1
|
Thimm C, Adjaye J. Untangling the Uncertain Role of Overactivation of the Renin-Angiotensin-Aldosterone System with the Aging Process Based on Sodium Wasting Human Models. Int J Mol Sci 2024; 25:9332. [PMID: 39273282 PMCID: PMC11394713 DOI: 10.3390/ijms25179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin-angiotensin-aldosterone system (RAAS) includes several systematic processes for the regulation of blood pressure, which is caused by an imbalance of electrolytes. During activation of the RAAS, binding of angiotensin II (ANG II) to angiotensin II type 1 receptor (AGTR1) activates intracellular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate superoxide anions and promote uncoupling of endothelial nitric oxide (NO) synthase, which in turn decreases NO availability and increases ROS production. Promoting oxidative stress and DNA damage mediated by ANG II is tightly regulated. Individuals with sodium deficiency-associated diseases such as Gitelman syndrome (GS) and Bartter syndrome (BS) show downregulation of inflammation-related processes and have reduced oxidative stress and ROS. Additionally, the histone deacetylase sirtuin-1 (SIRT1) has a significant impact on the aging process, with reduced activity with age. However, GS/BS patients generally sustain higher levels of sirtuin-1 (SIRT1) activity than age-matched healthy individuals. SIRT1 expression in GS/BS patients tends to be higher than in healthy age-matched individuals; therefore, it can be assumed that there will be a trend towards healthy aging in these patients. In this review, we highlight the importance of the hallmarks of aging, inflammation, and the RAAS system in GS/BS patients and how this might impact healthy aging. We further propose future research directions for studying the etiology of GS/BS at the molecular level using patient-derived renal stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
2
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Cao XY, Liu Y, Kan JS, Huang XX, Kambey PA, Zhang CT, Gao J. Microglial SIX2 suppresses lipopolysaccharide (LPS)-induced neuroinflammation by up-regulating FXYD2 expression. Brain Res Bull 2024; 212:110970. [PMID: 38688414 DOI: 10.1016/j.brainresbull.2024.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease associated with the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although its pathogenesis remains unclear, microglia-mediated neuroinflammation significantly contributes to the development of PD. Here we showed that the sine oculis homeobox (SIX) homologue family transcription factors SIX2 exerted significant effects on neuroinflammation. The SIX2 protein, which is silenced during development, was reactivated in lipopolysaccharide (LPS)-treated microglia. The reactivated SIX2 in microglia mitigated the LPS induced inflammatory effects, and then reduced the toxic effect of conditioned media (CM) of microglia on co-cultured MES23.5 DA cells. Using the LPS-stimulated Cx3cr1-CreERT2 mouse model, we also demonstrated that the highly-expressed SIX2 in microglia obviously attenuated neuroinflammation and protected the DA neurons in SN. Further RNA-Seq analysis on the inflammatory activated microglia revealed that the SIX2 exerted these effects via up-regulating the FXYD domain containing ion transport regulator 2 (FXYD2). Taken together, our study demonstrated that SIX2 was an endogenous anti-inflammatory factor in microglia, and it exerted anti-neuroinflammatory effects by regulating the expression of FXYD2, which provides new ideas for anti-neuroinflammation in PD.
Collapse
Affiliation(s)
- Xia-Yin Cao
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-Shuo Kan
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-Xing Huang
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can-Tang Zhang
- Department of Respiratory and Critical Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin Gao
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Salinas M, López-Garrigós M, Flores E, Leiva-Salinas C. Improving diagnosis and treatment of hypomagnesemia. Clin Chem Lab Med 2024; 62:234-248. [PMID: 37503587 DOI: 10.1515/cclm-2023-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Magnesium is one of the most abundant cations in the body and acts as a cofactor in more than 600 biochemical reactions. Hypomagnesemia is a highly prevalent condition, especially in subjects with comorbid conditions, but has received less attention than other electrolyte disturbances. This review will discuss magnesium physiology, absorption, storage, distribution across the body, and kidney excretion. After reviewing the regulation of magnesium homeostasis, we will focus on the etiology and clinical presentation of hypomagnesemia. The role of laboratory medicine in hypomagnesemia will be the main purpose of this review, and we will discuss the laboratory tests and different samples and methods for its measurement. Although free magnesium is physiologically active, total serum magnesium is the most commonly used measurement in laboratory medicine and is apt for clinical purposes; however, it is not appropriately used, and many patients with hypomagnesemia remain undiagnosed and not treated. Using information technologies, laboratory medicine can largely improve the diagnosis and treatment of hypomagnesemia through the design and establishment of automatic demand management and result management interventions by acting in the first and last steps of the laboratory cycle, test requests, and actions taken after test results, to unmask patients with hypomagnesemia and improve the number of patients undergoing treatment.
Collapse
Affiliation(s)
- Maria Salinas
- Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Alicante, Spain
| | - Maite López-Garrigós
- Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Alicante, Spain
- Department of Biochemistry and Molecular Biology, Universidad Miguel Hernandez, San Juan de Alicante, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Emilio Flores
- Clinical Laboratory, Hospital Universitario de San Juan, San Juan de Alicante, Alicante, Spain
- Department of Clinic Medicine, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | |
Collapse
|
5
|
Guerri L, Dobbs LK, da Silva e Silva DA, Meyers A, Ge A, Lecaj L, Djakuduel C, Islek D, Hipolito D, Martinez AB, Shen PH, Marietta CA, Garamszegi SP, Capobianco E, Jiang Z, Schwandt M, Mash DC, Alvarez VA, Goldman D. Low Dopamine D2 Receptor Expression Drives Gene Networks Related to GABA, cAMP, Growth and Neuroinflammation in Striatal Indirect Pathway Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1104-1115. [PMID: 37881572 PMCID: PMC10593893 DOI: 10.1016/j.bpsgos.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, translating ribosome affinity purification (TRAP) was used to purify and analyze the translatome (ribosome-bound messenger RNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA (gamma-aminobutyric acid) and cAMP (cyclic adenosine monophosphate) signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 messenger RNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusions This study provides strong molecular evidence that, in addiction, inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Collapse
Affiliation(s)
- Lucia Guerri
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Lauren K. Dobbs
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Neurology, University of Texas at Austin, Austin, Texas
| | - Daniel A. da Silva e Silva
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Allen Meyers
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Aaron Ge
- University of Maryland, College Park, Maryland
| | - Lea Lecaj
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Caroline Djakuduel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Damien Islek
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Dionisio Hipolito
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Abdiel Badillo Martinez
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Cheryl A. Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Enrico Capobianco
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Zhijie Jiang
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Melanie Schwandt
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
- Institute for Data Science and Computing, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Veronica A. Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Morrison AR. Magnesium Homeostasis: Lessons from Human Genetics. Clin J Am Soc Nephrol 2023; 18:969-978. [PMID: 36723340 PMCID: PMC10356123 DOI: 10.2215/cjn.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
Mg 2+ , the fourth most abundant cation in the body, serves as a cofactor for about 600 cellular enzymes. One third of ingested Mg 2+ is absorbed from the gut through a saturable transcellular process and a concentration-dependent paracellular process. Absorbed Mg 2+ is excreted by the kidney and maintains serum Mg 2+ within a narrow range of 0.7-1.25 mmol/L. The reabsorption of Mg 2+ by the nephron is characterized by paracellular transport in the proximal tubule and thick ascending limb. The nature of the transport pathways in the gut epithelia and thick ascending limb has emerged from an understanding of the molecular mechanisms responsible for rare monogenetic disorders presenting with clinical hypomagnesemia. These human disorders due to loss-of-function mutations, in concert with mouse models, have led to a deeper understanding of Mg 2+ transport in the gut and renal tubule. This review focuses on the nature of the transporters and channels revealed by human and mouse genetics and how they are integrated into an understanding of human Mg 2+ physiology.
Collapse
Affiliation(s)
- Aubrey R Morrison
- Division of Nephrology, Department of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Montgomery AB, Chen SY, Wang Y, Gadhvi G, Mayr MG, Cuda CM, Dominguez S, Moradeke Makinde HK, Gurra MG, Misharin AV, Mandelin AM, Ruderman EM, Thakrar A, Brar S, Carns M, Aren K, Akbarpour M, Filer A, Nayar S, Teososio A, Major T, Bharat A, Budinger GRS, Winter DR, Perlman H. Tissue-resident, extravascular Ly6c - monocytes are critical for inflammation in the synovium. Cell Rep 2023; 42:112513. [PMID: 37204925 PMCID: PMC10697497 DOI: 10.1016/j.celrep.2023.112513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/17/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Monocytes are abundant immune cells that infiltrate inflamed organs. However, the majority of monocyte studies focus on circulating cells, rather than those in tissue. Here, we identify and characterize an intravascular synovial monocyte population resembling circulating non-classical monocytes and an extravascular tissue-resident monocyte-lineage cell (TR-MC) population distinct in surface marker and transcriptional profile from circulating monocytes, dendritic cells, and tissue macrophages that are conserved in rheumatoid arthritis (RA) patients. TR-MCs are independent of NR4A1 and CCR2, long lived, and embryonically derived. TR-MCs undergo increased proliferation and reverse diapedesis dependent on LFA1 in response to arthrogenic stimuli and are required for the development of RA-like disease. Moreover, pathways that are activated in TR-MCs at the peak of arthritis overlap with those that are downregulated in LFA1-/- TR-MCs. These findings show a facet of mononuclear cell biology that could be imperative to understanding tissue-resident myeloid cell function in RA.
Collapse
Affiliation(s)
- Anna B Montgomery
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Shang Yang Chen
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Yidan Wang
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Gaurav Gadhvi
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Maximilian G Mayr
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Salina Dominguez
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Hadijat-Kubura Moradeke Makinde
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Miranda G Gurra
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Alexander V Misharin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care, Chicago, IL 60611, USA
| | - Arthur M Mandelin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Eric M Ruderman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Anjali Thakrar
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Simran Brar
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Mary Carns
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Kathleen Aren
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Mahzad Akbarpour
- Northwestern University, Feinberg School of Medicine, Division of Thoracic Surgery, Chicago, IL 60611, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Ana Teososio
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Triin Major
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Ankit Bharat
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care, Chicago, IL 60611, USA; Northwestern University, Feinberg School of Medicine, Division of Thoracic Surgery, Chicago, IL 60611, USA
| | - G R Scott Budinger
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care, Chicago, IL 60611, USA
| | - Deborah R Winter
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Derre A, Soler N, Billoux V, Benizri S, Vialet B, Rivat C, Barthélémy P, Carroll P, Pattyn A, Venteo S. FXYD2 antisense oligonucleotide provides an efficient approach for long-lasting relief of chronic peripheral pain. JCI Insight 2023; 8:161246. [PMID: 37154155 DOI: 10.1172/jci.insight.161246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Chronic pain, whether of inflammatory or neuropathic origin, affects about 18% of the population of developed countries, and most current treatments are only moderately effective and/or cause serious side effects. Therefore, the development of novel therapeutic approaches still represents a major challenge. The Na,K-ATPase modulator FXYD2 is critically required for the maintenance of neuropathic pain in rodents. Here, we set up a therapeutic protocol based on the use of chemically modified antisense oligonucleotides (ASOs) to inhibit FXYD2 expression and treat chronic pain. We identified an ASO targeting a 20-nucleotide stretch in the FXYD2 mRNA that is evolutionarily conserved between rats and humans and is a potent inhibitor of FXYD2 expression. We used this sequence to synthesize lipid-modified forms of ASO (FXYD2-LASO) to facilitate their entry into dorsal root ganglia neurons. We established that intrathecal or intravenous injections of FXYD2-LASO in rat models of neuropathic or inflammatory pain led to a virtually complete alleviation of their pain symptoms, without causing obvious side effects. Remarkably, by using 2'-O-2-methoxyethyl chemical stabilization of the ASO (FXYD2-LASO-Gapmer), we could significantly prolong the therapeutic action of a single treatment up to 10 days. This study establishes FXYD2-LASO-Gapmer administration as a promising and efficient therapeutic strategy for long-lasting relief of chronic pain conditions in human patients.
Collapse
Affiliation(s)
- Alexandre Derre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Noelian Soler
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Valentine Billoux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Brune Vialet
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Cyril Rivat
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Stephanie Venteo
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
9
|
TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun Biol 2022; 5:746. [PMID: 35882956 PMCID: PMC9325869 DOI: 10.1038/s42003-022-03715-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg2+-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7+/Δkinase) mice. Plasma/tissue [Mg2+] and TRPM7 phosphorylation were reduced in vehicle-treated TRPM7+/Δkinase mice, effects recapitulated in aldosterone-salt-treated wild-type mice. Aldosterone-salt treatment exaggerated vascular dysfunction and amplified cardiovascular and renal fibrosis, with associated increased blood pressure in TRPM7+/Δkinase mice. Tissue expression of Mg2+-regulated phosphatases (PPM1A, PTEN) was downregulated and phosphorylation of Smad3, ERK1/2, and Stat1 was upregulated in aldosterone-salt TRPM7-deficient mice. Aldosterone-induced phosphorylation of pro-fibrotic signaling was increased in TRPM7+/Δkinase fibroblasts, effects ameliorated by Mg2+ supplementation. TRPM7 deficiency amplifies aldosterone-salt-induced cardiovascular remodeling and damage. We identify TRPM7 downregulation and associated hypomagnesemia as putative molecular mechanisms underlying deleterious cardiovascular and renal effects of hyperaldosteronism. Deficiency of the Mg2+-permeable channel/α-kinase TRPM7 in mice increases susceptibility to cardiovascular and renal fibrosis induced by aldosterone and salt.
Collapse
|
10
|
Luo S, Li Y, Li S, Jiang R, Deng F, Liu G, Zhang J. Expression Regulation of Water Reabsorption Genes and Transcription Factors in the Kidneys of Lepus yarkandensis. Front Physiol 2022; 13:856427. [PMID: 35721542 PMCID: PMC9204326 DOI: 10.3389/fphys.2022.856427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lepus yarkandensis is a desert-dwelling animal that has various adaptations to cope with drought. The kidney maintains water and acid-base balance mainly through the vasopressin-regulated water reabsorption pathway and proximal tubular bicarbonate reabsorption pathway. In this study, we compared the differentially expressed genes (DEGs) and transcription factors in the kidneys of L. yarkandensis and Oryctolagus cuniculus to explore the relationship between the DEGs in kidneys and the animals’ adaptations. Transcriptome sequencing data were used to predict the differentially-expressed water reabsorption genes and their transcription factors. Quantitative real-time PCR, immunohistochemistry, and western blotting were used to detect and verify the expression of DEGs in the kidney at mRNA and protein levels. Transcriptome analysis of the kidney of L. yarkandensis and O. cuniculus showed that 6,610 genes were up-regulated and 5,727 genes down-regulated in data shared by both species. According to the data, 232 transcription factors and their corresponding target genes were predicted, from which genes and transcription factors related to renal water reabsorption were screened. Quantitative RT-PCR results showed AQP1, AQP2, ADCY3, HIF1A, CREB3, and NFATc1 had higher expression in the L. yarkandensis kidney; in comparison, FXYD2 mRNA expression levels were lower. In western blotting, transcription factors HIF1A, NFATc1, NF-κB1, and critical genes ADCY3, ATPA1, and SLC4A4, were highly expressed in the kidneys of L. yarkandensis. Immunohistochemical results showed that the ADCY3 protein was in the basolateral membrane of the collecting duct, the ATP1A1 protein was in the basolateral membrane and medulla of proximal tubules, and the SLC4A4 protein was in the basolateral membrane of proximal tubules. According to these results can be inferred that HIF1A, NFATc1, and NF-κB1 play a certain role in regulating the expression of genes related to water reabsorption in the kidney of L. yarkandensis, thus improving the water reclamation efficiency of L. yarkandensis, so as to adapt to the arid desert environment.
Collapse
Affiliation(s)
- Shengjie Luo
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Yongle Li
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Shuwei Li
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| | - Renjun Jiang
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Fang Deng
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research and Department of Biochemistry, College of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| |
Collapse
|
11
|
de Sousa Melo SR, Dos Santos LR, Morais JBS, Cruz KJC, de Oliveira ARS, da Silva NC, de Sousa GS, Payolla TB, Murata G, Bordin S, Henriques GS, do Nascimento Marreiro D. Leptin and its relationship with magnesium biomarkers in women with obesity. Biometals 2022; 35:689-697. [PMID: 35546213 DOI: 10.1007/s10534-022-00393-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
Some studies have demonstrated the participation of leptin in magnesium metabolism. On the other hand, there is evidence of the role of magnesium in the leptin intracellular signaling pathway. Therefore, the aim of this study was to investigate the existence of a relationship between serum leptin concentrations and magnesium biomarkers in women with obesity. Case-control study involving 108 women aged between 20 and 50 years, divided into two groups: obese (n = 52) and control (n = 56). Body weight, height and waist circumference, body mass index, dietary magnesium intake, magnesium biomarkers and serum leptin concentrations were measured. Serum leptin concentrations showed a statistically significant difference between groups (p < 0.001). Mean values of magnesium intake were lower than intake recommended, and with no statistically significant difference between two groups (p > 0.05). Women with obesity had lower plasma and erythrocyte magnesium concentrations than control group did (p < 0.001). Magnesium concentrations found in the urine of women with obesity were higher than the control group was, with a statistically significant difference (p < 0.001). There was a correlation between serum leptin and magnesium biomarkers (p < 0.001). Women with obesity show an inadequate magnesium nutritional status characterized by low plasma and erythrocyte concentrations and high concentrations in urine, and they also have high serum leptin concentrations. Thus, it was possible to observe a correlation between hyperleptinemia and magnesium biomarkers, requiring further studies to determine whether the dysfunction of this hormone can influence the compartmentalization of the mineral in obese organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilson Murata
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvana Bordin
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Dilina do Nascimento Marreiro
- Department of Nutrition, Health Sciences Center, Federal University of Piauí, Rua Hugo Napoleão, 665, Ed. Palazzo Reale, Apto 2001, Jockey, Teresina, PI, CEP 64048-320, Brazil.
| |
Collapse
|
12
|
Reyes JV, Medina PMB. Renal calcium and magnesium handling in Gitelman syndrome. Am J Transl Res 2022; 14:1-19. [PMID: 35173827 PMCID: PMC8829599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Gitelman syndrome (GS) is an autosomal recessive salt-losing tubulopathy caused by biallelic inactivating mutations in the SLC12A3 gene. This gene encodes the thiazide-sensitive sodium-chloride cotransporter (NCC) which is exclusively expressed in the distal convoluted tubules (DCT). GS patients classically present with hypokalemic metabolic alkalosis with hypocalciuria and hypomagnesemia. While hypokalemia and metabolic alkalosis are easily explained by effects of the genotypic defect in GS, the mechanisms by which hypomagnesemia and hypocalciuria develop in GS are poorly understood. In this review, we aim to achieve three major objectives. First, present a concise discussion about current understanding on physiologic calcium and magnesium handling in the DCT. Second, integrate expression data from studies on calciotropic and magnesiotropic proteins relevant to the GS disease state. Lastly, provide insights into the possible mechanisms of calcium-magnesium crosstalk relating to the co-occurrence of hypocalciuria and hypomagnesemia in GS models. Our analyses highlight specific areas of study that are valuable in elucidating possible molecular pathways of hypocalciuria and hypomagnesemia in GS.
Collapse
Affiliation(s)
- Jeremiah V Reyes
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila Ermita, Manila 1000, Philippines
| | - Paul Mark B Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila Ermita, Manila 1000, Philippines
| |
Collapse
|
13
|
Ng HY, Kuo WH, Tain YL, Leung FF, Lee WC, Lee CT. Effect of Dapagliflozin and Magnesium Supplementation on Renal Magnesium Handling and Magnesium Homeostasis in Metabolic Syndrome. Nutrients 2021; 13:4088. [PMID: 34836340 PMCID: PMC8625451 DOI: 10.3390/nu13114088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is increasing, and patients with MetS are at an increased risk of cardiovascular disease and diabetes. There is a close link between hypomagnesemia and MetS. Administration of sodium-glucose transporter 2 (SGLT2) inhibitors has been reported to increase serum magnesium levels in patients with diabetes. We investigated the alterations in renal magnesium handling in an animal model of MetS and analyzed the effects of SGLT2 inhibitors. Adult rats were fed a fructose-rich diet to induce MetS in the first 3 months and were then treated with either dapagliflozin or magnesium sulfate-containing drinking water for another 3 months. Fructose-fed animals had increased insulin resistance, hypomagnesemia, and decreased urinary magnesium excretion. Dapagliflozin treatment improved insulin resistance by decreasing glucose and insulin levels, increased serum magnesium levels, and reduced urinary magnesium excretion. Serum vitamin D and parathyroid hormone levels were decreased in fructose-fed animals, and the levels remained low despite dapagliflozin and magnesium supplementation. In the kidney, claudin-16, TRPM6/7, and FXDY expression was increased in fructose-fed animals. Dapagliflozin increased intracellular magnesium concentration, and this effect was inhibited by TRPM6 blockade and the EGFR antagonist. We concluded that high fructose intake combined with a low-magnesium diet induced MetS and hypomagnesemia. Both dapagliflozin and magnesium sulfate supplementation improved the features of MetS and increased serum magnesium levels. Expression levels of magnesium transporters such as claudin-16, TRPM6/7, and FXYD2 were increased in fructose-fed animals and in those administered dapagliflozin and magnesium sulfate. Dapagliflozin enhances TRPM6-mediated trans-epithelial magnesium transport in renal tubule cells.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-Y.N.); (W.-H.K.); (F.-F.L.); (W.-C.L.)
| | - Wei-Hung Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-Y.N.); (W.-H.K.); (F.-F.L.); (W.-C.L.)
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Foong-Fah Leung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-Y.N.); (W.-H.K.); (F.-F.L.); (W.-C.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-Y.N.); (W.-H.K.); (F.-F.L.); (W.-C.L.)
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-Y.N.); (W.-H.K.); (F.-F.L.); (W.-C.L.)
| |
Collapse
|
14
|
Claverie-Martin F, Perdomo-Ramirez A, Garcia-Nieto V. Hereditary kidney diseases associated with hypomagnesemia. Kidney Res Clin Pract 2021; 40:512-526. [PMID: 34784661 PMCID: PMC8685365 DOI: 10.23876/j.krcp.21.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022] Open
Abstract
In the kidney, a set of proteins expressed in the epithelial cells of the thick ascending loop of Henle and the distal convoluted tubule directly or indirectly play important roles in the regulation of serum magnesium levels. Magnesium reabsorption in the thick ascending loop of Henle occurs through a passive paracellular pathway, while in the distal convoluted tubule, the final magnesium concentration is established through an active transcellular pathway. The players involved in magnesium reabsorption include proteins with diverse functions including tight junction proteins, cation and anion channels, sodium chloride cotransporter, calcium-sensing receptor, epidermal growth factor, cyclin M2, sodium potassium adenosine triphosphatase subunits, transcription factors, a serine protease, and proteins involved in mitochondrial function. Mutations in the genes that encode these proteins impair their function and cause different rare diseases associated with hypomagnesemia, which may lead to muscle cramps, fatigue, epileptic seizures, intellectual disability, cardiac arrhythmias, and chronic kidney disease. The purpose of this review is to describe the clinical and genetic characteristics of these hereditary kidney diseases and the current research findings on the pathophysiological basis of these diseases.
Collapse
Affiliation(s)
- Felix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ana Perdomo-Ramirez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Victor Garcia-Nieto
- Unidad de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Ygberg S, Akkuratov EE, Howard RJ, Taylan F, Jans DC, Mahato DR, Katz A, Kinoshita PF, Portal B, Nennesmo I, Lindskog M, Karlish SJD, Andersson M, Lindstrand A, Brismar H, Aperia A. A missense mutation converts the Na +,K +-ATPase into an ion channel and causes therapy-resistant epilepsy. J Biol Chem 2021; 297:101355. [PMID: 34717959 PMCID: PMC8637647 DOI: 10.1016/j.jbc.2021.101355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.
Collapse
Affiliation(s)
- Sofia Ygberg
- Neuropediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Evgeny E Akkuratov
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Jans
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | | | - Adriana Katz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovoth, Israel
| | - Paula F Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Benjamin Portal
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Steven J D Karlish
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovoth, Israel
| | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden; Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Themistocleous SC, Yiallouris A, Tsioutis C, Zaravinos A, Johnson EO, Patrikios I. Clinical significance of P-class pumps in cancer. Oncol Lett 2021; 22:658. [PMID: 34386080 PMCID: PMC8298992 DOI: 10.3892/ol.2021.12919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
P-class pumps are specific ion transporters involved in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all eukaryotic cells. The present review aimed to evaluate the role of P-type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase (HKA) and Ca2+-ATPase] in cancer cells across three fronts, namely structure, function and genetic expression. It has been shown that administration of specific P-class pumps inhibitors can have different effects by: i) Altering pump function; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarcoendoplasmic reticulum calcium ATPase can be inhibited by thapsigargin resulting in decreased prostate tumor volume, whereas the HKA α subunit can be affected by proton pump inhibitors in gastric cancer cell lines, inducing apoptosis. In conclusion, the present review highlighted the central role of P-class pumps and their possible use and role as anticancer cellular targets for novel therapeutic chemical agents.
Collapse
Affiliation(s)
| | - Andreas Yiallouris
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Constantinos Tsioutis
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar
| | - Elizabeth O. Johnson
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ioannis Patrikios
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
17
|
Zhang Y, Zhu L, Wu G, Wang X, Jin Q, Qi X, Zhang H. A novel immobilized enzyme enhances the conversion of phosphatidylserine in two-phase system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
19
|
Deletion of the transcription factor Prox-1 specifically in the renal distal convoluted tubule causes hypomagnesemia via reduced expression of TRPM6 and NCC. Pflugers Arch 2020; 473:79-93. [PMID: 33200256 PMCID: PMC7782375 DOI: 10.1007/s00424-020-02491-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.
Collapse
|
20
|
Maeoka Y, McCormick JA. NaCl cotransporter activity and Mg 2+ handling by the distal convoluted tubule. Am J Physiol Renal Physiol 2020; 319:F1043-F1053. [PMID: 33135481 DOI: 10.1152/ajprenal.00463.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genetic disease Gitelman syndrome, knockout mice, and pharmacological blockade with thiazide diuretics have revealed that reduced activity of the NaCl cotransporter (NCC) promotes renal Mg2+ wasting. NCC is expressed along the distal convoluted tubule (DCT), and its activity determines Mg2+ entry into DCT cells through transient receptor potential channel subfamily M member 6 (TRPM6). Several other genetic forms of hypomagnesemia lower the drive for Mg2+ entry by inhibiting activity of basolateral Na+-K+-ATPase, and reduced NCC activity may do the same. Lower intracellular Mg2+ may promote further Mg2+ loss by directly decreasing activity of Na+-K+-ATPase. Lower intracellular Mg2+ may also lower Na+-K+-ATPase indirectly by downregulating NCC. Lower NCC activity also induces atrophy of DCT cells, decreasing the available number of TRPM6 channels. Conversely, a mouse model with increased NCC activity was recently shown to display normal Mg2+ handling. Moreover, recent studies have identified calcineurin and uromodulin (UMOD) as regulators of both NCC and Mg2+ handling by the DCT. Calcineurin inhibitors paradoxically cause hypomagnesemia in a state of NCC activation, but this may be related to direct effects on TRPM6 gene expression. In Umod-/- mice, the cause of hypomagnesemia may be partly due to both decreased NCC expression and lower TRPM6 expression on the cell surface. This mini-review discusses these new findings and the possible role of altered Na+ flux through NCC and ultimately Na+-K+-ATPase in Mg2+ reabsorption by the DCT.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
21
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|