type 1 Receptor (AT 1R) that is located in the brain, pituitary, adrenal gland, and kidney. Several actions are triggered by the binding of circulating ANG II to AT 1R into the circumventricular organs that lack the Blood-Brain-Barrier (BBB). Furthermore, the BBB becomes permeable during chronic hypertension thereby ANG II may also access brain nuclei controlling cardiovascular functions. Subfornical organ, organum vasculosum lamina terminalis, area postrema, paraventricular nucleus, septal nuclei, amygdala, nucleus of the solitary tract and retroventral lateral medulla oblongata are the brain structures that mediate the actions of ANG II since they are provided with a high concentration of AT 1R. ANG II induces also T-lymphocyte activation and vascular infiltration of leukocytes and, moreover, oxidative stress stimulating inflammatory responses via inhibition of endothelial progenitor cells and stimulation of inflammatory and microglial cells facilitating the development of hypertension. CONCLUSION Besides the well-known mechanisms by which RAAS activation can lead to the development of hypertension, the interactions between ANG II and the immune system at the brain level can play a significant role.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emanuela Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Brunella Licchelli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Aldo Vanacore
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito A Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
12
|
Internal States Influence the Representation and Modulation of Food Intake by Subthalamic Neurons. Neurosci Bull 2020; 36:1355-1368. [PMID: 32567027 DOI: 10.1007/s12264-020-00533-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) is an effective therapy for motor deficits in Parkinson's disease (PD), but commonly causes weight gain in late-phase PD patients probably by increasing feeding motivation. It is unclear how STN neurons represent and modulate feeding behavior in different internal states. In the present study, we found that feeding caused a robust activation of STN neurons in mice (GCaMP6 signal increased by 48.4% ± 7.2%, n = 9, P = 0.0003), and the extent varied with the size, valence, and palatability of food, but not with the repetition of feeding. Interestingly, energy deprivation increased the spontaneous firing rate (8.5 ± 1.5 Hz, n = 17, versus 4.7 ± 0.7 Hz, n = 18, P = 0.03) and the depolarization-induced spikes in STN neurons, as well as enhanced the STN responses to feeding. Optogenetic experiments revealed that stimulation and inhibition of STN neurons respectively reduced (by 11% ± 6%, n = 6, P = 0.02) and enhanced (by 36% ± 15%, n = 7, P = 0.03) food intake only in the dark phase. In conclusion, our results support the hypothesis that STN neurons are activated by feeding behavior, depending on energy homeostatic status and the palatability of food, and modulation of these neurons is sufficient to regulate food intake.
Collapse
|
13
|
Abstract
Fluid satiation, or quenching of thirst, is a critical homeostatic signal to stop drinking; however, its underlying neurocircuitry is not well characterized. Cutting-edge genetically encoded tools and techniques are now enabling researchers to pinpoint discrete neuronal populations that control fluid satiation, revealing that hindbrain regions, such as the nucleus of the solitary tract, area postrema, and parabrachial nucleus, primarily inhibit fluid intake. By contrast, forebrain regions such as the lamina terminalis, primarily stimulate thirst and fluid intake. One intriguing aspect of fluid satiation is that thirst is quenched tens of minutes before water reaches the circulation, and the amount of water ingested is accurately calibrated to match physiological needs. This suggests that 'preabsorptive' inputs from the oropharyngeal regions, esophagus or upper gastrointestinal tract anticipate the amount of fluid required to restore fluid homeostasis, and provide rapid signals to terminate drinking once this amount has been consumed. It is likely that preabsorptive signals are carried via the vagal nerve to the hindbrain. In this review, we explore our current understanding of the fluid satiation neurocircuitry, its inputs and outputs, and its interconnections within the brain, with a focus on recent studies of the hindbrain, particularly the parabrachial nucleus.
Collapse
Affiliation(s)
- Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|