1
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
2
|
Moullé VS. Autonomic control of pancreatic beta cells: What is known on the regulation of insulin secretion and beta-cell proliferation in rodents and humans. Peptides 2022; 148:170709. [PMID: 34896576 DOI: 10.1016/j.peptides.2021.170709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
Insulin secretion and pancreatic beta-cell proliferation are tightly regulated by several signals such as hormones, nutrients, and neurotransmitters. However, the autonomic control of beta cells is not fully understood. In this review, we describe mechanisms involved in insulin secretion as well as metabolic and mitogenic actions on its target tissues. Since pancreatic islets are physically connected to the brain by nerves, parasympathetic and sympathetic neurotransmitters can directly potentiate or repress insulin secretion and beta-cell proliferation. Finally, we highlight the role of the autonomic nervous system in metabolic diseases such as diabetes and obesity.
Collapse
|
3
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
4
|
Morais T, Patrício B, Pereira SS, Andrade S, Carreira M, Casanueva FF, Monteiro MP. GLP‐1 induces alpha cell proliferation and overrides leptin suppression induced by negative energy balance in vagotomized rats. J Cell Biochem 2019; 120:14573-14584. [DOI: 10.1002/jcb.28719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Tiago Morais
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| | - Barbara Patrício
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| | - Sofia Silva Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| | - Sara Andrade
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III Santiago de Compostela Spain
| | - Marcos Carreira
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III Santiago de Compostela Spain
| | - Felipe F. Casanueva
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III Santiago de Compostela Spain
- Department of Medicine USC University Hospital Complex, University of Santiago de Compostela Santiago de Compostela Spain
| | - Mariana P. Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| |
Collapse
|
5
|
Davis EA, Dailey MJ. A direct effect of the autonomic nervous system on somatic stem cell proliferation? Am J Physiol Regul Integr Comp Physiol 2018; 316:R1-R5. [PMID: 30303708 DOI: 10.1152/ajpregu.00266.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of somatic stem cell proliferation is critical for the maintenance of tissue and organ function throughout the body. Modulators of this process include nutrients and peptides, but the role of an autonomic neural influence on stem cell proliferation has been neglected. This article describes the literature in support of autonomic nervous system (ANS) influence on somatic stem cells, with emphasis on intestinal epithelial stem cells (IESCs) as a representative somatic stem cell. Based on the current available data, models for the direct influence of both branches of the ANS (the sympathetic and parasympathetic nervous systems) on IESCs are outlined. Finally, the prospect of treatments derived from ANS influence on somatic stem cells is explored.
Collapse
Affiliation(s)
- Elizabeth A Davis
- Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Megan J Dailey
- Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois.,Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois
| |
Collapse
|
6
|
Cantelli KR, Soares GM, Ribeiro RA, Balbo SL, Lubaczeuski C, Boschero AC, Araújo ACF, Bonfleur ML. Duodenal-jejunal bypass normalizes pancreatic islet proliferation rate and function but not hepatic steatosis in hypothalamic obese rats. ACTA ACUST UNITED AC 2017; 50:e5858. [PMID: 28380195 PMCID: PMC5423738 DOI: 10.1590/1414-431x20175858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN) protein content in the liver. Furthermore, hepatic genes involved in β-oxidation and TG export were down-regulated in HyO rats. In addition, these rats exhibited hyperinsulinemia, β-cell hypersecretion, a higher percentage of islets and β-cell area/pancreas section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.
Collapse
Affiliation(s)
- K R Cantelli
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - G M Soares
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - R A Ribeiro
- Universidade Federal do Rio de Janeiro, Macaé, RJ, Brasil
| | - S L Balbo
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - C Lubaczeuski
- Laboratório de Pâncreas Endócrino e Metabolismo, Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A C Boschero
- Laboratório de Pâncreas Endócrino e Metabolismo, Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A C F Araújo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - M L Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| |
Collapse
|
7
|
Miranda RA, Torrezan R, de Oliveira JC, Barella LF, da Silva Franco CC, Lisboa PC, Moura EG, Mathias PCF. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats. J Endocrinol 2016; 230:27-38. [PMID: 27113853 DOI: 10.1530/joe-15-0467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/22/2016] [Indexed: 11/08/2022]
Abstract
Neuroendocrine dysfunctions such as the hyperactivity of the vagus nerve and hypothalamus-pituitary-adrenal (HPA) axis greatly contribute to obesity and hyperinsulinemia; however, little is known about these dysfunctions in the pancreatic β-cells of obese individuals. We used a hypothalamic-obesity model obtained by neonatal treatment with monosodium l-glutamate (MSG) to induce obesity. To assess the role of the HPA axis and vagal tonus in the genesis of hypercorticosteronemia and hyperinsulinemia in an adult MSG-obese rat model, bilateral adrenalectomy (ADX) and subdiaphragmatic vagotomy (VAG) alone or combined surgeries (ADX-VAG) were performed. To study glucose-induced insulin secretion (GIIS) and the cholinergic insulinotropic process, pancreatic islets were incubated with different glucose concentrations with or without oxotremorine-M, a selective agonist of the M3 muscarinic acetylcholine receptor (M3AChR) subtype. Protein expression of M3AChR in pancreatic islets, corticosteronemia, and vagus nerve activity was also evaluated. Surgeries reduced 80% of the body weight gain. Fasting glucose and insulin were reduced both by ADX and ADX-VAG, whereas VAG was only associated with hyperglycemia. The serum insulin post-glucose stimulation was lower in all animals that underwent an operation. Vagal activity was decreased by 50% in ADX rats. In the highest glucose concentration, both surgeries reduced GIIS by 50%, whereas ADX-VAG decreased by 70%. Additionally, M3AChR activity was recovered by the individual surgeries. M3AChR protein expression was reduced by ADX. Both the adrenal gland and vagus nerve contribute to the hyperinsulinemia in the MSG model, although adrenal is more crucial as it appears to modulate parasympathetic activity and M3AChR expression in obesity.
Collapse
Affiliation(s)
- Rosiane A Miranda
- Department of BiotechnologyGenetics and Cell Biology, State University of Maringá, Maringá, Brazil Carlos Chagas Filho Biophysics InstituteFederal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Torrezan
- Department of Physiological SciencesState University of Maringá, Maringá, Brazil
| | - Júlio C de Oliveira
- Institute of Health SciencesFederal University of Mato Grosso, Sinop, Brazil
| | - Luiz F Barella
- Molecular Signalling SectionLaboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Patrícia C Lisboa
- Department of Physiological SciencesRoberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto G Moura
- Department of Physiological SciencesRoberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo C F Mathias
- Department of BiotechnologyGenetics and Cell Biology, State University of Maringá, Maringá, Brazil
| |
Collapse
|
8
|
Knosp WM, Knox SM, Lombaert IMA, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell 2015; 32:667-77. [PMID: 25805134 DOI: 10.1016/j.devcel.2015.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
Parasympathetic innervation is critical for submandibular gland (SMG) development and regeneration. Parasympathetic ganglia (PSG) are derived from Schwann cell precursors that migrate along nerves, differentiate into neurons, and coalesce within their target tissue to form ganglia. However, signals that initiate gangliogenesis after the precursors differentiate into neurons are unknown. We found that deleting negative regulators of FGF signaling, Sprouty1 and Sprouty2 (Spry1/2DKO), resulted in a striking loss of gangliogenesis, innervation, and keratin 5-positive (K5+) epithelial progenitors in the SMG. Here we identify Wnts produced by K5+ progenitors in the SMG as key mediators of gangliogenesis. Wnt signaling increases survival and proliferation of PSG neurons, and inhibiting Wnt signaling disrupts gangliogenesis and organ innervation. Activating Wnt signaling and reducing FGF gene dosage rescues gangliogenesis and innervation in both the Spry1/2DKO SMG and pancreas. Thus, K5+ progenitors produce Wnt signals to establish the PSG-epithelial communication required for organ innervation and progenitor cell maintenance.
Collapse
Affiliation(s)
- Wendy M Knosp
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sarah M Knox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | | | - Candace L Haddox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Lubaczeuski C, Balbo SL, Ribeiro RA, Vettorazzi JF, Santos-Silva JC, Carneiro EM, Bonfleur ML. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats. ACTA ACUST UNITED AC 2015; 48:447-57. [PMID: 25714886 PMCID: PMC4445669 DOI: 10.1590/1414-431x20144340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 01/11/2023]
Abstract
The parasympathetic nervous system is important for β-cell secretion and mass
regulation. Here, we characterized involvement of the vagus nerve in pancreatic
β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old
monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg
body weight) or saline [control (CTL) group] during the first 5 days of life. At 30
days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups)
or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats
presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia.
Their pancreatic islets hypersecreted insulin in response to glucose but did not
increase insulin release upon carbachol (Cch) stimulus, despite a higher
intracellular Ca2+ mobilization. Furthermore, while the pancreas weight
was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed.
However, in the MSG pancreas, increases of 51% and 55% were observed in the total
islet and β-cell area/pancreas section, respectively. Also, the β-cell number per
β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy
prevented obesity, reducing 25% of body fat stores and ameliorated glucose
homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin
secretion in response to 11.1 mM glucose and presented normalization of Cch-induced
Ca2+ mobilization and insulin release. All morphometric parameters were
similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in
MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy.
Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic
morphofunction in Mvag rats.
Collapse
Affiliation(s)
- C Lubaczeuski
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - S L Balbo
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - R A Ribeiro
- Universidade Federal do Rio de Janeiro, Macaé, RJ, Brasil
| | - J F Vettorazzi
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Santos-Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - E M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M L Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| |
Collapse
|
10
|
Medina A, Nakagawa Y, Ma J, Li L, Hamano K, Akimoto T, Ninomiya Y, Kojima I. Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states. Endocr J 2014; 61:797-805. [PMID: 24898279 DOI: 10.1507/endocrj.ej14-0221] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We reported recently that the taste type 1 receptor 3 (T1R3), a subunit of the sweet taste receptor, functions as a cell-surface glucose-sensing receptor in pancreatic β-cells. In the present study, we investigated the expression of T1R3 in pancreatic islets. mRNA for T1R2 and T1R3 was detected in mouse pancreatic islets. Quantitatively, the mRNA expression level of T1R2 was less than 1% of that of T1R3. Immunohistochemically, T1R3 was abundantly expressed in mouse islets whereas T1R2 was barely detected. Most immunoreactive T1R3 was colocalized with insulin and almost all β-cells were positive for T1R3. In addition, T1R3 was expressed in some portion of α-cells. Immunoreactivity of T1R3 in β-cells was markedly reduced in fed mice compared to those in fasting mice. In contrast, mRNA for T1R3 was not different in islets of fasting and fed mice. Glucose-induced insulin-secretion was higher in islets obtained from fasting mice compared to those from fed mice. The expression of T1R3 was markedly reduced in islets of ob/ob mice compared to those of control mice. Similarly, the expression of T1R3 was reduced in islet of db/db mice. In addition, the expression of T1R3 was markedly reduced in β-cells of fatty diabetic rats and GK rats, models of obese and non-obese type 2 diabetes, respectively. These results indicate that T1R3 is expressed mainly in β-cells and the expression levels are different depending upon the nutritional and metabolic conditions.
Collapse
Affiliation(s)
- Anya Medina
- Institute for Molecular & Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|