1
|
Wang X, Li Y, Li B, Shang H, Yang J. Gray matter alterations in Huntington's disease: A meta-analysis of VBM neuroimaging studies. J Neurosci Res 2024; 102:e25366. [PMID: 38953592 DOI: 10.1002/jnr.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Increasing neuroimaging studies have attempted to identify biomarkers of Huntington's disease (HD) progression. Here, we conducted voxel-based meta-analyses of voxel-based morphometry (VBM) studies on HD to investigate the evolution of gray matter volume (GMV) alterations and explore the effects of genetic and clinical features on GMV changes. A systematic review was performed to identify the relevant studies. Meta-analyses of whole-brain VBM studies were performed to assess the regional GMV changes in all HD mutation carriers, in presymptomatic HD (pre-HD), and in symptomatic HD (sym-HD). A quantitative comparison was performed between pre-HD and sym-HD. Meta-regression analyses were used to explore the effects of genetic and clinical features on GMV changes. Twenty-eight studies were included, comparing a total of 1811 HD mutation carriers [including 1150 pre-HD and 560 sym-HD] and 969 healthy controls (HCs). Pre-HD showed decreased GMV in the bilateral caudate nuclei, putamen, insula, anterior cingulate/paracingulate gyri, middle temporal gyri, and left dorsolateral superior frontal gyrus compared with HCs. Compared with pre-HD, GMV decrease in sym-HD extended to the bilateral median cingulate/paracingulate gyri, Rolandic operculum and middle occipital gyri, left amygdala, and superior temporal gyrus. Meta-regression analyses found that age, mean lengths of CAG repeats, and disease burden were negatively associated with GMV atrophy of the bilateral caudate and right insula in all HD mutation carriers. This meta-analysis revealed the pattern of GMV changes from pre-HD to sym-HD, prompting the understanding of HD progression. The pattern of GMV changes may be biomarkers for disease progression in HD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boyi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Tovar A, Perry SJ, Muñoz E, Painous C, Santacruz P, Ruiz-Idiago J, Mareca C, Hinzen W. Understanding of referential dependencies in Huntington's disease. Neuropsychologia 2024; 197:108845. [PMID: 38447638 DOI: 10.1016/j.neuropsychologia.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Antonia Tovar
- Translation and Language Sciences Department, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, 08018, Barcelona, Spain.
| | - Scott James Perry
- University of Alberta, Department of Linguistics, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Esteban Muñoz
- Parkinson's Disease and Other Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, C. de Villarroel, 170, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Carrer del Rosselló, 149, 08036, Barcelona, Spain; Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain; European Reference Networks, European Reference Network-Rare Neurological Diseases, UK
| | - Celia Painous
- Parkinson's Disease and Other Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, C. de Villarroel, 170, 08036, Barcelona, Spain
| | - Pilar Santacruz
- Parkinson's Disease and Other Movement Disorders Unit, Neurology Department, Hospital Clínic de Barcelona, C. de Villarroel, 170, 08036, Barcelona, Spain
| | - Jesús Ruiz-Idiago
- Neuropsychiatry Unit, Hospital Mare de Deu de la Merce, Passeig Universal, 34, 44, 08042, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Psychiatry and Forensic Medicine, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| | - Celia Mareca
- Neuropsychiatry Unit, Hospital Mare de Deu de la Merce, Passeig Universal, 34, 44, 08042, Barcelona, Spain
| | - Wolfram Hinzen
- Translation and Language Sciences Department, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, 08018, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| |
Collapse
|
3
|
Karl V, Rohe T. Structural brain changes in emotion recognition across the adult lifespan. Soc Cogn Affect Neurosci 2023; 18:nsad052. [PMID: 37769357 PMCID: PMC10627307 DOI: 10.1093/scan/nsad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Emotion recognition (ER) declines with increasing age, yet little is known whether this observation is based on structural brain changes conveyed by differential atrophy. To investigate whether age-related ER decline correlates with reduced grey matter (GM) volume in emotion-related brain regions, we conducted a voxel-based morphometry analysis using data of the Human Connectome Project-Aging (N = 238, aged 36-87) in which facial ER was tested. We expected to find brain regions that show an additive or super-additive age-related change in GM volume indicating atrophic processes that reduce ER in older adults. The data did not support our hypotheses after correction for multiple comparisons. Exploratory analyses with a threshold of P < 0.001 (uncorrected), however, suggested that relationships between GM volume and age-related general ER may be widely distributed across the cortex. Yet, small effect sizes imply that only a small fraction of the decline of ER in older adults can be attributed to local GM volume changes in single voxels or their multivariate patterns.
Collapse
Affiliation(s)
- Valerie Karl
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Tim Rohe
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
4
|
Shribman S, Burrows M, Convery R, Bocchetta M, Sudre CH, Acosta-Cabronero J, Thomas DL, Gillett GT, Tsochatzis EA, Bandmann O, Rohrer JD, Warner TT. Neuroimaging Correlates of Cognitive Deficits in Wilson's Disease. Mov Disord 2022; 37:1728-1738. [PMID: 35723521 PMCID: PMC9542291 DOI: 10.1002/mds.29123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cognitive impairment is common in neurological presentations of Wilson's disease (WD). Various domains can be affected, and subclinical deficits have been reported in patients with hepatic presentations. Associations with imaging abnormalities have not been systematically tested. OBJECTIVE The aim was to determine the neuroanatomical basis for cognitive deficits in WD. METHODS We performed a 16-item neuropsychological test battery and magnetic resonance brain imaging in 40 patients with WD. The scores for each test were compared between patients with neurological and hepatic presentations and with normative data. Associations with Unified Wilson's Disease Rating Scale neurological examination subscores were examined. Quantitative, whole-brain, multimodal imaging analyses were used to identify associations with neuroimaging abnormalities in chronically treated stable patients. RESULTS Abstract reasoning, executive function, processing speed, calculation, and visuospatial function scores were lower in patients with neurological presentations than in those with hepatic presentations and correlated with neurological examination subscores. Deficits in abstract reasoning and phonemic fluency were associated with lower putamen volumes even after controlling for neurological severity. About half of patients with hepatic presentations had poor performance in memory for faces, cognitive flexibility, or associative learning relative to normative data. These deficits were associated with widespread cortical atrophy and/or white matter diffusion abnormalities. CONCLUSIONS Subtle cognitive deficits in patients with seemingly hepatic presentations represent a distinct neurological phenotype associated with diffuse cortical and white matter pathology. This may precede the classical neurological phenotype characterized by movement disorders and executive dysfunction and be associated with basal ganglia damage. A binary phenotypic classification for WD may no longer be appropriate. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| | - Maggie Burrows
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom.,Centre for Medical Image Computing, University College London, London, United Kingdom.,Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | | | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Godfrey T Gillett
- Department of Clinical Chemistry, Northern General Hospital, Sheffield, United Kingdom
| | - Emmanuel A Tsochatzis
- UCL Institute of Liver and Digestive Health and Royal Free Hospital, London, United Kingdom
| | - Oliver Bandmann
- Sheffield Institute of Translational Neuroscience, Sheffield, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| |
Collapse
|
5
|
Pupak A, Singh A, Sancho-Balsells A, Alcalá-Vida R, Espina M, Giralt A, Martí E, Ørom UAV, Ginés S, Brito V. Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington's disease mice. Cell Mol Life Sci 2022; 79:416. [PMID: 35819730 PMCID: PMC9276730 DOI: 10.1007/s00018-022-04444-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
N6-methyladenosine (m6A) regulates many aspects of RNA metabolism and is involved in learning and memory processes. Yet, the impact of a dysregulation of post-transcriptional m6A editing on synaptic impairments in neurodegenerative disorders remains unknown. Here we investigated the m6A methylation pattern in the hippocampus of Huntington’s disease (HD) mice and the potential role of the m6A RNA modification in HD cognitive symptomatology. m6A modifications were evaluated in HD mice subjected to a hippocampal cognitive training task through m6A immunoprecipitation sequencing (MeRIP-seq) and the relative levels of m6A-modifying proteins (FTO and METTL14) by subcellular fractionation and Western blot analysis. Stereotaxic CA1 hippocampal delivery of AAV-shFTO was performed to investigate the effect of RNA m6A dysregulation in HD memory deficits. Our results reveal a m6A hypermethylation in relevant HD and synaptic related genes in the hippocampal transcriptome of Hdh+/Q111 mice. Conversely, m6A is aberrantly regulated in an experience-dependent manner in the HD hippocampus leading to demethylation of important components of synapse organization. Notably, the levels of RNA demethylase (FTO) and methyltransferase (METTL14) were modulated after training in the hippocampus of WT mice but not in Hdh+/Q111 mice. Finally, inhibition of FTO expression in the hippocampal CA1 region restored memory disturbances in symptomatic Hdh+/Q111 mice. Altogether, our results suggest that a differential RNA methylation landscape contributes to HD cognitive symptoms and uncover a role of m6A as a novel hallmark of HD.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), University of Strasbourg, Strasbourg, France
| | - Marc Espina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Temporal Characterization of Behavioral and Hippocampal Dysfunction in the YAC128 Mouse Model of Huntington’s Disease. Biomedicines 2022; 10:biomedicines10061433. [PMID: 35740454 PMCID: PMC9219853 DOI: 10.3390/biomedicines10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a genetic neurodegenerative disease characterized by motor, psychiatric, and cognitive symptoms. Emerging evidence suggests that emotional and cognitive deficits seen in HD may be related to hippocampal dysfunction. We used the YAC128 HD mouse model to perform a temporal characterization of the behavioral and hippocampal dysfunctions. Early and late symptomatic YAC128 mice exhibited depressive-like behavior, as demonstrated by increased immobility times in the Tail Suspension Test. In addition, YAC128 mice exhibited cognitive deficits in the Swimming T-maze Test during the late symptomatic stage. Except for a reduction in basal mitochondrial respiration, no significant deficits in the mitochondrial respiratory rates were observed in the hippocampus of late symptomatic YAC128 mice. In agreement, YAC128 animals did not present robust alterations in mitochondrial ultrastructural morphology. However, light and electron microscopy analysis revealed the presence of dark neurons characterized by the intense staining of granule cell bodies and shrunken nuclei and cytoplasm in the hippocampal dentate gyrus (DG) of late symptomatic YAC128 mice. Furthermore, structural alterations in the rough endoplasmic reticulum and Golgi apparatus were detected in the hippocampal DG of YAC128 mice by electron microscopy. These results clearly show a degenerative process in the hippocampal DG in late symptomatic YAC128 animals.
Collapse
|
7
|
McLauchlan DJ, Lancaster T, Craufurd D, Linden DEJ, Rosser AE. Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease. Brain Commun 2022; 4:fcac278. [PMID: 36440100 PMCID: PMC9683390 DOI: 10.1093/braincomms/fcac278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Depression is more common in neurodegenerative diseases such as Huntington's disease than the general population. Antidepressant efficacy is well-established for depression within the general population: a recent meta-analysis showed serotonin norepinephrine reuptake inhibitors, tricyclic antidepressants and mirtazapine outperformed other antidepressants. Despite the severe morbidity, antidepressant choice in Huntington's disease is based on Class IV evidence. We used complementary approaches to determine treatment choice for depression in Huntington's disease: propensity score analyses of antidepressant treatment outcome using the ENROLL-HD data set, and a dissection of the cognitive mechanisms underlying depression in Huntington's disease using a cognitive battery based on the Research Domain Criteria for Depression. Study 1 included ENROLL-HD 5486 gene-positive adult patients started on an antidepressant medication for depression. Our outcome measures were depression (Hospital Anxiety and Depression Scale or Problem Behaviours Assessment 'Depressed Mood' item) at first follow-up (primary outcome) and all follow-ups (secondary outcome). The intervention was antidepressant class. We used Svyglm&Twang in R to perform propensity scoring, using known variables (disease progression, medical comorbidity, psychiatric morbidity, sedatives, number of antidepressants, demographics and antidepressant contraindications) to determine the probability of receiving different antidepressants (propensity score) and then included the propensity score in a model of treatment efficacy. Study 2 recruited 51 gene-positive adult patients and 26 controls from the South Wales Huntington's Disease Management Service. Participants completed a motor assessment, in addition to measures of depression and apathy, followed by tasks measuring consummatory anhedonia, motivational anhedonia, learning from reward and punishment and reaction to negative outcome. We used generalised linear models to determine the association between task performance and depression scores. Study 1 showed selective serotonin reuptake inhibitors outperformed serotonin norepinephrine reuptake inhibitors on the primary outcome (P = 0.048), whilst both selective serotonin reuptake inhibitors (P = 0.00069) and bupropion (P = 0.0045) were superior to serotonin norepinephrine reuptake inhibitors on the secondary outcome. Study 2 demonstrated an association between depression score and effort for reward that was not explained by apathy. No other mechanisms were associated with depression score. We found that selective serotonin reuptake inhibitors and bupropion outperform serotonin norepinephrine reuptake inhibitors at alleviating depression in Huntington's disease. Moreover, motivational anhedonia appears the most significant mechanism underlying depression in Huntington's disease. Bupropion is improves motivational anhedonia and has a synergistic effect with selective serotonin reuptake inhibitors. This work provides the first large-scale, objective evidence to determine treatment choice for depression in Huntington's disease, and provides a model for determining antidepressant efficacy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Duncan James McLauchlan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK
| | - Thomas Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - David Craufurd
- Manchester Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester M13 9PL, UK.,St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9WL, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Psychology, University of Bath, Bath BA2 7AY, UK.,School for Mental Health and Neuroscience, Fac. Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Anne E Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK.,Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea SA6 6NL, UK.,School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
8
|
Pfaff L, Gounot D, Chanson JB, de Seze J, Blanc F. Emotional experience is increased and emotion recognition decreased in multiple sclerosis. Sci Rep 2021; 11:21885. [PMID: 34750435 PMCID: PMC8575874 DOI: 10.1038/s41598-021-01139-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Emotional disorders in multiple sclerosis (MS) are frequently described as difficulties in recognizing facial expressions, rarely in the experience dimension. Moreover, interaction between emotional disorders and cognitive or psychological disorders remains little documented. The aim of this study is to explore emotions in MS in emotion recognition and emotional experience and compare these data with cognitive, psychological, and disease aspects. Twenty-five women with MS (MS group) and 27 healthy controls (control group) matched for age, sex, and education were assessed for emotion recognition (Florida Affect Battery) and emotional experience (International Affective Picture System Photographs). Participants were also assessed for cognitive and psychological aspects. Compared to the control group, the MS group had more difficulty in recognizing emotions, and their subjective evaluations when presented IAPS pictures were more scattered, globally increased. Emotional dimensions were each correlated with executive functions but neither correlated with alexithymia, depression, anxiety, or MS characteristics. In conclusion, MS patients present difficulties in identifying emotion and their emotional experience appears to be increased. These disorders are correlated with cognition but remain independent of psychological or disease aspects. Considering the implications that emotional disorders may have, it seems essential to take these aspects into account in clinical practice.
Collapse
Affiliation(s)
- Line Pfaff
- University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto, Strasbourg, France. .,CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, University Hospitals of Strasbourg, Strasbourg, France.
| | - Daniel Gounot
- University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto, Strasbourg, France
| | - Jean-Baptiste Chanson
- CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, University Hospitals of Strasbourg, Strasbourg, France.,University Hospital of Strasbourg, Strasbourg, Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, Strasbourg, France
| | - Frédéric Blanc
- University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto, Strasbourg, France.,Geriatrics Department, University Hospitals of Strasbourg, CMRR (Memory Resources and Research Centre), Geriatric Day Hospital, Strasbourg, France
| |
Collapse
|
9
|
Puig-Davi A, Martinez-Horta S, Sampedro F, Horta-Barba A, Perez-Perez J, Campolongo A, Izquierdo-Barrionuevo C, Pagonabarraga J, Gomez-Anson B, Kulisevsky J. Cognitive and Affective Empathy in Huntington's Disease. J Huntingtons Dis 2021; 10:323-334. [PMID: 34486985 DOI: 10.3233/jhd-210469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Empathy is a multidimensional construct and a key component of social cognition. In Huntington's disease (HD), little is known regarding the phenomenology and the neural correlates of cognitive and affective empathy, and regarding how empathic deficits interact with other behavioral and cognitive manifestations. OBJECTIVE To explore the cognitive and affective empathy disturbances and related behavioral and neural correlates in HD. METHODS Clinical and sociodemographic data were obtained from 36 healthy controls (HC) and 54 gene-mutation carriers (17 premanifest and 37 early-manifest HD). The Test of Cognitive and Affective Empathy (TECA) was used to characterize cognitive (CE) and affective empathy (AE), and to explore their associations with grey matter volume (GMV) and cortical thickness (Cth). RESULTS Compared to HC, premanifest participants performed significantly worse in perspective taking (CE) and empathic distress (AE). In symptomatic participants, scores were significantly lower in almost all the TECA subscales. Several empathy subscales were associated with the severity of apathy, irritability, and cognitive deficits. CE was associated with GMV in thalamic, temporal, and occipital regions, and with Cth in parietal and temporal areas. AE was associated with GMV in the basal ganglia, limbic, occipital, and medial orbitofrontal regions, and with Cth in parieto-occipital areas. CONCLUSION Cognitive and affective empathy deficits are detectable early, are more severe in symptomatic participants, and involve the disruption of several fronto-temporal, parieto-occipital, basal ganglia, and limbic regions. These deficits are associated with disease severity and contribute to several behavioral symptoms, facilitating the presentation of maladaptive patterns of social interaction.
Collapse
Affiliation(s)
- Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Jesus Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Izquierdo-Barrionuevo
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Beatriz Gomez-Anson
- Neuroradiology, Radiology Department, Hospital de la Santa Creu i Sant Pau, AutonomousUniversity of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| |
Collapse
|
10
|
Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG. The Role of the Cerebellum in Huntington's Disease: a Systematic Review. THE CEREBELLUM 2020; 20:254-265. [PMID: 33029762 DOI: 10.1007/s12311-020-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a rare neurological disorder characterized by progressive motor, cognitive, and psychiatric disturbances. Although striatum degeneration might justify most of the motor symptoms, there is an emerging evidence of involvement of extra-striatal structures, such as the cerebellum. To elucidate the cerebellar involvement and its afferences with motor, psychiatric, and cognitive symptoms in HD. A systematic search in the literature was performed in MEDLINE, LILACS, and Google Scholar databases. The research was broadened to include the screening of reference lists of review articles for additional studies. Studies available in the English language, dating from 1993 through May 2020, were included. Clinical presentation of patients with HD may not be considered as the result of an isolated primary striatal dysfunction. There is evidence that cerebellar involvement is an early event in HD and may occur independently of striatal degeneration. Also, the loss of the compensation role of the cerebellum in HD may be an explanation for the clinical onset of HD. Although more studies are needed to elucidate this association, the current literature supports that the cerebellum may integrate the natural history of neurodegeneration in HD.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alex T Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
| | - Nayra S C Lima
- Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
11
|
Lamirault C, Nguyen HP, Doyère V, El Massioui N. Age-related alteration of emotional regulation in the BACHD rat model of Huntington disease. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12633. [PMID: 31883197 DOI: 10.1111/gbb.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder, caused by an expanded CAG repeat in the gene encoding the huntingtin protein. At the premanifest phase, before motor symptoms occur, psychiatric and emotional disorders are observed with high prevalence in HD patients. Agitation, anxiety and irritability are often described but also depression and/or apathy, associated with a lack of emotional control. The aim of the present study was to better circumscribe and understand the emotional symptoms and assess their evolution according to the progression of the disease using a transgenic HD model, BACHD rats, at the age of 4, 12 and 18 months. To achieve this goal, we confronted animals to two types of tests: first, tests assessing anxiety like the light/dark box and the conflict test, which are situations that did not involve an obvious threat and tests assessing the reactivity to a present threat using confrontation with an unknown conspecific (social behavior test) or with an aversive stimulus (fear conditioning test). In all animals, results show an age-dependent anxiety-like behavior, particularly marked in situation requiring passive responses (light/dark box and fear conditioning tests). BACHD rats exhibited a more profound alteration than WT animals in these tests from an early stage of the disease whereas, in tasks requiring some kind of motivation (for food or for social contacts), only old BACHD rats showed high anxiety-like behavior compared to WT, may be partly due to the other symptoms' occurrence at this stage: locomotor difficulties and/or apathy.
Collapse
Affiliation(s)
- Charlotte Lamirault
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Valérie Doyère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Nicole El Massioui
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Recognition of emotion from subtle and non-stereotypical dynamic facial expressions in Huntington's disease. Cortex 2020; 126:343-354. [DOI: 10.1016/j.cortex.2020.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
|
13
|
Zarotti N, Fletcher I, Simpson J. New Perspectives on Emotional Processing in People with Symptomatic Huntington's Disease: Impaired Emotion Regulation and Recognition of Emotional Body Language†. Arch Clin Neuropsychol 2020; 34:610-624. [PMID: 30395151 DOI: 10.1093/arclin/acy085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Emotion regulation and emotional body language (EBL) recognition represent two fundamental components of emotional processing that have recently seen a considerable surge in research interest, in part due to the role they play in optimizing mental health. This appears to be particularly true for clinical conditions that can profoundly affect emotional functioning. Among these is Huntington's disease (HD), a neurodegenerative disorder that is associated with several psychological difficulties and cognitive impairments, including well-established deficits in facial emotion recognition. However, although the theoretical case for impairments is strong, the current evidence in HD on other components such as emotion regulation and EBL recognition is sparse. METHOD In this study, it was hypothesized that emotion regulation and recognition of EBL are impaired in people with symptomatic HD, and that these impairments significantly and positively correlate with each other. A between-subjects design was adopted to compare 13 people with symptomatic HD with 12 non-affected controls matched for age and education. RESULTS The results showed that emotion regulation and EBL recognition were significantly impaired in individuals with HD. Moreover, a significant positive correlation was observed between facial and EBL recognition impairments, whereas EBL performance was negatively related to the disease stage. However, emotion regulation and recognition performances were not significantly correlated. CONCLUSIONS This investigation represents the first evidence of a deficit of emotion regulation and EBL recognition in individuals with HD. The clinical implications of these findings are explored, and indications for future research are proposed.
Collapse
Affiliation(s)
- Nicolò Zarotti
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Ian Fletcher
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jane Simpson
- Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
14
|
Osborne-Crowley K, Andrews SC, Labuschagne I, Nair A, Scahill R, Craufurd D, Tabrizi SJ, Stout JC. Apathy Associated With Impaired Recognition of Happy Facial Expressions in Huntington's Disease. J Int Neuropsychol Soc 2019; 25:453-461. [PMID: 30767839 PMCID: PMC6542690 DOI: 10.1017/s1355617718001224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Previous research has demonstrated an association between emotion recognition and apathy in several neurological conditions involving fronto-striatal pathology, including Parkinson's disease and brain injury. In line with these findings, we aimed to determine whether apathetic participants with early Huntington's disease (HD) were more impaired on an emotion recognition task compared to non-apathetic participants and healthy controls. METHODS We included 43 participants from the TRACK-HD study who reported apathy on the Problem Behaviours Assessment - short version (PBA-S), 67 participants who reported no apathy, and 107 controls matched for age, sex, and level of education. During their baseline TRACK-HD visit, participants completed a battery of cognitive and psychological tests including an emotion recognition task, the Hospital Depression and Anxiety Scale (HADS) and were assessed on the PBA-S. RESULTS Compared to the non-apathetic group and the control group, the apathetic group were impaired on the recognition of happy facial expressions, after controlling for depression symptomology on the HADS and general disease progression (Unified Huntington's Disease Rating Scale total motor score). This was despite no difference between the apathetic and non-apathetic group on overall cognitive functioning assessed by a cognitive composite score. CONCLUSIONS Impairment of the recognition of happy expressions may be part of the clinical picture of apathy in HD. While shared reliance on frontostriatal pathways may broadly explain associations between emotion recognition and apathy found across several patient groups, further work is needed to determine what relationships exist between recognition of specific emotions, distinct subtypes of apathy and underlying neuropathology. (JINS, 2019, 25, 453-461).
Collapse
Affiliation(s)
- Katherine Osborne-Crowley
- 1Huntington's Disease Centre,University College London,Institute of Neurology, and National Hospital for Neurology and Neurosurgery,London,United Kingdom
| | - Sophie C Andrews
- 2Monash Institute of Cognitive and Clinical Neurosciences,School of Psychological Sciences,Monash University,Melbourne,Australia
| | - Izelle Labuschagne
- 3Cognition and Emotion Research Centre,School of Psychology,Australian Catholic University,Melbourne,Australia
| | - Akshay Nair
- 1Huntington's Disease Centre,University College London,Institute of Neurology, and National Hospital for Neurology and Neurosurgery,London,United Kingdom
| | - Rachael Scahill
- 1Huntington's Disease Centre,University College London,Institute of Neurology, and National Hospital for Neurology and Neurosurgery,London,United Kingdom
| | - David Craufurd
- 4Manchester Centre for Genomic Medicine,Division of Evolution and Genomic Sciences,School of Biological Sciences, Faculty of Biology,Medicine and Health,University of Manchester,Manchester Academic Health Science Centre,Manchester,United Kingdom
| | - Sarah J Tabrizi
- 1Huntington's Disease Centre,University College London,Institute of Neurology, and National Hospital for Neurology and Neurosurgery,London,United Kingdom
| | - Julie C Stout
- 2Monash Institute of Cognitive and Clinical Neurosciences,School of Psychological Sciences,Monash University,Melbourne,Australia
| |
Collapse
|
15
|
Tang X, Ross CA, Johnson H, Paulsen JS, Younes L, Albin RL, Ratnanather JT, Miller MI. Regional subcortical shape analysis in premanifest Huntington's disease. Hum Brain Mapp 2018; 40:1419-1433. [PMID: 30376191 DOI: 10.1002/hbm.24456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/11/2022] Open
Abstract
Huntington's disease (HD) involves preferential and progressive degeneration of striatum and other subcortical regions as well as regional cortical atrophy. It is caused by a CAG repeat expansion in the Huntingtin gene, and the longer the expansion the earlier the age of onset. Atrophy begins prior to manifest clinical signs and symptoms, and brain atrophy in premanifest expansion carriers can be studied. We employed a diffeomorphometric pipeline to contrast subcortical structures' morphological properties in a control group with three disease groups representing different phases of premanifest HD (far, intermediate, and near to onset) as defined by the length of the CAG expansion and the participant's age (CAG-Age-Product). A total of 1,428 magnetic resonance image scans from 694 participants from the PREDICT-HD cohort were used. We found significant region-specific atrophies in all subcortical structures studied, with the estimated abnormality onset time varying from structure to structure. Heterogeneous shape abnormalities of caudate nuclei were present in premanifest HD participants estimated furthest from onset and putaminal shape abnormalities were present in participants intermediate to onset. Thalamic, hippocampal, and amygdalar shape abnormalities were present in participants nearest to onset. We assessed whether the estimated progression of subcortical pathology in premanifest HD tracked specific pathways. This is plausible for changes in basal ganglia circuits but probably not for changes in hippocampus and amygdala. The regional shape analyses conducted in this study provide useful insights into the effects of HD pathology in subcortical structures.
Collapse
Affiliation(s)
- Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Christopher A Ross
- Division of Neurobiology, Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hans Johnson
- Departments of Neurology and Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jane S Paulsen
- Departments of Neurology and Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland.,Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Roger L Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
16
|
Kordsachia CC, Labuschagne I, Andrews SC, Stout JC. Diminished facial EMG responses to disgusting scenes and happy and fearful faces in Huntington's disease. Cortex 2018; 106:185-199. [PMID: 30005370 DOI: 10.1016/j.cortex.2018.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 05/27/2018] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder associated with impaired facial emotion recognition and altered subjective experience of emotion. These impairments likely result from the effects of the disease on underlying neurobiological mechanisms. Studies using self-report to examine emotional experiences have been ambiguous regarding whether experiences are diminished or exaggerated, possibly due to cognitive impairment and lack of insight in HD. To infer affective states more objectively and overcome the limitations of self-report, we used facial EMG to measure muscle responses to emotionally-evocative scenes. Further, we examined muscle responses to emotionally-expressive faces, because facial mimicry is thought to facilitate emotion recognition and social affiliation. Twenty-three HD participants (late pre-manifest and early symptomatic) were compared to twenty-five healthy controls in a scene condition and a face condition. EMG activity was measured from facial muscles associated with expressing particular emotions: 1) corrugator supercilii for anger, 2) frontalis for fear, 3) levator labii for disgust, and 4) both zygomaticus major and orbicularis oculi for happiness. Compared to controls, HD participants showed diminished responses to disgusting scenes, and to happy and fearful faces. Our findings provide evidence for a loss of disgust experience in HD. Further, consistent with the alleged affiliative function of facial mimicry, diminished mimicry responses may be relevant to social-emotional changes in HD. Our findings help understand the neural mechanisms underlying emotion processing impairments in HD.
Collapse
Affiliation(s)
- Catarina C Kordsachia
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Izelle Labuschagne
- Cognition and Emotion Research Centre, School of Psychology, Australian Catholic University, Fitzroy, Melbourne, Australia
| | - Sophie C Andrews
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Julie C Stout
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Garces D, El Massioui N, Lamirault C, Riess O, Nguyen HP, Brown BL, Doyère V. The Alteration of Emotion Regulation Precedes the Deficits in Interval Timing in the BACHD Rat Model for Huntington Disease. Front Integr Neurosci 2018; 12:14. [PMID: 29867384 PMCID: PMC5954136 DOI: 10.3389/fnint.2018.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominantly inherited, progressive neurodegenerative disorder which is accompanied by executive dysfunctions and emotional alteration. The aim of the present study was to assess the impact of emotion/stress on on-going highly demanding cognitive tasks, i.e., temporal processing, as a function of age in BACHD rats (a “full length” model of HD). Middle-aged (4–6 months) and old (10–12 months) rats were first trained on a 2 vs. 8-s temporal discrimination task, and then exposed to a series of bisection tests under normal and stressful (10 mild unpredictable foot-shocks) conditions. The animals were then trained on a peak interval task, in which reinforced fixed-interval (FI) 30-s trials were randomly intermixed with non-reinforced probe trials. After training, the effect of stress upon time perception was again assessed. Sensitivity to foot-shocks was also assessed independently. The results show effects of both age and genotype, with largely greater effects in old BACHD animals. The older BACHD animals had impaired learning in both tasks, but reached equivalent levels of performance as WT animals at the end of training in the temporal discrimination task, while remaining impaired in the peak interval task. Whereas sensitivity to foot-shock did not differ between BACHD and WT rats, delivery of foot-shocks during the test sessions had a disruptive impact on temporal behavior in WT animals, an effect which increased with age. In contrast, BACHD rats, independent of age, did not show any significant disruption under stress. In conclusion, BACHD rats showed a disruption in temporal learning in late symptomatic animals. Age-related modification in stress-induced impairment of temporal control of behavior was also observed, an effect which was greatly reduced in BACHD animals, thus confirming previous results suggesting reduced emotional reactivity in HD animals. The results suggest a staggered onset in cognitive and emotional alterations in HD, with emotional alteration being the earliest, possibly related to different time courses of degeneration in cortico-striatal and amygdala circuits.
Collapse
Affiliation(s)
- Daniel Garces
- The Graduate Center, City University of New York, New York, NY, United States
| | - Nicole El Massioui
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Huu P Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany.,Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Bruce L Brown
- The Graduate Center, City University of New York, New York, NY, United States.,Queens College, City University of New York, New York, NY, United States
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
18
|
López-Hurtado A, Burgos DF, González P, Dopazo XM, González V, Rábano A, Mellström B, Naranjo JR. Inhibition of DREAM-ATF6 interaction delays onset of cognition deficit in a mouse model of Huntington's disease. Mol Brain 2018. [PMID: 29523177 PMCID: PMC5845147 DOI: 10.1186/s13041-018-0359-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a multifunctional neuronal calcium sensor (NCS) that controls Ca2+ and protein homeostasis through gene regulation and protein-protein interactions. Downregulation of DREAM is part of an endogenous neuroprotective mechanism that improves ATF6 (activating transcription factor 6) processing, neuronal survival in the striatum, and motor coordination in R6/2 mice, a model of Huntington’s disease (HD). Whether modulation of DREAM activity can also ameliorate cognition deficits in HD mice has not been studied. Moreover, it is not known whether DREAM downregulation in HD is unique, or also occurs for other NCS family members. Using the novel object recognition test, we show that chronic administration of the DREAM-binding molecule repaglinide, or induced DREAM haplodeficiency delays onset of cognitive impairment in R6/1 mice, another HD model. The mechanism involves a notable rise in the levels of transcriptionally active ATF6 protein in the hippocampus after repaglinide administration. In addition, we show that reduction in DREAM protein in the hippocampus of HD patients was not accompanied by downregulation of other NCS family members. Our results indicate that DREAM inhibition markedly improves ATF6 processing in the hippocampus and that it might contribute to a delay in memory decline in HD mice. The mechanism of neuroprotection through DREAM silencing in HD does not apply to other NCS family members.
Collapse
Affiliation(s)
- Alejandro López-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Daniel F Burgos
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Valentina González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Rábano
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain. .,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|
19
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Yousaf T, Dervenoulas G, Politis M. Advances in MRI Methodology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:31-76. [DOI: 10.1016/bs.irn.2018.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Lamirault C, Yu-Taeger L, Doyère V, Riess O, Nguyen HP, El Massioui N. Altered reactivity of central amygdala to GABA A R antagonist in the BACHD rat model of Huntington disease. Neuropharmacology 2017; 123:136-147. [DOI: 10.1016/j.neuropharm.2017.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
|
22
|
Neuroimaging as a tool to study the sources of phenotypic heterogeneity in Huntington's disease. Curr Opin Neurol 2017; 30:398-404. [PMID: 28509681 DOI: 10.1097/wco.0000000000000461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Huntington's disease is a neurodegenerative disorder characterized by a triad of motor, cognitive and psychiatric disturbances. There is great variability regarding the prominence and evolution of each type of clinical sign. One possible source of phenotypic heterogeneity could be the more prominent degeneration of specific brain circuits. The scope of this review is to highlight the most recent neuroimaging studies that have analysed the relationship between brain changes and motor, cognitive and psychiatric alterations in Huntington's disease. RECENT FINDINGS The results from recent neuroimaging studies are heterogeneous. Although there is a great overlap between the different regions associated with each symptomatic domain, there is some degree of differentiation. For example, the motor network is associated with motor impairment, whereas the ventral striatum is especially involved in emotional deficits related with psychiatric problems. SUMMARY Motor, cognitive and psychiatric impairments are associated with structural and functional brain biomarkers. However, the specificity of the regions involved remains unknown, because these studies focused on specific regions and symptoms. In order to tease apart the neural substrates that underlie the phenotypic heterogeneity in Huntington's disease, multivariate approaches combining brain and behavioural measures related to all symptomatic domains should be considered in the future.
Collapse
|
23
|
Core, social and moral disgust are bounded: A review on behavioral and neural bases of repugnance in clinical disorders. Neurosci Biobehav Rev 2017; 80:185-200. [PMID: 28506923 DOI: 10.1016/j.neubiorev.2017.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
Disgust is a multifaceted experience that might affect several aspects of life. Here, we reviewed research on neurological and psychiatric disorders that are characterized by abnormal disgust processing to test the hypothesis of a shared neurocognitive architecture in the representation of three disgust domains: i) personal experience of 'core disgust'; ii) social disgust, i.e., sensitivity to others' expressions of disgust; iii) moral disgust, i.e., sensitivity to ethical violations. Our review provides some support to the shared neurocognitive hypothesis and suggests that the insula might be the "hub" structure linking the three domains of disgust sensitivity, while other brain regions may subserve specific facets of the multidimensional experience. Our review also suggests a role of serotonin core and moral disgust, supporting "neo-sentimentalist" theories of morality, which posit a causal role of affect in moral judgment.
Collapse
|
24
|
Kordsachia CC, Labuschagne I, Stout JC. Abnormal Visual Scanning of Emotionally Evocative Natural Scenes in Huntington's Disease. Front Psychol 2017; 8:405. [PMID: 28405190 PMCID: PMC5370318 DOI: 10.3389/fpsyg.2017.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative movement disorder associated with deficits in the processing of emotional stimuli, including alterations in the self-reported subjective experience of emotion when presented with pictures of emotional scenes. The aim of this study was to determine whether individuals with HD, compared to unaffected controls, display abnormal visual scanning of emotionally evocative natural scenes. Using eye-tracking, we recorded eye-movements of 25 HD participants (advanced pre-symptomatic and early symptomatic) and 25 age-matched unaffected control participants during a picture viewing task. Participants viewed pictures of natural scenes associated with different emotions: anger, fear, disgust, happiness, or neutral, and evaluated those pictures on a valence rating scale. Individuals with HD displayed abnormal visual scanning patterns, but did not differ from controls with respect to their valence ratings. Specifically, compared to controls, HD participants spent less time fixating on the pictures and made longer scan paths. This finding highlights the importance of taking visual scanning behavior into account when investigating emotion processing in HD. The visual scanning patterns displayed by HD participants could reflect a heightened, but possibly unfocussed, search for information, and might be linked to attentional deficits or to altered subjective emotional experiences in HD. Another possibility is that HD participants may have found it more difficult than controls to evaluate the emotional valence of the scenes, and the heightened search for information was employed as a compensatory strategy.
Collapse
Affiliation(s)
- Catarina C Kordsachia
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Izelle Labuschagne
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University,Melbourne, VIC, Australia; Cognition and Emotion Research Centre, School of Psychology, Australian Catholic University,Fitzroy, VIC, Australia
| | - Julie C Stout
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Beyond emotion recognition deficits: A theory guided analysis of emotion processing in Huntington’s disease. Neurosci Biobehav Rev 2017; 73:276-292. [DOI: 10.1016/j.neubiorev.2016.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
26
|
Baez S, Santamaría-García H, Orozco J, Fittipaldi S, García AM, Pino M, Ibáñez A. Your misery is no longer my pleasure: Reduced schadenfreude in Huntington's disease families. Cortex 2016; 83:78-85. [DOI: 10.1016/j.cortex.2016.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 12/30/2022]
|
27
|
Maurage P, Lahaye M, Grynberg D, Jeanjean A, Guettat L, Verellen-Dumoulin C, Halkin S, Heeren A, Billieux J, Constant E. Dissociating emotional and cognitive empathy in pre-clinical and clinical Huntington's disease. Psychiatry Res 2016; 237:103-8. [PMID: 26869362 DOI: 10.1016/j.psychres.2016.01.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/07/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Huntington's disease (HD) is centrally characterized by motor, neurocognitive and psychiatric symptoms, but impaired emotional decoding abilities have also been reported. However, more complex affective abilities are still to be explored, and particularly empathy, which is essential for social relations and is impaired in various psychiatric conditions. This study evaluates empathic abilities and social skills in pre-clinical and clinical HD, and explores the distinction between two empathy sub-components (emotional-cognitive). Thirty-six HD patients (17 pre-clinical) and 36 matched controls filled in the Empathy Quotient Scale, while controlling for psychopathological comorbidities. At the clinical stage of HD, no global empathy impairment was observed but rather a specific deficit for the cognitive sub-component, while emotional empathy was preserved. A deficit was also observed for social skills. Pre-clinical HD was not associated with any empathy deficit. Emotional deficits in clinical HD are thus not limited to basic emotion decoding but extend towards complex interpersonal abilities. The dissociation between impaired cognitive and preserved emotional empathy in clinical HD reinforces the proposal that empathy subtypes are sustained by distinct processes. Finally, these results underline the extent of distinct affective and social impairments in HD and the need to grasp them in clinical contexts.
Collapse
Affiliation(s)
- Pierre Maurage
- Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université catholique de Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium.
| | - Magali Lahaye
- Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université catholique de Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium
| | - Delphine Grynberg
- Université de Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Anne Jeanjean
- Department of Neurology, Saint-Luc University Hospital, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Lamia Guettat
- Department of Neuropsychiatry, Beauvallon Psychiatric Hospital, 205 Rue de Bricgniot, B-5002 Saint-Servais, Belgium
| | | | - Stéphane Halkin
- Department of Psychiatry, Liège University Hospital, Domaine Universitaire du Sart Tilman, B-4000 Liège, Belgium
| | - Alexandre Heeren
- Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université catholique de Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium; Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Joël Billieux
- Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université catholique de Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium
| | - Eric Constant
- Department of Adult Psychiatry, Saint-Luc University Hospital, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
28
|
Bora E, Velakoulis D, Walterfang M. Social cognition in Huntington's disease: A meta-analysis. Behav Brain Res 2016; 297:131-40. [PMID: 26455876 DOI: 10.1016/j.bbr.2015.10.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
Abstract
Neurocognitive impairment in Huntington's disease (HD) frequently includes deficits in emotion recognition, and recent studies have also provided evidence for deficits in theory of mind (ToM). There have been conflicting reports regarding the extent of emotion recognition and ToM deficits before the onset of motor symptoms in HD. In this meta-analysis, ToM and emotion recognition performances of 2226HD or pre-manifest HD and 998 healthy controls were included in the meta-analysis. Meta-regression analyses were conducted to investigate the relationship between social cognition deficits and demographic, cognitive and clinical features in HD. HD patients were significantly less accurate than controls in ToM and across all emotions in response to both facial and vocal stimuli. ToM (d=1.72) and recognition of negative emotions (d=1.20-1.33), especially anger, disgust and fear (d=1.26-1.52) were severely impaired. Pre-manifest HD was also associated with impairment in social cognition. The severity of emotion recognition impairment was significantly associated with disease burden, proximity of onset of motor symptoms and cognitive impairment. Social cognition impairments are potential biomarkers of disease onset and progression in HD.
Collapse
Affiliation(s)
- Emre Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia.
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| | - Mark Walterfang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
29
|
Odish OFF, Caeyenberghs K, Hosseini H, van den Bogaard SJA, Roos RAC, Leemans A. Dynamics of the connectome in Huntington's disease: A longitudinal diffusion MRI study. NEUROIMAGE-CLINICAL 2015; 9:32-43. [PMID: 26288754 PMCID: PMC4536305 DOI: 10.1016/j.nicl.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/29/2022]
Abstract
Objectives To longitudinally investigate the connectome in different stages of Huntington's disease (HD) by applying graph theoretical analysis to diffusion MRI data. Experimental design We constructed weighted structural networks and calculated their topological properties. Twenty-two premanifest (preHD), 10 early manifest HD and 24 healthy controls completed baseline and 2 year follow-up scans. We stratified the preHD group based on their predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. We collected clinical and behavioural measures per assessment time point. Principle observations We found a significant reduction over time in nodal betweenness centrality both in the early manifest HD and preHD-B groups as compared to the preHD-A and control groups, suggesting a decrease of importance of specific nodes to overall network organization in these groups (FDR adjusted ps < 0.05). Additionally, we found a significant longitudinal decrease of the clustering coefficient in preHD when compared to healthy controls (FDR adjusted p < 0.05), which can be interpreted as a reduced capacity for internodal information processing at the local level. Furthermore, we demonstrated dynamic changes to hub-status loss and gain both in preHD and early manifest HD. Finally, we found significant cross-sectional as well as longitudinal relationships between graph metrics and clinical and neurocognitive measures. Conclusions This study demonstrates divergent longitudinal changes to the connectome in (pre) HD compared to healthy controls. This provides novel insights into structural correlates associated with clinical and cognitive functions in HD and possible compensatory mechanisms at play in preHD. Investigates characteristics of the connectome in Huntington's disease (HD). HD patients showed longitudinal changes in their structural connectome. Connectome dynamics correlated with changes in clinical and cognitive measures. Connectomics provides novel insights into compensatory strategies of the diseased brain.
Collapse
Affiliation(s)
- Omar F F Odish
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karen Caeyenberghs
- Faculty of Health Sciences, School of Psychology, Australian Catholic University, Melbourne, Australia
| | - Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Löffler LAK, Radke S, Morawetz C, Derntl B. Emotional dysfunctions in neurodegenerative diseases. J Comp Neurol 2015; 524:1727-43. [PMID: 26011035 DOI: 10.1002/cne.23816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases are characterized primarily by motor signs but are also accompanied by emotional disturbances. Because of the limited knowledge about these dysfunctions, this Review provides an overview of emotional competencies in Huntington's disease (HD), Parkinson's disease (PD), and multiple sclerosis (MS), with a focus on emotion recognition, emotion regulation, and depression. Most studies indicate facial emotion recognition deficits in HD and PD, whereas data for MS are inconsistent. On a neural level, dysfunctions of amygdala and striatum, among others, have been linked to these impairments. These dysfunctions also tap brain regions that are part of the emotion regulation network, suggesting problems in this competency, too. Research points to dysfunctional emotion regulation in MS, whereas findings for PD and HD are missing. The high prevalence of depression in all three disorders emphasizes the need for effective therapies. Research on emotional disturbances might improve treatment, thereby increasing patients' and caregivers' well-being.
Collapse
Affiliation(s)
- Leonie A K Löffler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074, Aachen, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074, Aachen, Germany.,JARA-Translational Brain Medicine, 52074, Aachen, Germany
| | - Carmen Morawetz
- Department of Education and Psychology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074, Aachen, Germany.,JARA-Translational Brain Medicine, 52074, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-1), Research Center Jülich, 52425, Jülich, Germany
| |
Collapse
|
31
|
Impairments in negative emotion recognition and empathy for pain in Huntington's disease families. Neuropsychologia 2015; 68:158-67. [DOI: 10.1016/j.neuropsychologia.2015.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
|
32
|
Rees EM, Farmer R, Cole JH, Henley SM, Sprengelmeyer R, Frost C, Scahill RI, Hobbs NZ, Tabrizi SJ. Inconsistent emotion recognition deficits across stimulus modalities in Huntington׳s disease. Neuropsychologia 2014; 64:99-104. [DOI: 10.1016/j.neuropsychologia.2014.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/28/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
|
33
|
Brito V, Giralt A, Enriquez-Barreto L, Puigdellívol M, Suelves N, Zamora-Moratalla A, Ballesteros JJ, Martín ED, Dominguez-Iturza N, Morales M, Alberch J, Ginés S. Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction. J Clin Invest 2014; 124:4411-28. [PMID: 25180603 PMCID: PMC4191006 DOI: 10.1172/jci74809] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/29/2014] [Indexed: 12/13/2022] Open
Abstract
Learning and memory deficits are early clinical manifestations of Huntington's disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75(NTR) negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75(NTR) function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75(NTR) are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75(NTR) levels in HD mutant mice heterozygous for p75(NTR) prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75(NTR) in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75(NTR) in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75(NTR) mediates synaptic, learning, and memory dysfunction in HD.
Collapse
Affiliation(s)
- Verónica Brito
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Albert Giralt
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Lilian Enriquez-Barreto
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Mar Puigdellívol
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Nuria Suelves
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Alfonsa Zamora-Moratalla
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Jesús J. Ballesteros
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Eduardo D. Martín
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Nuria Dominguez-Iturza
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Miguel Morales
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Jordi Alberch
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Sílvia Ginés
- Departament de Biologia Celηlular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, Centro de Investigación Biomédica de la Rioja, La Rioja, Spain. Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCyTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
34
|
Wolf RC, Sambataro F, Vasic N, Baldas EM, Ratheiser I, Bernhard Landwehrmeyer G, Depping MS, Thomann PA, Sprengelmeyer R, Süssmuth SD, Orth M. Visual system integrity and cognition in early Huntington's disease. Eur J Neurosci 2014; 40:2417-26. [PMID: 24698429 DOI: 10.1111/ejn.12575] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
Posterior cortical volume changes and abnormal visuomotor performance are present in patients with Huntington's disease (HD). However, it is unclear whether posterior cortical volume loss contributes to abnormal neural activity, and whether activity changes predict cognitive dysfunction. Using magnetic resonance imaging (MRI), we investigated brain structure and visual network activity at rest in patients with early HD (n = 20) and healthy controls (n = 20). The symbol digit modalities test (SDMT) and subtests of the Visual Object and Space Perception Battery were completed offline. For functional MRI data, a group independent component analysis was used. Voxel-based morphometry was employed to assess regional brain atrophy, and 'biological parametric mapping' analyses were included to investigate the impact of atrophy on neural activity. Patients showed significantly worse visuomotor and visual object performance than controls. Structural analyses confirmed occipitotemporal atrophy. In patients and controls, two spatiotemporally distinct visual systems were identified. Patients showed decreased activity in the left fusiform cortex, and increased left cerebellar activity. These findings remained stable after correction for brain atrophy. Lower fusiform cortex activity was associated with lower SDMT performance and with higher disease burden scores. These associations were absent when cerebellar function was related to task performance and disease burden. The results of this study suggest that regionally specific functional abnormalities of the visual system can account for the worse visuomotor cognition in HD patients. However, occipital volume changes cannot sufficiently explain abnormal neural function in these patients.
Collapse
Affiliation(s)
- Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Voßstraße 4, Heidelberg, 69115, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kalkhoven C, Sennef C, Peeters A, van den Bos R. Risk-taking and pathological gambling behavior in Huntington's disease. Front Behav Neurosci 2014; 8:103. [PMID: 24765067 PMCID: PMC3980094 DOI: 10.3389/fnbeh.2014.00103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a genetic, neurodegenerative disorder, which specifically affects striatal neurons of the indirect pathway, resulting in a progressive decline in muscle coordination and loss of emotional and cognitive control. Interestingly, predisposition to pathological gambling and other addictions involves disturbances in the same cortico-striatal circuits that are affected in HD, and display similar disinhibition-related symptoms, including changed sensitivity to punishments and rewards, impulsivity, and inability to consider long-term advantages over short-term rewards. Both HD patients and pathological gamblers also show similar performance deficits on risky decision-making tasks, such as the Iowa Gambling Task (IGT). These similarities suggest that HD patients are a likely risk group for gambling problems. However, such problems have only incidentally been observed in HD patients. In this review, we aim to characterize the risk of pathological gambling in HD, as well as the underlying neurobiological mechanisms. Especially with the current rise of easily accessible Internet gambling opportunities, it is important to understand these risks and provide appropriate patient support accordingly. Based on neuropathological and behavioral findings, we propose that HD patients may not have an increased tendency to seek risks and start gambling, but that they do have an increased chance of developing an addiction once they engage in gambling activities. Therefore, current and future developments of Internet gambling possibilities and related addictions should be regarded with care, especially for vulnerable groups like HD patients.
Collapse
Affiliation(s)
| | | | | | - Ruud van den Bos
- Department of Organismal Animal Physiology, Faculty of Science, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
36
|
Scharmüller W, Ille R, Schienle A. Cerebellar contribution to anger recognition deficits in Huntington's disease. CEREBELLUM (LONDON, ENGLAND) 2013; 12:819-25. [PMID: 23709228 PMCID: PMC4495283 DOI: 10.1007/s12311-013-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although there is increasing evidence that cerebellar loss of grey matter volume (GMV) is associated with affective deficits, this has not been tested for patients suffering from Huntington's disease (HD), who show a pronounced impairment in the recognition of anger. We assessed GMV in 18 symptomatic HD patients and 18 healthy controls using voxel-based morphometry. The GMV of cerebellar subregions was correlated with participants' intensity and accuracy ratings for facial expressions of basic emotions from the Karolinska Directed Emotional Faces (Lundqvist et al. 1998). The patients gave lower and less accurate anger ratings for angry faces than controls. This anger recognition deficit was correlated with atrophy of selected hemispheric and vermal regions of the cerebellum. Furthermore, cerebellar volume reductions of the HD patients were associated with longer disease duration and greater functional impairment. The data imply that anger recognition deficits could potentially serve as indicators of disease onset and progression in HD. Furthermore, the patients might profit from specific affect trainings.
Collapse
Affiliation(s)
- Wilfried Scharmüller
- Clinical Psychology, Department of Psychology, University of Graz, Universitätsplatz 2/III, 8010, Graz, Austria
| | | | | |
Collapse
|
37
|
Default-mode network changes in Huntington's disease: an integrated MRI study of functional connectivity and morphometry. PLoS One 2013; 8:e72159. [PMID: 23977239 PMCID: PMC3747049 DOI: 10.1371/journal.pone.0072159] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/07/2013] [Indexed: 01/18/2023] Open
Abstract
Previous MRI studies of functional connectivity in pre-symptomatic mutation carriers of Huntington’s disease (HD) have shown dysfunction of the Default-Mode Network (DMN). No data however are currently available on the DMN alterations in the symptomatic stages of the disease, which are characterized by cortical atrophy involving several DMN nodes. We assessed DMN integrity and its possible correlations with motor and cognitive symptoms in 26 symptomatic HD patients as compared to 22 normal volunteers, by analyzing resting state functional MRI data, using the Precuneal Cortex/Posterior Cingulate Cortices (PC/PCC) as seed, controlling at voxel level for the effect of atrophy by co-varying for gray matter volume. Direct correlation with PC/PCC was decreased, without correlation with atrophy, in the ventral medial prefrontal cortex (including anterior cingulate and subgenual cortex), right dorso-medial prefrontal cortex, and in the right inferior parietal cortex (mainly involving the angular gyrus). Negative correlations with PC/PCC were decreased bilaterally in the inferior parietal cortices, while a cluster in the right middle occipital gyrus presented increased correlation with PC/PCC. DMN changes in the ventral medial prefrontal cortex significantly correlated with the performance at the Stroop test (p = .0002). Widespread DMN changes, not correlating with the atrophy of the involved nodes, are present in symptomatic HD patients, and correlate with cognitive disturbances.
Collapse
|
38
|
Dogan I, Saß C, Mirzazade S, Kleiman A, Werner CJ, Pohl A, Schiefer J, Binkofski F, Schulz JB, Shah NJ, Reetz K. Neural correlates of impaired emotion processing in manifest Huntington's disease. Soc Cogn Affect Neurosci 2013; 9:671-80. [PMID: 23482620 DOI: 10.1093/scan/nst029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The complex phenotype of Huntington's disease (HD) encompasses motor, psychiatric and cognitive dysfunctions, including early impairments in emotion recognition. In this first functional magnetic resonance imaging study, we investigated emotion-processing deficits in 14 manifest HD patients and matched controls. An emotion recognition task comprised short video clips displaying one of six basic facial expressions (sadness, happiness, disgust, fear, anger and neutral). Structural changes between patients and controls were assessed by means of voxel-based morphometry. Along with deficient recognition of negative emotions, patients exhibited predominantly lower neural response to stimuli of negative valences in the amygdala, hippocampus, striatum, insula, cingulate and prefrontal cortices, as well as in sensorimotor, temporal and visual areas. Most of the observed reduced activity patterns could not be explained merely by regional volume loss. Reduced activity in the thalamus during fear correlated with lower thalamic volumes. During the processing of sadness, patients exhibited enhanced amygdala and hippocampal activity along with reduced recruitment of the medial prefrontal cortex. Higher amygdala activity was related to more pronounced amygdala atrophy and disease burden. Overall, the observed emotion-related dysfunctions in the context of structural neurodegeneration suggest both disruptions of striatal-thalamo-cortical loops and potential compensation mechanism with greater disease severity in manifest HD.
Collapse
Affiliation(s)
- Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany. Tel.: +49-241-80-36516; Fax: +49-241-80-33-36516.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bio DS, Soeiro de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA. The impact of limbic system morphology on facial emotion recognition in bipolar I disorder and healthy controls. Neuropsychiatr Dis Treat 2013; 9:743-51. [PMID: 23723706 PMCID: PMC3666908 DOI: 10.2147/ndt.s41896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) subjects during all mood states. This study aims to investigate the impact of limbic system morphology on FER scores in BD subjects and healthy controls. MATERIAL AND METHODS Thirty-nine euthymic BD I (type I) subjects and 40 healthy controls were subjected to a battery of FER tests and examined with 3D structural imaging of the amygdala and hippocampus. RESULTS The volume of these structures demonstrated a differential pattern of influence on FER scores in BD subjects and controls. In our control sample, larger left and right amygdala demonstrated to be associated to less recognition of sadness faces. In BD group, there was no impact of amygdala volume on FER but we observed a negative impact of the left hippocampus volume in the recognition of happiness while the right hippocampus volume positively impacted on the scores of happiness. CONCLUSION Our results indicate that amygdala and hippocampus volumes have distinct effects on FER in BD subjects compared to controls. Knowledge of the neurobiological basis of the illness may help to provide further insights on the role of treatments and psychosocial interventions for BD. Further studies should explore how these effects of amygdala and hippocampus volumes on FER are associated with social networks and social network functioning.
Collapse
|
40
|
Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One 2012; 7:e45081. [PMID: 23028771 PMCID: PMC3445568 DOI: 10.1371/journal.pone.0045081] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/16/2012] [Indexed: 11/24/2022] Open
Abstract
Automated gray matter segmentation of magnetic resonance imaging data is essential for morphometric analyses of the brain, particularly when large sample sizes are investigated. However, although detection of small structural brain differences may fundamentally depend on the method used, both accuracy and reliability of different automated segmentation algorithms have rarely been compared. Here, performance of the segmentation algorithms provided by SPM8, VBM8, FSL and FreeSurfer was quantified on simulated and real magnetic resonance imaging data. First, accuracy was assessed by comparing segmentations of twenty simulated and 18 real T1 images with corresponding ground truth images. Second, reliability was determined in ten T1 images from the same subject and in ten T1 images of different subjects scanned twice. Third, the impact of preprocessing steps on segmentation accuracy was investigated. VBM8 showed a very high accuracy and a very high reliability. FSL achieved the highest accuracy but demonstrated poor reliability and FreeSurfer showed the lowest accuracy, but high reliability. An universally valid recommendation on how to implement morphometric analyses is not warranted due to the vast number of scanning and analysis parameters. However, our analysis suggests that researchers can optimize their individual processing procedures with respect to final segmentation quality and exemplifies adequate performance criteria.
Collapse
|
41
|
Dogan I, Eickhoff SB, Schulz JB, Shah NJ, Laird AR, Fox PT, Reetz K. Consistent neurodegeneration and its association with clinical progression in Huntington's disease: a coordinate-based meta-analysis. NEURODEGENER DIS 2012; 12:23-35. [PMID: 22922585 DOI: 10.1159/000339528] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/10/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The neuropathological hallmark of Huntington's disease (HD) is progressive striatal loss starting several years prior to clinical onset. In the past decade, whole-brain magnetic resonance imaging (MRI) studies have provided accumulating evidence for widely distributed cortical and subcortical atrophy in the early course of the disease. OBJECTIVE In order to synthesize current morphometric MRI findings and to investigate the impact of clinical and genetic features on structural changes, we performed a coordinate-based meta-analysis of voxel-based morphometry (VBM) studies in HD. METHODS Twenty HD samples derived from 17 studies were integrated in the analysis comparing a total of 685 HD mutation carriers [345 presymptomatic (pre-HD) and 340 symptomatic (symp-HD) subjects] and 507 controls. Convergent findings across studies were delineated using the anatomical likelihood estimation approach. Effects of genetic and clinical parameters on the likelihood of observing VBM findings were calculated by means of correlation analyses. RESULTS Pre-HD studies featured convergent evidence for neurodegeneration in the basal ganglia, amygdala, thalamus, insula and occipital regions. In symp-HD, cerebral atrophy was more pronounced and spread to cortical regions (i.e., inferior frontal, premotor, sensorimotor, midcingulate, frontoparietal and temporoparietal cortices). Higher cytosine-adenosine-guanosine repeats were associated with striatal degeneration, while parameters of disease progression and motor impairment additionally correlated with cortical atrophy, especially in sensorimotor areas. CONCLUSION This first quantitative meta-analysis in HD demonstrates the extent of striatal atrophy and further consistent extrastriatal degeneration before clinical conversion. Sensorimotor areas seem to be core regions affected in symp-HD and, along with widespread cortical atrophy, may account for the clinical heterogeneity in HD.
Collapse
Affiliation(s)
- Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen.,Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf , Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| | - N Jon Shah
- Department of Neurology, RWTH Aachen University, Aachen.,Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| | - Angela R Laird
- Research Imaging Center, University of Texas Health Science Center San Antonio, San Antonio, Tex. , USA
| | - Peter T Fox
- Research Imaging Center, University of Texas Health Science Center San Antonio, San Antonio, Tex. , USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen.,Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| |
Collapse
|
42
|
Dal Monte O, Krueger F, Solomon JM, Schintu S, Knutson KM, Strenziok M, Pardini M, Leopold A, Raymont V, Grafman J. A voxel-based lesion study on facial emotion recognition after penetrating brain injury. Soc Cogn Affect Neurosci 2012; 8:632-9. [PMID: 22496440 DOI: 10.1093/scan/nss041] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence.
Collapse
Affiliation(s)
- Olga Dal Monte
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fornari RV, Wichmann R, Atucha E, Desprez T, Eggens-Meijer E, Roozendaal B. Involvement of the insular cortex in regulating glucocorticoid effects on memory consolidation of inhibitory avoidance training. Front Behav Neurosci 2012; 6:10. [PMID: 22435055 PMCID: PMC3304473 DOI: 10.3389/fnbeh.2012.00010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/28/2012] [Indexed: 12/05/2022] Open
Abstract
Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC) to be part of this network, the present findings indicate that the IC is importantly involved in regulating glucocorticoid effects on memory consolidation of emotionally arousing inhibitory avoidance training. The specific glucocorticoid receptor (GR) agonist RU 28362 (3 or 10 ng in 0.5 μl) infused bilaterally into the IC of male Sprague-Dawley rats immediately after one-trial inhibitory avoidance training dose-dependently enhanced 48 h retention performance. Moreover, training on the inhibitory avoidance task increased neuronal activity of the IC, as assessed by an increased number of cells expressing immunoreactivity for phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2). However, systemic administration of a memory-enhancing dose of corticosterone (1 mg/kg) after inhibitory avoidance training rapidly reduced the number of pERK1/2-positive cells in the IC, suggesting that glucocorticoid administration reduces overall neuronal activity of the IC. To investigate which components of the inhibitory avoidance training experience were influenced by the intra-IC glucocorticoid administration, in the last experiment rats were trained on a modified inhibitory avoidance task in which context exposure and footshock training occur on two sequential days. RU 28362 administration into the IC enhanced later retention when infused immediately after either the context or footshock training. Thus, these findings indicate that the IC mediates glucocorticoid effects on the consolidation of memory of different components of inhibitory avoidance training and suggest that the IC might be an important element of the rodent brain network involved in emotional regulation of learning and memory.
Collapse
Affiliation(s)
- Raquel V. Fornari
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of GroningenGroningen, Netherlands
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo AndréSP, Brasil
| | - Romy Wichmann
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Erika Atucha
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Tifany Desprez
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Ellie Eggens-Meijer
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Benno Roozendaal
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|