1
|
Chen Y, Bhatti P, Dummer T, Murphy RA. Diabetes medications and pancreatic cancer risk: A population-based cohort study. Cancer Epidemiol 2025; 96:102808. [PMID: 40187329 DOI: 10.1016/j.canep.2025.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Studies of the relationship between diabetes medications and pancreatic cancer risk have produced inconclusive results. We aimed to examine associations between classes, subclasses, and individual diabetes medications with pancreatic cancer risk in a population-based retrospective cohort study. METHODS Among British Columbians aged ≥ 35 (1996-2019), prescriptions for diabetes medications were categorised by ever/never use, cumulative duration, and dose. Time-varying Cox proportional hazards models adjusted for demographics were used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) for associations between new diabetes medication use and pancreatic cancer. Confounding by indication was explored using active comparator analysis of ever/never associations relative to pioglitazone use. RESULTS The cohort consisted of 3,118,538 people (52,088,644 person-years), 7,540 of whom were diagnosed with pancreatic cancer. For every one-year increase in cumulative dose, diabetes medications in the insulin secretagogue class, and glyburide; an individual medication within the class, were associated with 2 % (HR=1.02, 95 % CI=1.02-1.03) and 3 % (HR=1.03, 95 % CI=1.02-1.05) increased risk of pancreatic cancer. For every one-year increase in cumulative dose, medications within the insulins and analogues class and insulin subclasses (basal and bolus insulins) were linked to a 4 % higher risk (HR=1.04, 95 % CI=1.03-1.05) of pancreatic cancer. In the active comparator analysis, elevated risk for basal insulins (HR=1.49, 95 % CI=0.33-6.63) was observed, consistent with the main analysis, although the risk was not statistically significant. CONCLUSION Basal insulins may be associated with higher pancreatic cancer risk. Although confirmatory studies are needed, this finding may be informative for prescribing practices for high-risk populations with diabetes.
Collapse
Affiliation(s)
- Yixian Chen
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Parveen Bhatti
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Trevor Dummer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; Cancer Control Research, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Yeom S, Lee DH, Song J. Therapeutic Potential of Anti-Diabetes Drugs and Anti-Dyslipidemia Drugs to Mitigate Head and Neck Cancer Risk in Metabolic Syndrome. CNS Neurosci Ther 2025; 31:e70446. [PMID: 40387523 PMCID: PMC12087305 DOI: 10.1111/cns.70446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Head and neck cancer (HNC) encompasses a heterogeneous group of malignancies originating in the oral cavity, pharynx, nasopharynx, larynx, paranasal sinuses, and salivary glands. Accumulating evidence indicates that metabolic syndrome (MetS) characterized by a constellation of conditions including central adiposity, hyperglycemia, dyslipidemia, hypertension, and insulin resistance, may significantly influence cancer pathogenesis and progression. RESULTS MetS has been epidemiologically linked to elevated risk for multiple malignancies through various metabolic mechanisms involving chronic systemic inflammation, insulin resistance, and dysregulated lipid metabolism. Especially in HNC, recent studies demonstrated that MetS and metabolic imbalance conditions may contribute to carcinogenesis, disease progression, and clinical outcomes, but the exact mechanisms behind the association between excess fat accumulation and HNC risk remain unclear. Considering previous studies, pharmacological agents targeting metabolic pathways, including biguanides (metformin), thiazolidinediones, sodium-glucose cotransporter-2 (SGLT-2) inhibitors, and HMG-CoA reductase inhibitors (statins) are being investigated for potential repurposing in cancer prevention and adjuvant therapy. CONCLUSIONS Here, we summarize the latest evidence on the relationship between MetS and HNC, highlighting the therapeutic potential of anti-diabetes drugs and anti-dyslipidemia drugs in ameliorating various pathological problems in HNC patients with MetS.
Collapse
Affiliation(s)
- Sujung Yeom
- Department of Otolaryngology‐Head and Neck SurgeryChonnam National University Medical School & Hwasun HospitalHwasunRepublic of Korea
| | - Dong Hoon Lee
- Department of Otolaryngology‐Head and Neck SurgeryChonnam National University Medical School & Hwasun HospitalHwasunRepublic of Korea
| | - Juhyun Song
- Department of AnatomyChonnam National University Medical SchoolHwasunRepublic of Korea
| |
Collapse
|
3
|
Lin A, Ding Y, Li Z, Jiang A, Liu Z, Wong HZH, Cheng Q, Zhang J, Luo P. Glucagon-like peptide 1 receptor agonists and cancer risk: advancing precision medicine through mechanistic understanding and clinical evidence. Biomark Res 2025; 13:50. [PMID: 40140925 PMCID: PMC11948983 DOI: 10.1186/s40364-025-00765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a primary first-line treatment for type 2 diabetes. This has raised concerns about their impact on cancer risk, spurring extensive research. This review systematically examines the varied effects of GLP-1RAs on the risk of different types of tumors, including overall cancer risk and specific cancers such as thyroid, pancreatic, reproductive system, liver, and colorectal cancers. The potential biological mechanisms underlying their influence on cancer risk are complex, involving metabolic regulation, direct antitumor effects, immune modulation, and epigenetic changes. A systematic comparison with other antidiabetic agents reveals notable differences in their influence on cancer risk across drug classes. Additionally, critical factors that shape the relationship between GLP-1RAs and cancer risk are thoroughly analyzed, including patient demographics, comorbidities, treatment regimens, and lifestyle factors, offering essential insights for developing individualized treatment protocols. Despite significant research progress, critical gaps remain. Future research should prioritize elucidating the molecular mechanisms behind the antitumor effects, refining individualized treatment strategies, investigating early tumor prevention applications, assessing potential benefits for non-diabetic populations, advancing the development of novel therapies, establishing robust safety monitoring frameworks, and building precision medicine decision-making platforms. These efforts aim to establish novel roles for GLP-1RAs in cancer prevention. and treatment, thereby advancing the progress of precision medicine.
Collapse
Affiliation(s)
- Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, Jiangsu Province, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yanxi Ding
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hank Z H Wong
- Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, Jiangsu Province, 222000, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
4
|
García-Vega D, Cinza-Sanjurjo S, Tilves-Bellas C, Eiras S, González-Juanatey JR. Sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide 1 receptor agonists and cancer mortality. A real-world registry. Rev Esp Cardiol 2025; 78:218-228. [PMID: 39033874 DOI: 10.1016/j.recesp.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION AND OBJECTIVES Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1ra) reduce cardiovascular events through different mechanisms, but their association with cancer remains unclear. The aim of this study was to compare the effect of combined treatment (SGLT2i and GLP1ra) and monotherapy (SGLT2i or GLP1ra) on hospitalization and/or death from cancer in a general population and a subgroup of patients with cardiovascular disease (CVD). METHODS We conducted a nonconcurrent observational prospective study of patients prescribed SGLT2i, GLP1ra, or both. Multinomial propensity scores were performed in the entire population and in a subgroup of patients with CVD. A multivariate Cox regression analysis was used to determine the hazard ratio (HR) for age, sex, risk factors, and treatment for each outcome. RESULTS We included 14 709 patients (11366 with SGLT2i, 1016 with GLP1ra, and 2327 with both treatments) from treatment initiation. Diabetes was present in 97% of the patients. The subgroup with CVD included 4957 (33.7%) patients. After a median of 33 months of follow-up, the risk of adverse cancer events was similar between patients with and without CVD (3.4% or 3.7%, respectively). The main risk factors for cancer mortality were male sex and age. Combined treatment and its duration reduced the risk of cancer mortality compared with monotherapy with SGLT2i or GLP1ra in the overall population (HR, 0.2216; 95%CI, 0.1106-0.4659; P<.001; and HR, 0.1928; 95%CI, 0.071-0.5219; P=.001, respectively) and in the subgroup of patients with CVD (HR, 0.2879; 95%CI, 0.0878-0.994; P<.049; and HR, 0.1329; 95%CI, 0.024-0.6768; P=.014, respectively). CONCLUSIONS Initiation of combined therapy (SGLT2i and GLP1ra) vs monotherapy with SGLT2i or GLP1ra was associated with a lower risk of cancer mortality, mostly in diabetic patients with or without CVD. Although clinical trials are needed, these results might be explained by the complementary mechanisms of these drugs, including their antiproliferative, anti-inflammatory, and metabolic effects. Future clinical trials and mechanistic studies will clarify the possible role of these drugs in carcinogenesis.
Collapse
Affiliation(s)
- David García-Vega
- Departamento de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Departamento de Cardiología, Hospital Clínico Universitario de Santiago, Santiago de Compostela, A Coruña, Spain; Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Sergio Cinza-Sanjurjo
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain; Centro de Salud de Milladoiro-Ames, Área Sanitaria de Santiago de Compostela, A Coruña, Spain
| | - Carlos Tilves-Bellas
- Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, Spain
| | - Sonia Eiras
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, Spain
| | - José R González-Juanatey
- Departamento de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Departamento de Cardiología, Hospital Clínico Universitario de Santiago, Santiago de Compostela, A Coruña, Spain; Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain. https://twitter.com/@josejuanatey
| |
Collapse
|
5
|
García-Vega D, Cinza-Sanjurjo S, Tilves-Bellas C, Eiras S, González-Juanatey JR. Sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide 1 receptor agonists and cancer mortality. A real-world registry. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2025; 78:218-228. [PMID: 39033874 DOI: 10.1016/j.rec.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION AND OBJECTIVES Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1ra) reduce cardiovascular events through different mechanisms, but their association with cancer remains unclear. The aim of this study was to compare the effect of combined treatment (SGLT2i and GLP1ra) and monotherapy (SGLT2i or GLP1ra) on hospitalization and/or death from cancer in a general population and a subgroup of patients with cardiovascular disease (CVD). METHODS We conducted a nonconcurrent observational prospective study of patients prescribed SGLT2i, GLP1ra, or both. Multinomial propensity scores were performed in the entire population and in a subgroup of patients with CVD. A multivariate Cox regression analysis was used to determine the hazard ratio (HR) for age, sex, risk factors, and treatment for each outcome. RESULTS We included 14 709 patients (11366 with SGLT2i, 1016 with GLP1ra, and 2327 with both treatments) from treatment initiation. Diabetes was present in 97% of the patients. The subgroup with CVD included 4957 (33.7%) patients. After a median of 33 months of follow-up, the risk of adverse cancer events was similar between patients with and without CVD (3.4% or 3.7%, respectively). The main risk factors for cancer mortality were male sex and age. Combined treatment and its duration reduced the risk of cancer mortality compared with monotherapy with SGLT2i or GLP1ra in the overall population (HR, 0.2216; 95%CI, 0.1106-0.4659; P<.001; and HR, 0.1928; 95%CI, 0.071-0.5219; P=.001, respectively) and in the subgroup of patients with CVD (HR, 0.2879; 95%CI, 0.0878-0.994; P<.049; and HR, 0.1329; 95%CI, 0.024-0.6768; P=.014, respectively). CONCLUSIONS Initiation of combined therapy (SGLT2i and GLP1ra) vs monotherapy with SGLT2i or GLP1ra was associated with a lower risk of cancer mortality, mostly in diabetic patients with or without CVD. Although clinical trials are needed, these results might be explained by the complementary mechanisms of these drugs, including their antiproliferative, anti-inflammatory, and metabolic effects. Future clinical trials and mechanistic studies will clarify the possible role of these drugs in carcinogenesis.
Collapse
Affiliation(s)
- David García-Vega
- Departamento de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Departamento de Cardiología, Hospital Clínico Universitario de Santiago, Santiago de Compostela, A Coruña, Spain; Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Sergio Cinza-Sanjurjo
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain; Centro de Salud de Milladoiro-Ames, Área Sanitaria de Santiago de Compostela, A Coruña, Spain
| | - Carlos Tilves-Bellas
- Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, Spain
| | - Sonia Eiras
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, Spain
| | - José R González-Juanatey
- Departamento de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Departamento de Cardiología, Hospital Clínico Universitario de Santiago, Santiago de Compostela, A Coruña, Spain; Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Spain. https://twitter.com/@josejuanatey
| |
Collapse
|
6
|
Wang Y, Li Z, Lin C, Zhou J, Cai X, Lv F, Yang W, Ji L. Revisiting the association between sodium-glucose cotransporter-2 inhibitors and the risk of neoplasm in patients with type 2 diabetes: new insights from an updated systematic review and meta-analysis of randomized controlled trials. Expert Rev Clin Pharmacol 2025; 18:165-173. [PMID: 39886909 DOI: 10.1080/17512433.2024.2439970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 02/01/2025]
Abstract
OBJECTIVE To evaluate the association between sodium-glucose cotransporter-2 inhibitors (SGLT-2i) and the risk of neoplasm in patients with Type 2 diabetes (T2D). METHODS Literature retrieval was conducted using databases from inception to June 2024. Randomized controlled trials (RCTs) comparing SGLT-2i with placebo or other treatments in patients with T2D, and with reports of neoplasm events were included. Results were computed as the risk ratio (RR) with 95% confidence intervals (CI). RESULTS A total of 53 RCTs with 126,232 participants were included. No significant differences were found for the risk of overall neoplasm (RR = 1.08, 95% CI: 0.99 to 1.19, I2 = 23%) in patients with SGLT-2i treatment compared with non-users. However, decreased risk of pulmonary neoplasm (RR = 0.83, 95% CI: 0.69 to 0.99, I2 = 0.0%) was observed in SGLT-2i users compared to non-users, while increased risk of prostate neoplasm in SGLT-2i users was found (RR = 1.21, 95% CI: 1.00 to 1.47, I2 = 0.0%). CONCLUSION Compared with non-users, the use of SGLT-2i was not associated with the risk of overall neoplasm. However, pulmonary neoplasms were less frequent in SGLT-2i users, while an increased risk of prostate neoplasm was observed in SGLT-2i users compared to non-users. PROTOCOL REGISTRATION www.crd.york.ac.uk/prospero identifier is CRD42021273681.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Zonglin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Jinyu Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Wang J, Yang W. Advances in sodium-glucose transporter protein 2 inhibitors and tumors. Front Oncol 2025; 15:1522059. [PMID: 40007997 PMCID: PMC11850236 DOI: 10.3389/fonc.2025.1522059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor is a major challenge to global health and has received extensive attention worldwide due to its high degree of malignancy and poor prognosis. Although the clinical application of targeted therapy and immunotherapy has improved the status quo of tumor treatment, the development of new therapeutic tools for tumors is still necessary. Sodium-glucose transporter protein 2 (SGLT2) inhibitors are a new type of glycemic control drugs, which are widely used in clinical practice because of their effects on weight reduction and protection of cardiac and renal functions. SGLT2 has been found to be overexpressed in many tumors and involved in tumorigenesis, progression and metastasis, suggesting that SGLT2i has a wide range of applications in tumor therapy. The aim of this article is to provide a comprehensive understanding of the research progress of SGLT2i in different tumors by integrating the latest studies and to encourage further exploration of SGLT2i therapies in clinical trials. This could pave the way for more effective management strategies and improved outcomes for tumor patients.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Oncology, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Wenyong Yang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| |
Collapse
|
8
|
Miao X, Zhang J, Huang W, Wang Y, Jin A, Cao J, Zhao Z. Research Progress of SGLT2 Inhibitors in Cancer Treatment. Drug Des Devel Ther 2025; 19:505-514. [PMID: 39872633 PMCID: PMC11771169 DOI: 10.2147/dddt.s485755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Sodium glucose co-transporter 2 (SGLT2) inhibitors represent a novel class of hypoglycemic drugs that have emerged in recent years. These inhibitors function primarily by blocking the reabsorption of glucose in the kidneys, specifically targeting the SGLT2 proteins in the proximal convoluted tubules. This inhibition results in the reduction of blood glucose levels through increased glucose excretion in the urine. Recent studies have identified SGLT2 expression in various cancer types, suggesting that SGLT2 inhibition can potentially suppress tumor growth. This article provides a comprehensive review of the role of SGLT2 in tumorigenesis and tumor progression, and explores the underlying mechanisms and potential therapeutic applications of SGLT2 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianing Zhang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Weiyan Huang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Aixia Jin
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhenzhen Zhao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Karzoon A, Yerer MB, Cumaoğlu A. Empagliflozin demonstrates cytotoxicity and synergy with tamoxifen in ER-positive breast cancer cells: anti-proliferative and anti-survival effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:781-798. [PMID: 39066911 PMCID: PMC11787280 DOI: 10.1007/s00210-024-03316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Accumulating evidence suggests that sodium-glucose cotransporter 2 (SGLT2) inhibitors may be effective at eliminating tumor cells. While empagliflozin exhibits nearly the highest selectivity for SGLT2 over SGLT1, its specific impact alone and in combination with tamoxifen remains largely unexplored in estrogen receptor α-positive (ERα +) breast cancer. This study investigated the anticancer effects of empagliflozin and its potential synergy with tamoxifen in MCF-7 breast cancer cells. The individual and combined cytotoxic effects of empagliflozin and tamoxifen were assessed using the xCELLigence system. The activities of AMP-activated protein kinase α (AMPKα), p38 mitogen-activated protein kinase (p38 MAPKα), p70-S6 kinase 1 (p70S6K1), and protein kinase B (Akt) were assessed using Western blotting. The gene expression levels of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and Forkhead box O3a (FOXO3a) were assessed via qPCR. Our results revealed time- and concentration-dependent cytotoxic effects of empagliflozin and tamoxifen whether administered separately or in combination. While tamoxifen exhibits potency with an IC50 value of 17 μM, approximately ten times greater than that of empagliflozin (IC50 = 177 μM), synergistic effects are observed when the concentrations of the two agents approach their respective IC50 values. Additionally, empagliflozin significantly increases AMPKα activity while concurrently inhibiting Akt, p70S6K1, and p38 MAPKα, and these effects are significantly enhanced when empagliflozin is combined with tamoxifen. Moreover, empagliflozin modulates the gene expression, downregulating PGC-1α while upregulating FOXO3a. Empagliflozin exerts anti-proliferative and anti-survival effects by inhibiting mTOR, Akt, and PGC-1α, and it exhibits synergy with tamoxifen in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Ahmad Karzoon
- Department of Pharmacology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
| | - Mükerrem Betül Yerer
- Drug Application and Research Center (ERFARMA), Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Ahmet Cumaoğlu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
10
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
11
|
Ma X, Jiang Y, Zhao H, Qiu Y, Liu Z, Zhang X, Fan M, Zhang Y, Zhang Y. ZNF480 Accelerates Chemotherapy Resistance in Breast Cancer by Competing With TRIM28 and Stabilizing LSD1 to Upregulate the AKT-GSK3β-Snail Pathway. Mol Carcinog 2025; 64:192-208. [PMID: 39503216 DOI: 10.1002/mc.23837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024]
Abstract
Zinc finger protein 480 (ZNF480) may interact with lysine-specific demethylase 1 (LSD1), which is highly expressed in many malignant tumors; however, ZNF480 expression has not previously been investigated in breast cancer. Therefore, we explored the expression and molecular mechanisms of ZNF480 in breast cancer. According to public databases and immunohistochemical staining analysis, ZNF480 is highly expressed in the tissue of patients with breast cancer, and ZNF480 expression is positively correlated with advanced TNM stage (p = 0.036), lymph node metastasis (p = 0.012), and poor prognosis (p = 0.005). ZNF480 overexpression enhances breast cancer cell proliferation, migration, and stemness by activating AKT-GSK3β-Snail signaling both in vitro and in vivo. Moreover, ZNF480 binds to LSD1 through its KRAB domain, thereby activating AKT signaling. Mass spectrometry and co-immunoprecipitation revealed that ZNF480 abrogates ubiquitination degradation and subsequently stabilizes LSD1 through competitive binding with TRIM28. Ipragliflozin was identified as a small-molecule inhibitor of ZNF480 and LSD1 interaction that may block breast cancer progression. Moreover, ZNF480 expression was significantly higher in treatment-resistant patients than in treatment-sensitive patients. Thus, ipragliflozin may neutralize neoadjuvant chemotherapy resistance induced by ZNF480 overexpression. Overall, elevated ZNF480 expression is positively associated with poor patient outcomes. Mechanistically, ZNF480 accelerates proliferation and neoadjuvant chemotherapy resistance in breast cancer cells via the AKT-GSK3β-Snail pathway by interacting with and stabilizing LSD1 in a competitive manner within TRIM28. This research has implications for developing targeted drugs against chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- First Department of Clinical Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Yufeng Jiang
- Department of Emergency, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hangqi Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Hunnan Branch of the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yusong Qiu
- Department of Pathology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Zhijian Liu
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning Province, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mingwei Fan
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Yue Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Hui Y, Leng J, Jin D, Wang G, Liu K, Bu Y, Wang Q. BRG1 promotes liver cancer cell proliferation and metastasis by enhancing mitochondrial function and ATP5A1 synthesis through TOMM40. Cancer Biol Ther 2024; 25:2375440. [PMID: 38978225 PMCID: PMC11236295 DOI: 10.1080/15384047.2024.2375440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide. Brahma-related gene 1 (BRG1), as a catalytic ATPase, is a major regulator of gene expression and is known to mutate and overexpress in HCC. The purpose of this study was to investigate the mechanism of action of BRG1 in HCC cells. In our study, BRG1 was silenced or overexpressed in human HCC cell lines. Transwell and wound healing assays were used to analyze cell invasiveness and migration. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) detection were used to evaluate mitochondrial function in HCC cells. Colony formation and cell apoptosis assays were used to evaluate the effect of BRG1/TOMM40/ATP5A1 on HCC cell proliferation and apoptosis/death. Immunocytochemistry (ICC), immunofluorescence (IF) staining and western blot analysis were used to determine the effect of BRG1 on TOMM40, ATP5A1 pathway in HCC cells. As a result, knockdown of BRG1 significantly inhibited cell proliferation and invasion, promoted apoptosis in HCC cells, whereas BRG1 overexpression reversed the above effects. Overexpression of BRG1 can up-regulate MMP level, inhibit mPTP opening and activate TOMM40, ATP5A1 expression. Our results suggest that BRG1, as an oncogene, promotes HCC progression by regulating TOMM40 affecting mitochondrial function and ATP5A1 synthesis. Targeting BRG1 may represent a new and effective way to prevent HCC development.
Collapse
Affiliation(s)
- Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, Ningxia, China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, Ningxia, China
| | - Dong Jin
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, Ningxia, China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, Ningxia, China
| | - Kejun Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, Ningxia, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Hepatobiliary Surgery, Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Bhatti AW, Patel R, Dani SS, Khadke S, Makwana B, Lessey C, Shah J, Al-Husami Z, Yang EH, Thavendiranathan P, Neilan TG, Sadler D, Cheng RK, Dent SF, Liu J, Lopez-Fernandez T, Herrmann J, Scherrer-Crosbie M, Lenihan DJ, Hayek SS, Ky B, Deswal A, Barac A, Nohria A, Ganatra S. SGLT2i and Primary Prevention of Cancer Therapy-Related Cardiac Dysfunction in Patients With Diabetes. JACC CardioOncol 2024; 6:863-875. [PMID: 39801650 PMCID: PMC11711834 DOI: 10.1016/j.jaccao.2024.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 01/16/2025] Open
Abstract
Background Specific cancer treatments can lead to cancer therapy-related cardiac dysfunction (CTRCD). Sodium glucose cotransporter-2 inhibitors (SGLT2is) can potentially prevent these cardiotoxic effects. Objectives This study sought to determine whether SGLT2i use is associated with a lower incidence of CTRCD in patients with type 2 diabetes mellitus (T2DM) and cancer, exposed to potentially cardiotoxic antineoplastic agents, and without a prior documented history of cardiomyopathy or heart failure. Methods We conducted a retrospective analysis of patients aged ≥18 years within the TriNetX database with T2DM, cancer, exposure to cardiotoxic therapies, and no prior documented history of cardiomyopathy or heart failure. Patients were categorized by SGLT2i use. After propensity score matching, outcomes were compared over 12 months using Cox proportional HRs. Subgroup analyses focusing on different cancer therapy classes were performed. Results The study included 8,675 propensity-matched patients in each cohort (mean age = ∼65 years, 42% females, 71% White, ∼19% gastrointestinal malignancy, and ∼25% anthracyclines). Patients prescribed SGLT2is had a lower risk of developing CTRCD (HR: 0.76: 95% CI: 0.69-0.84). SGLT2is also reduced heart failure exacerbations (HR: 0.81; 95% CI: 0.72-0.90), all-cause mortality (HR: 0.67; 95% CI: 0.61-0.74), and all-cause hospitalizations/emergency department visits (HR: 0.93; 95% CI: 0.89-0.97). Subgroup analyses also demonstrated reduced CTRCD risk across various classes of cancer therapies in patients prescribed SGLT2is. Conclusions SGLT2i administration was associated with a significantly decreased risk of developing CTRCD in patients with T2DM and cancer.
Collapse
Affiliation(s)
- Ammar W. Bhatti
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Rushin Patel
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Sourbha S. Dani
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Sumanth Khadke
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Bhargav Makwana
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Candace Lessey
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Jui Shah
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Zaid Al-Husami
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Eric H. Yang
- University of California-Los Angeles, Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Paaladinesh Thavendiranathan
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diego Sadler
- Cardio-Oncology Section, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Weston, Florida, USA
| | - Richard K. Cheng
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Susan F. Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina
| | - Jennifer Liu
- Cardio-Oncology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa Lopez-Fernandez
- Division of Cardiology, Cardio-Oncology Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research, Madrid, Spain
- Division of Cardiology, Quironsalud Madrid University Hospital, Madrid, Spain
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Daniel J. Lenihan
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Salim S. Hayek
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bonnie Ky
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Barac
- Inova Schar Heart and Vascular Institute, Inova Schar Cancer Institute, Fairfax, Virginia, USA
| | - Anju Nohria
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| |
Collapse
|
14
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
15
|
Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol 2024; 978:176803. [PMID: 38950839 DOI: 10.1016/j.ejphar.2024.176803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
16
|
Lin Y, Zhang Y, Wang S, Cao L, Zhao R, Ma X, Yang Q, Zhang L, Yang Q. Pharmacological targets of SGLT2 inhibition on prostate cancer mediated by circulating metabolites: a drug-target Mendelian randomization study. Front Pharmacol 2024; 15:1443045. [PMID: 39166104 PMCID: PMC11333260 DOI: 10.3389/fphar.2024.1443045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Background The relationship between sodium-glucose cotransporter 2 (SGLT2) inhibitors and prostate cancer is still unknown. Although these inhibitors can influence tumor glycolysis, the underlying mechanism requires further exploration. Methods A two-sample two-step MR was used to determine 1) causal effects of SGLT2 inhibition on prostate cancer; 2) causal effects of 1,400 circulating metabolites or metabolite ratios on prostate cancer; and 3) mediation effects of these circulating metabolites. Genetic proxies for SGLT2 inhibition were identified as variants in the SLC5A2 gene and glycated hemoglobin level (HbA1c). Additionally, positive control analysis on type 2 diabetes mellitus (T2DM) was conducted to test the selection of genetic proxies. Phenome Wide Association Study (PheWAS) and MR-PheWAS analysis were used to explore potential treatable diseases and adverse outcomes of SGLT2 inhibitors. Results Genetically predicted SGLT2 inhibition (per 1 SD decrement in HbA1c) was associated with reduced risk of T2DM [odds ratio (OR) = 0.66 (95% CI 0.53, 0.82), P = 1.57 × 10-4]; prostate cancer [0.34 (0.23, 0.49), P = 2.21 × 10-8] and prostate-specific antigen [0.26 (0.08, 0.81), P = 2.07 × 10-2]. The effect of SGLT2 inhibition on prostate cancer was mediated by uridine level, with a mediated proportion of 9.34% of the total effect. In MR-PheWAS, 65 traits were found to be associated with SLGT2 inhibitors (P < 1.78 × 10-5), and among them, 13 were related to diabetes. Conclusion Our study suggested that SGLT2 inhibition could lower prostate cancer risk through uridine mediation. More mechanistic and clinical research is necessary to explore how uridine mediates the link between SGLT2 inhibition and prostate cancer.
Collapse
Affiliation(s)
- Yilong Lin
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yue Zhang
- Department of Hematology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Songsong Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Lin Cao
- The First Clinical College of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ruidan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xilai Ma
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiaolu Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liyi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Kuo HH, Wang KT, Chen HH, Lai ZY, Lin PL, Chuang YJ, Liu LYM. Cardiovascular outcomes associated with SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and cancer: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:108. [PMID: 38773486 PMCID: PMC11110336 DOI: 10.1186/s13098-024-01354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Cancer patients with diabetes are at increased risk for cardiovascular diseases due to common risk factors and well-documented drug-associated cardiotoxicity. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown cardiovascular benefits in patients with diabetes, but their effects on cancer patients remain unclear. This study aimed to evaluate the cardiovascular outcomes associated with SGLT2 inhibitor therapy in patients with concomitant diabetes and cancer. METHODS We conducted a systematic review and meta-analysis of cohort studies comparing cardiovascular outcomes between cancer patients with diabetes receiving SGLT2 inhibitors and those not receiving SGLT2 inhibitors. PubMed, Embase, and the Cochrane Library were searched from inception to February 29, 2024. The primary outcome was all-cause mortality, and the secondary outcomes were heart failure hospitalization, and adverse events. Random-effect models were used to calculate pooled risk ratios (RR) with 95% confidence intervals (CI). Subgroup and sensitivity analyses were conducted to identify potential sources of heterogeneity and explore the effect of SGLT2 inhibitors on mitigating cardiotoxicity. RESULTS Nine cohort studies involving 82,654 patients were included. SGLT2 inhibitor use was associated with a significantly lower risk of all-cause mortality (RR 0.46, 95% CI 0.31-0.68, P < 0.0001; I2 = 98%) and heart failure hospitalization (RR 0.49, 95% CI 0.30-0.81, P = 0.006; I2 = 21%) compared to non-use. The mortality benefit remained significant in patients receiving anthracycline chemotherapy (RR 0.50, 95% CI 0.28-0.89, P = 0.02; I2 = 71%). SGLT2 inhibitor use was also associated with a lower risk of sepsis (RR 0.32, 95% CI 0.23-0.44, P < 0.00001; I2 = 0%) and no increased risk of diabetic ketoacidosis (RR 0.66, 95% CI 0.20-2.16, P = 0.49; I2 = 0%). CONCLUSIONS SGLT2 inhibitor therapy is associated with lower risks of all-cause mortality and heart failure hospitalization in patients with concomitant diabetes and cancer. These findings suggest that SGLT2 inhibitors may offer cardiovascular benefits in this high-risk population. Randomized controlled trials are needed to validate these findings and evaluate the safety and efficacy of SGLT2 inhibitors in specific cancer types and treatment regimens.
Collapse
Affiliation(s)
- Hsiao-Huai Kuo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pharmacy, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
- Department of Pharmacy, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Kuang-Te Wang
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsin-Hao Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Nursing, and Management, MacKay Junior College of Medicine, Taipei, Taiwan
- Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Lin Lin
- Nursing, and Management, MacKay Junior College of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lawrence Yu-Min Liu
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Department of Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.
| |
Collapse
|
18
|
Zhao J, Sun H, Wang C, Shang D. Breast cancer therapy: from the perspective of glucose metabolism and glycosylation. Mol Biol Rep 2024; 51:546. [PMID: 38642246 DOI: 10.1007/s11033-024-09466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in developing effective interventions targeting glycolysis and glycosylation are further discussed.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Haiting Sun
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Che Wang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Dejing Shang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
19
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Zheng W, Han L, He ZJ, Kang JC. Novel drimane-type sesquiterpenoids and nucleosides from the Helicoma septoconstrictum suppress the growth of ovarian cancer cells. Bioorg Chem 2024; 145:107214. [PMID: 38417190 DOI: 10.1016/j.bioorg.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Four new drimane-type sesquiterpenoids and two new nucleoside derivatives (1-6), were isolated from the fungus Helicoma septoconstrictum. Their structures were determined based on the combination of the analysis of their HR-ESI-MS, NMR, ECD calculations data and acid hydrolysis. All the isolated compounds were detected for their bio-activities against MDA-MB-231, A549/DDP, A2780 and HepG2 cell lines. Helicoside C (4) exhibited superior cytotoxicity against the A2780 cell line with IC50 7.5 ± 1.5 µM. The analysis of reactive oxygen species (ROS) revealed that Helicoside C induced an increase in intracellular ROS. Furthermore, the flow cytometry and mitochondrial membrane potential (MMP) analyses unveiled that Helicoside C mediated mitochondrial-dependent apoptosis in A2780 cells. The western blotting test showed that Helicoside C could suppress the STAT3's phosphorylation. These findings offered crucial support for development of H. septoconstrictum and highlighted the potential application of drimane-type sesquiterpenoids in pharmaceuticals.
Collapse
Affiliation(s)
- Wen Zheng
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Long Han
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Zhang-Jiang He
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ji-Chuan Kang
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
21
|
Sun M, Sun J, Sun W, Li X, Wang Z, Sun L, Wang Y. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1369352. [PMID: 38595915 PMCID: PMC11002155 DOI: 10.3389/fphar.2024.1369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer and diabetes are significant diseases that pose a threat to human health. Their interconnection is complex, particularly when they coexist, often necessitating multiple therapeutic approaches to attain remission. Sodium-glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a treatment for hyperglycemia, but subsequently exhibited noteworthy extra-glycemic properties, such as being registered for the treatment of heart failure and chronic kidney disease, especially with co-existing albuminuria, prompting its assessment as a potential treatment for various non-metabolic diseases. Considering its overall tolerability and established use in diabetes management, SGLT-2i may be a promising candidate for cancer therapy and as a supplementary component to conventional treatments. This narrative review aimed to examine the potential roles and mechanisms of SGLT-2i in the management of diverse types of cancer. Future investigations should focus on elucidating the antitumor efficacy of individual SGLT-2i in different cancer types and exploring the underlying mechanisms. Additionally, clinical trials to evaluate the safety and feasibility of incorporating SGLT-2i into the treatment regimen of specific cancer patients and determining appropriate dosage combinations with established antitumor agents would be of significant interest.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Jilei Sun
- Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Wei Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaonan Li
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
22
|
Longaray JB, Dias CK, Scholl JN, Battastini AMO, Figueiró F. Investigation of co-treatment multi-targeting approaches in breast cancer cell lines. Eur J Pharmacol 2024; 966:176328. [PMID: 38237714 DOI: 10.1016/j.ejphar.2024.176328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
In 2020, breast cancer (BC) has surpassed lung cancer as the most diagnosed cancer in the world. Tumor microenvironment (TME) plays a critical role in resistance to standard therapies and tumor progression. Two key factors within the TME include adenosine, an immunosuppressive molecule, and glucose, which serves as the primary energy source for tumor cells. In this scenario, inhibiting the purinergic pathway and glucose uptake might be a promising strategy. Therefore, we sought to evaluated different treatment approaches in BC cells (Dapagliflozin, a SGLT2 inhibitor; Paclitaxel, the standard chemotherapy for BC; and ARL67156/APCP, inhibitors of CD39 and CD73, respectively). The expression of some membrane markers relevant to resistance was assessed. BC cell-lines (MCF-7 and MDA-MB-231) were co-treated and cell viability, cell cycle, and annexin/PI assays were performed. Our analysis showed promising results, where the combination of these compounds led to cell death by apoptosis/necrosis and cell cycle arrest. Dapagliflozin showed more impact on early apoptosis, whereas Paclitaxel led to late apoptosis/necrosis as the main mechanism of cell death. Inhibiting purinergic signaling also contributed to reducing cell viability together with the other drugs, suggesting it could have an influence on breast cancer survival mechanisms. Indeed, the overexpression of the NT5E gene in patients with ER+ tumors is strongly associated with reduced overall survival and progression-free interval. However, more studies are needed to fully understand the interactions and mechanism underlying these co-treatment multi-targeting approaches.
Collapse
Affiliation(s)
- Jéssica Brzoskowski Longaray
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Chung JF, Yang PJ, Chang CK, Lee CY, Huang JY, Wang K, Yang SF. The use of sodium-glucose cotransporter 2 inhibitors and the incidence of uveitis in type 2 diabetes: a population-based cohort study. Arch Med Sci 2024; 20:402-409. [PMID: 38757017 PMCID: PMC11094819 DOI: 10.5114/aoms/174228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 05/18/2024] Open
Abstract
Introduction To survey the potential correlation between the application of sodium-glucose cotransporter 2 (SGLT2) inhibitors and the incidence of uveitis in individuals with type 2 diabetes mellitus (T2DM). Material and methods A retrospective cohort study using the National Health Insurance Research Database (NHIRD) was conducted. The T2DM patients using SGLT2 inhibitors and those taking other anti-diabetic medications were assigned to the SGLT2 group and the control group, respectively, with a 1 : 2 ratio via the propensity score-matching (PSM) method. The major outcome in this study is the development of uveitis according to the diagnostic codes. The Cox proportional hazard regression was adopted to yield the adjusted hazard ratio (aHR) with 95% confidence interval (CI) between the groups. Results There were 147 and 371 new uveitis episodes in the SGLT2 and control groups after the follow-up period up to 5 years. The incidence of uveitis in the SGLT2 group (aHR = 0.736, 95% CI: 0.602-0.899, p = 0.0007) was significantly lower than that in the control group after adjusting for the effect of all the confounders. In the subgroup analyses, the SGLT2 inhibitors showed a higher correlation with low uveitis incidence in T2DM patients aged under 50 than T2DM individuals aged over 50 years (p = 0.0012), while the effect of SGLT2 inhibitors on the incidence of anterior and posterior uveitis development was similar (p = 0.7993). Conclusions The use of SGLT2 inhibitors could be an independent protective factor for uveitis development in T2DM population.
Collapse
Affiliation(s)
- Jui-Fu Chung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Jen Yang
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Kai Chang
- Department of Ophthalmology, Nobel Eye Institute, Taipei, Taiwan
- Department of Optometry, Da-Yeh University, Chunghua, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Nobel Eye Institute, Taipei, Taiwan
- Department of Ophthalmology, Jen-Ai Hospital Dali Branch, Taichung, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai Wang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Wang F, Hendryx M, Liu N, Bidulescu A, Mitra AK, Luo J. SGLT2 Inhibitor Use and Risk of Breast Cancer Among Adult Women with Type 2 Diabetes. Drug Saf 2024; 47:125-133. [PMID: 38070101 DOI: 10.1007/s40264-023-01373-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of antihyperglycemic agents, with the potential to inhibit breast cancer development. However, the association between SGLT2 inhibitors and risk of breast cancer in human studies is unclear. OBJECTIVE The aim of our study is to use a large national claims database to assess the association between SGLT2 inhibitor use and risk of breast cancer. METHODS We considered a study population of 158,483 adult women with type 2 diabetes who newly initiated SGLT2 inhibitors or dipeptidyl peptidase 4 (DPP4) inhibitors using Optum's deidentified Clinformatics Data Mart Database between 1 January 2013 and 31 March 2022. The association between SGLT2 inhibitor use and risk of breast cancer was examined using Cox proportional hazard models stratified by age in the overall sample and in a subsample based on propensity score and medication initiation time matching. The effect of medication use duration was explored. RESULTS With an average follow-up of 2.2 years, 2154 breast cancer cases were identified. There was no significant association between SGLT2 inhibitor use and the risk of breast cancer in overall sample (HR = 0.96; 95% CI 0.87, 1.06), in women younger than 51 years old (HR = 0.88; 95% CI 0.59, 1.32), or in women aged 51 years or older (HR = 0.95; 95% CI 0.86, 1.04). The results remained nonsignificant using matching, medication use duration, and sensitivity analyses. CONCLUSION Our findings suggest SGLT2 inhibitors use was not associated with breast cancer risk compared with DPP4 inhibitors use. Studies with longer follow-up and better adjustments are needed to confirm the finding.
Collapse
Affiliation(s)
- Fengge Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA.
| | - Michael Hendryx
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Anirban K Mitra
- School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
25
|
Garczorz W, Kosowska A, Francuz T. Antidiabetic Drugs in Breast Cancer Patients. Cancers (Basel) 2024; 16:299. [PMID: 38254789 PMCID: PMC10813754 DOI: 10.3390/cancers16020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is one of the leading chronic conditions worldwide, and breast cancer is the most prevalent cancer in women worldwide. The linkage between diabetes and its ability to increase the risk of breast cancer should always be analyzed in patients. This review focuses on the impact of antihyperglycemic therapy in breast cancer patients. Patients with diabetes have a higher risk of developing cancer than the general population. Moreover, diabetes patients have a higher incidence and mortality of breast cancer. In this review, we describe the influence of antidiabetic drugs from insulin and metformin to the current and emerging therapies, incretins and SGLT-2 inhibitors, on breast cancer prognosis. We also emphasize the role of obesity and the metastasis process in breast cancer patients who are treated with antidiabetic drugs.
Collapse
Affiliation(s)
- Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-055 Katowice, Poland; (A.K.); (T.F.)
| | | | | |
Collapse
|
26
|
Huang YM, Chen WM, Jao AT, Chen M, Shia BC, Wu SY. Effects of SGLT2 inhibitors on clinical cancer survival in patients with type 2 diabetes. DIABETES & METABOLISM 2024; 50:101500. [PMID: 38036054 DOI: 10.1016/j.diabet.2023.101500] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE According to the preclinical data, sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2is) may exert anticancer effects. Here, we clarified the cancer-specific mortality (primary outcome) and all-cause mortality (secondary outcome) of SGLT2is and their dose-dependency in patients with cancer undergoing standard curative treatments. METHODS We analyzed data from patients with type 2 diabetes mellitus (T2DM) diagnosed with cancer between January 1, 2016, and December 31, 2018, enrolled from the Taiwan Cancer Registry database. Kaplan-Meier method was used to estimate all-cause mortality and cancer-specific mortality, comparing survival curves between SGLT2i users and nonusers using the stratified log-rank test. Cox proportional hazards regression was conducted to identify independent predictors for all-cause and cancer-specific mortality among the covariates. RESULTS We performed 1:2 propensity score matching of our data, which yielded a final cohort of 50,133 patients with cancer; of them, 16,711 and 33,422 were in the SGLT2i user and nonuser groups, respectively. The adjusted hazard ratio (aHR) for cancer-specific and all-cause mortality in SGLT2i users compared with nonusers was 0.21 (95 % confidence interval [CI]: 0.20-0.22) and 0.22 (95 % CI: 0.21-0.23). We divided the patients into four subgroups stratified by quartiles (Q) of cumulative defined daily doses per year (cDDDs), and all-cause and cancer-specific mortality was noted to significantly decrease with increases in dosage (from Q1 to Q4 cDDDs) in SGLT2i users compared with in nonusers (P < 0.001). CONCLUSION SGLT2is increase overall survival and cancer-specific survival in patients with cancer in a dose-dependent manner.
Collapse
Affiliation(s)
- Yen-Min Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Hemophilia and Thrombosis Treatment Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - An-Tzu Jao
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Management, College of Management, Fo Guang University, Yilan, Taiwan.
| |
Collapse
|
27
|
Rao H, Cheng W, Yu J, An X, Deng H, Zhang Z, Wu F, Ji F, Li S. [Preliminary Investigation of the Molecular Mechanism of Empagliflozin Suppressing Gastric Cancer Through Mammalian Target of Rapamycin]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1146-1153. [PMID: 38162062 PMCID: PMC10752783 DOI: 10.12182/20231160204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 01/03/2024]
Abstract
Objective To predict the intervention targets of empagliflozin (EMPA), a specific inhibitor of sodium-glucose cotransporter 2 (SGLT2), in gastric adenocarcinoma through comprehensive network pharmacology, and to validate the effects and the molecular mechanisms of EMPA through cellular and molecular biology experiments. Methods Bioinformatics analysis of gastric adenocarcinoma was conducted to assess the correlation between gastric adenocarcinoma prognosis and SGLT2 expression. Network pharmacology was utilized to identify shared targets of EMPA and gastric adenocarcinoma. AGS cells, a human gastric adenocarcinoma cells line, were incubated with EMPA at different concentrations for 24 h and, then, cell proliferation was assessed using the CCK8 assay. After AGS cells were incubated with EMPA at the doses of 0, 3, and 6 mmol/L, real-time cell analysis (RTCA) and 5-ethynyl-2-deoxyuridine (EdU) incorporation were used to evaluate EMPA's inhibitory effects on the proliferation of the AGS cells. In addition, wound healing and Transwell assays were performed to assess the inhibitory effect of EMPA on the migration and invasion of the APC cells and Western blot analysis was conducted to examine the expression of mammalian target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR). BALB/c (nu/nu) nude mice were implanted with 5×106 AGS cells in the axilla. The mice were divided into three groups, a control group, a low-dose group, and a high-dose group, each consisting of 7 mice. After one week, the control group received daily intraperitoneal injections of normal saline, while the low-dose group and high-dose group received daily intraperitoneal injections of EMPA at the doses of 3 mg/kg and 5 mg/kg, respectively. The tumor volume was measured one week after the drug intervention started. Results Gastric adenocarcinoma patients with low expression of SGLT2 exhibited longer survival time and higher survival rate than those with high expression of SGLT2 did. A total of 104 EMPA-related potential targets and 2028 targets associated with gastric adenocarcinoma were identified. Among these, 45 targets associated with gastric adenocarcinoma overlapped with potential targets of EMPA. Further analysis revealed 10 relevant pathways and 4 core genes. The core genes were cyclin-dependent kinase 4 (CDK4), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mTOR, and cyclin E1 (CCNE1). CCK-8 assay revealed that EMPA at concentrations ranging from 0.39 to 50 mmol/L effectively inhibited the proliferation of AGS cells. RTCA results indicated a downward shift in the cell growth curve. In comparison to the findings for the control group, EdU assay demonstrated that EMPA at the concentrations of 3 mmol/L and 6 mmol/L significantly inhibited AGS cell proliferation (P<0.05). Results from wound healing and Transwell assays indicated a decrease in the levels of cell migration and invasion (P<0.05) and, notably, there was a significant difference between the high and low-dose EMPA groups (P<0.05). Western blot showed no statistically significant difference in the expression of total mTOR protein between the groups. However, the expression of p-mTOR in the 3 mmol/L and 6 mmol/L EMPA groups decreased compared to that of the control group (P<0.05), with the 6 mmol/L EMPA group exhibiting a more pronounced reduction (P<0.05). Nude mice xenograft tumor experiment demonstrated that, compared to that of the control group, the tumor volumes in the EMPA-treatment groups were significantly reduced (P<0.05), with the high-dose group showing a more pronounced reduction (P<0.05). Conclusion EMPA inhibits the abnormal proliferation and migration of gastric adenocarcinoma cells, potentially through the modulation of mTOR protein activation. This study provides new potential medication and intervention targets for gastric adenocarcinoma treatment.
Collapse
Affiliation(s)
- Huiling Rao
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
- ( 400038) Department of Medical Engineering, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Wang Cheng
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Juan Yu
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaotong An
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Haojun Deng
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Zhaoyang Zhang
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Fuyun Wu
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Fuyun Ji
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Shan Li
- ( 442000) Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
28
|
Jarosz-Popek J, Eyileten C, Gager GM, Nowak A, Szwed P, Wicik Z, Palatini J, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The interaction between non-coding RNAs and SGLT2: A review. Int J Cardiol 2023; 398:131419. [PMID: 39492411 DOI: 10.1016/j.ijcard.2023.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2, SLC5A2) is a promising target for a new class of drug primarily established as kidney-targeting as well as emerging class of glucose-lowering drugs in diabetes. Studies showed that SGLT2 inhibitors also have a systemic impact via indirectly targeting the heart and kidneys which exerts broad cardio- and nephroprotective effects. Additionally, as cancer cells tightly require glucose supply, studies also questioned how SGLT2 inhibitors impact molecular pathology and cellular metabolism in cancer hallmarks. However, the exact molecular mechanisms responsible for those benefits have not been fully discovered. MicroRNAs (miRNA) and circularRNAs (circRNAs) are endogenous, single-stranded, non-coding RNAs (ncRNAs) that can control protein-coding genes, affecting significant molecular and cellular processes regulating homeostasis. CircRNAs particularly regulate gene expression at the transcriptional and post-transcriptional level by sponging to miRNAs and by altering interactions between proteins.
Collapse
Affiliation(s)
- Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szwed
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland
| | - Jeff Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
29
|
Tsunokake S, Iwabuchi E, Miki Y, Kanai A, Onodera Y, Sasano H, Ishida T, Suzuki T. SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res Treat 2023; 201:499-513. [PMID: 37439959 DOI: 10.1007/s10549-023-07024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Sodium/glucose cotransporter (SGLT) 1 and 2 expression in carcinoma cells was recently examined, but their association with the clinicopathological factors of the patients and their biological effects on breast carcinoma cells have remained remain virtually unknown. Therefore, in this study, we explored the expression status of SGLT1 and SGLT2 in breast cancer patients and examined the effects of SGLT1 inhibitors on breast carcinoma cells in vitro. METHODS SGLT1 and SGLT2 were immunolocalized and we first correlated the findings with clinicopathological factors of the patients. We then administered mizagliflozin and KGA-2727, SGLT1 specific inhibitors to MCF-7 and MDA-MB-468 breast carcinoma cell lines, and their growth-inhibitory effects were examined. Protein arrays were then used to further explore their effects on the growth factors. RESULTS The SGLT1 high group had significantly worse clinical outcome including both overall survival and disease-free survival than low group. SGLT2 status was not significantly correlated with clinical outcome of the patients. Both mizagliflozin and KGA-2727 inhibited the growth of breast cancer cell lines. Of particular interest, mizagliflozin inhibited the proliferation of MCF-7 cells, even under very low glucose conditions. Mizagliflozin downregulated vascular endothelial growth factor receptor 2 phosphorylation. CONCLUSION High SGLT1 expression turned out as an adverse clinical prognostic factor in breast cancer patient. This is the first study demonstrating that SGLT1 inhibitors suppressed breast carcinoma cell proliferation. These results indicated that SGLT1 inhibitors could be used as therapeutic agents for breast cancer patients with aggressive biological behaviors.
Collapse
Affiliation(s)
- Satoko Tsunokake
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Hachinohe, Aomori, Japan
| | - Yoshiaki Onodera
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Basak D, Gamez D, Deb S. SGLT2 Inhibitors as Potential Anticancer Agents. Biomedicines 2023; 11:1867. [PMID: 37509506 PMCID: PMC10376602 DOI: 10.3390/biomedicines11071867] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) serves as a critical glucose transporter that has been reported to be overexpressed in cancer models, followed by increased glucose uptake in both mice and humans. Inhibition of its expression can robustly thwart tumor development in vitro and in vivo. SGLT2 inhibitors are a comparatively new class of antidiabetic drugs that have demonstrated anticancer effects in several malignancies, including breast, liver, pancreatic, thyroid, prostate, and lung cancers. This review aims to assess the extent of SGLT involvement in different cancer cell lines and discuss the pharmacology, mechanisms of action, and potential applications of SGLT2 inhibitors to reduce tumorigenesis and its progression. Although these agents display a common mechanism of action, they exhibit distinct affinity towards the SGLT type 2 transporter compared to the SGLT type 1 transporter and varying extents of bioavailability and half-lives. While suppression of glucose uptake has been attributed to their primary mode of antidiabetic action, SGLT2 inhibitors have demonstrated several mechanistic ways to combat cancer, including mitochondrial membrane instability, suppression of β-catenin, and PI3K-Akt pathways, increase in cell cycle arrest and apoptosis, and downregulation of oxidative phosphorylation. Growing evidence and ongoing clinical trials suggest a potential benefit of combination therapy using an SGLT2 inhibitor with the standard chemotherapeutic regimen. Nevertheless, further experimental and clinical evidence is required to characterize the expression and role of SGLTs in different cancer types, the activity of different SGLT subtypes, and their role in tumor development and progression.
Collapse
Affiliation(s)
- Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - David Gamez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
31
|
Chung CT, Lakhani I, Chou OHI, Lee TTL, Dee EC, Ng K, Wong WT, Liu T, Lee S, Zhang Q, Cheung BMY, Tse G, Zhou J. Sodium-glucose cotransporter 2 inhibitors versus dipeptidyl peptidase 4 inhibitors on new-onset overall cancer in Type 2 diabetes mellitus: A population-based study. Cancer Med 2023; 12:12299-12315. [PMID: 37148547 PMCID: PMC10278500 DOI: 10.1002/cam4.5927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Cancer is currently the second leading cause of death globally. There is much uncertainty regarding the comparative risks of new-onset overall cancer and pre-specified cancer for Type 2 diabetes mellitus (T2DM) patients on sodium-glucose cotransporter 2 inhibitors (SGLT2I) versus DPP4I. METHODS This population-based cohort study patients included patients who were diagnosed with T2DM and administered either SGLT2 or DPP4 inhibitors between 1 January 2015 and 31 December 2020 in public hospitals of Hong Kong. RESULTS This study included 60,112 T2DM patients (mean baseline age: 62.1 ± 12.4 years, male: 56.36%), of which 18,167 patients were SGLT2I users and 41,945 patients were dipeptidyl peptidase 4 inhibitor (DPP4I) users. Multivariable Cox regression found that SGLT2I use was associated with lower risks of all-cause mortality (HR: 0.92; 95% CI: 0.84-0.99; p= 0.04), cancer-related mortality (HR: 0.58; 95% CI: 0.42-0.80; p ≤ 0.001) and new diagnoses of any cancer (HR: 0.70; 95% CI: 0.59-0.84; p ≤ 0.001). SGLT2I use was associated with a lower risk of new-onset breast cancer (HR: 0.51; 95% CI: 0.32-0.80; p ≤ 0.001), but not of other malignancies. Subgroup analysis on the type of SGLT2I, dapagliflozin (HR: 0.78; 95% CI: 0.64-0.95; p = 0.01) and ertugliflozin (HR: 0.65; 95% CI: 0.43-0.98; p = 0.04) use was associated with lower risks of new cancer diagnosis. Dapagliflozin use was also linked to lower risks of breast cancer (HR: 0.48; 95% CI: 0.27-0.83; p = 0.001). CONCLUSION Sodium-glucose cotransporter 2 inhibitor use was associated with lower risks of all-cause mortality, cancer-related mortality and new-onset overall cancer compared to DPP4I use after propensity score matching and multivariable adjustment.
Collapse
Affiliation(s)
- Cheuk To Chung
- Diabetes Research UnitCardiovascular Analytics Group, China‐UK CollaborationHong KongChina
| | - Ishan Lakhani
- Diabetes Research UnitCardiovascular Analytics Group, China‐UK CollaborationHong KongChina
| | - Oscar Hou In Chou
- Diabetes Research UnitCardiovascular Analytics Group, China‐UK CollaborationHong KongChina
- Division of Clinical Pharmacology and Therapeutics, Department of Medicine, LKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Teddy Tai Loy Lee
- Diabetes Research UnitCardiovascular Analytics Group, China‐UK CollaborationHong KongChina
| | - Edward Christopher Dee
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Kenrick Ng
- Department of Medical OncologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Wing Tak Wong
- School of Life SciencesChinese University of Hong KongHong KongChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Sharen Lee
- Diabetes Research UnitCardiovascular Analytics Group, China‐UK CollaborationHong KongChina
| | - Qingpeng Zhang
- School of Data ScienceCity University of Hong KongHong KongChina
| | - Bernard Man Yung Cheung
- Division of Clinical Pharmacology and Therapeutics, Department of Medicine, LKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Kent and Medway Medical SchoolUniversity of Kent and Canterbury Christ Church UniversityCanterburyUK
- School of Nursing and Health StudiesHong Kong Metropolitan UniversityHong KongChina
| | - Jiandong Zhou
- Diabetes Research UnitCardiovascular Analytics Group, China‐UK CollaborationHong KongChina
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
32
|
Gallo M, Monami M, Ragni A, Renzelli V. Cancer related safety with SGLT2-i and GLP1-RAs: Should we worry? Diabetes Res Clin Pract 2023; 198:110624. [PMID: 36906235 DOI: 10.1016/j.diabres.2023.110624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| |
Collapse
|
33
|
Shoda K, Tsuji S, Nakamura S, Egashira Y, Enomoto Y, Nakayama N, Shimazawa M, Iwama T, Hara H. Canagliflozin Inhibits Glioblastoma Growth and Proliferation by Activating AMPK. Cell Mol Neurobiol 2023; 43:879-892. [PMID: 35435536 PMCID: PMC11415156 DOI: 10.1007/s10571-022-01221-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
Sodium-glucose transporter 2 (SGLT2) inhibitors are antidiabetic drugs affecting SGLT2. Recent studies have shown various cancers expressing SGLT2, and SGLT2 inhibitors attenuating tumor proliferation. We evaluated the antitumor activities of canagliflozin, a SGLT2 inhibitor, on glioblastoma (GBM). Three GBM cell lines, U251MG (human), U87MG (human), and GL261 (murine), were used. We assessed the expression of SGLT2 of GBM through immunoblotting, specimen-use, cell viability assays, and glucose uptake assay with canagliflozin. Then, we assessed phosphorylation of AMP-activated protein kinase (AMPK), p70 S6 kinase, and S6 ribosomal protein by immunoblotting. Concentrations of 5, 10, 20, and 40 μM canagliflozin were used in these tests. We also evaluated cell viability and immunoblotting using U251MG with siRNA knockdown of SGLT2. Furthermore, we divided the mice into vehicle group and canagliflozin group. The canagliflozin group was administrated with 100 mg/kg of canagliflozin orally for 10 days starting from the third days post-GBM transplant. The brains were removed and the tumor volume was evaluated using sections. SGLT2 was expressed in GBM cell and GBM allograft mouse. Canagliflozin administration at 40 μM significantly inhibited cell proliferation and glucose uptake into the cell. Additionally, canagliflozin at 40 μM significantly increased the phosphorylation of AMPK and suppressed that of p70 S6 kinase and S6 ribosomal protein. Similar results of cell viability assays and immunoblotting were obtained using siRNA SGLT2. Furthermore, although less effective than in vitro, the canagliflozin group significantly suppressed tumor growth in GBM-transplanted mice. This suggests that canagliflozin can be used as a potential treatment for GBM.
Collapse
Affiliation(s)
- Kenji Shoda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yusuke Egashira
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
34
|
Shum HCE, Wu K, Vadgama J, Wu Y. Potential Therapies Targeting the Metabolic Reprogramming of Diabetes-Associated Breast Cancer. J Pers Med 2023; 13:157. [PMID: 36675817 PMCID: PMC9861470 DOI: 10.3390/jpm13010157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, diabetes-associated breast cancer has become a significant clinical challenge. Diabetes is not only a risk factor for breast cancer but also worsens its prognosis. Patients with diabetes usually show hyperglycemia and hyperinsulinemia, which are accompanied by different glucose, protein, and lipid metabolism disorders. Metabolic abnormalities observed in diabetes can induce the occurrence and development of breast cancer. The changes in substrate availability and hormone environment not only create a favorable metabolic environment for tumorigenesis but also induce metabolic reprogramming events required for breast cancer cell transformation. Metabolic reprogramming is the basis for the development, swift proliferation, and survival of cancer cells. Metabolism must also be reprogrammed to support the energy requirements of the biosynthetic processes in cancer cells. In addition, metabolic reprogramming is essential to enable cancer cells to overcome apoptosis signals and promote invasion and metastasis. This review aims to describe the major metabolic changes in diabetes and outline how cancer cells can use cellular metabolic changes to drive abnormal growth and proliferation. We will specifically examine the mechanism of metabolic reprogramming by which diabetes may promote the development of breast cancer, focusing on the role of glucose metabolism, amino acid metabolism, and lipid metabolism in this process and potential therapeutic targets. Although diabetes-associated breast cancer has always been a common health problem, research focused on finding treatments suitable for the specific needs of patients with concurrent conditions is still limited. Most studies are still currently in the pre-clinical stage and mainly focus on reprogramming the glucose metabolism. More research targeting the amino acid and lipid metabolism is needed.
Collapse
Affiliation(s)
- Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| | - Yong Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel) 2022; 14:cancers14235811. [PMID: 36497303 PMCID: PMC9738342 DOI: 10.3390/cancers14235811] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A new group of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT-2 inhibitors), have recently been shown to have anticancer effects and their expression has been confirmed in many cancer cell lines. Given the metabolic reprogramming of these cells in a glucose-based model, the ability of SGLT-2 inhibitors to block the glucose uptake by cancer cells appears to be an attractive therapeutic approach. In addition to tumour cells, SGLT-2s are only found in the proximal tubules in the kidneys. Furthermore, as numerous clinical trials have shown, the use of SGLT-2 inhibitors is well-tolerated and safe in patients with diabetes and/or heart failure. In vitro cell culture studies and preclinical in vivo studies have confirmed that SGLT-2 inhibitors exhibit antiproliferative effects on certain types of cancer. However, the mechanisms of this action remain unclear. Even in those tumour cell types in which SGLT-2 is present, there is sometimes an SGLT-2-independent mechanism of anticancer action of this group of drugs. This article presents the current state of knowledge of the potential mechanisms of the anticancer action of SGLT-2 inhibitors and their possible future application in clinical oncology.
Collapse
|
36
|
Nakhal MM, Aburuz S, Sadek B, Akour A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022; 27:7174. [PMID: 36364000 PMCID: PMC9653623 DOI: 10.3390/molecules27217174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
37
|
Gongora CA, Drobni ZD, Quinaglia Araujo Costa Silva T, Zafar A, Gong J, Zlotoff DA, Gilman HK, Hartmann SE, Sama S, Nikolaidou S, Suero-Abreu GA, Jacobsen E, Abramson JS, Hochberg E, Barnes J, Armand P, Thavendiranathan P, Nohria A, Neilan TG. Sodium-Glucose Co-Transporter-2 Inhibitors and Cardiac Outcomes Among Patients Treated With Anthracyclines. JACC. HEART FAILURE 2022; 10:559-567. [PMID: 35902159 PMCID: PMC9638993 DOI: 10.1016/j.jchf.2022.03.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Sodium-glucose co-transporter-2 (SGLT2) inhibitors improve outcomes among patients with established heart failure. Despite supportive basic science studies, there are no data on the value of SGLT2 inhibitors among patients treated with anthracyclines. OBJECTIVES This study sought to test the cardiac efficacy and overall safety of SGLT2 inhibitors in patients treated with anthracyclines. METHODS This study identified 3,033 patients with diabetes mellitus (DM) and cancer who were treated with anthracyclines. Cases were patients with cancer and DM who were on SGLT2 inhibitor therapy during anthracycline treatment (n = 32). Control participants (n = 96) were patients with cancer and DM who were also treated with anthracyclines, but were not on an SGLT2 inhibitor. The primary cardiac outcome was a composite of cardiac events (heart failure incidence, heart failure admissions, new cardiomyopathy [>10% decline in ejection fraction to <53%], and clinically significant arrhythmias). The primary safety outcome was overall mortality. RESULTS Age, sex, ethnicity, cancer type, cancer stage, and other cardiac risk factors were similar between groups. There were 20 cardiac events over a median follow-up period of 1.5 years. The cardiac event incidence was lower among case patients in comparison to control participants (3% vs 20%; P = 0.025). Case patients also experienced lower overall mortality when compared with control participants (9% vs 43%; P < 0.001) and a lower composite of sepsis and neutropenic fever (16% vs 40%; P = 0.013). CONCLUSIONS SGLT2 inhibitors were associated with lower rate of cardiac events among patients with cancer and DM who were treated with anthracyclines. Additionally, SGLT2 inhibitors appeared to be safe. These data support the conducting of a randomized clinical trial testing SGLT2 inhibitors in patients at high cardiac risk treated with anthracyclines.
Collapse
Affiliation(s)
- Carlos A Gongora
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zsofia D Drobni
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Amna Zafar
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jingyi Gong
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel A Zlotoff
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah K Gilman
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah E Hartmann
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Supraja Sama
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sofia Nikolaidou
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric Jacobsen
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Abramson
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ephraim Hochberg
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Barnes
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philippe Armand
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Anju Nohria
- Department of Cardiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tomas G Neilan
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
38
|
Anton IC, Mititelu-Tartau L, Popa EG, Poroch M, Poroch V, Pintilei DR, Botnariu GE. Clinical Parameters Affecting the Therapeutic Efficacy of SGLT-2-Comparative Effectiveness and Safety of Dapagliflozin and Empagliflozin in Patients with Type 2 Diabetes. Healthcare (Basel) 2022; 10:1153. [PMID: 35885680 PMCID: PMC9316348 DOI: 10.3390/healthcare10071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background. We aimed to assess long-term efficacy and safety in inadequately controlled type 2 diabetes (T2DM) of two SGLT-2 inhibitors: empagliflozin (Empa) and dapagliflozin (Dapa), combined with metformin, other oral antidiabetics or insulin, according to the protocols in Romania. (2) Methods. The data of 100 patients treated for T2DM with associated dyslipidemia and/or cardiovascular diseases at the University Hospital and Consultmed Medical Center in Iasi were retrospectively reviewed (2017-2021). In total, 48 patients had received dapagliflozin (10 mg with oral antidiabetics or insulin) and 52 patients received empagliflozin (10 mg /25 mg with oral antidiabetics). (3) Results. In both groups, the lowering of BMI was significant: Dapa group (32.04 ± 4.49 vs. 31.40 ± 4.18 kg/m2; p = 0.006), and Empa group (34.16 ± 5.08 vs. 33.17 ± 4.99 kg/m2; p = 0.002). Blood sugar average levels decreased significantly (170 vs. 136 mg/dL; p = 0.001 for Dapa; 163 vs. 140 mg/dL; p = 0.002 for Empa) and also average levels of HbA1c (7.90% vs. 7.51%; p = 0,01 for Dapa; 7.72% vs. 7.35%; p = 0.004 for Empa). (4) Conclusions. Better results in all variables were observed in younger male patients with a shorter duration of diabetes and threshold BMI levels of 34.1, treated with SGLT2, and more significantly with Empa.
Collapse
Affiliation(s)
- Irina Claudia Anton
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania;
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania;
| | - Eliza Gratiela Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Mihaela Poroch
- Department of Family Medicine, Preventive Medicine and Interdisciplinarity, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania;
| | - Vladimir Poroch
- 2nd Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania;
| | - Delia Reurean Pintilei
- Department of Diabetes, Nutrition and Metabolic Disease, Consultmed Medical Center, Pacurari St. 70, 700544 Iasi, Romania;
| | - Gina Eosefina Botnariu
- Department of Diabetes, Nutrition and Metabolic Disease, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania;
| |
Collapse
|
39
|
Wu W, Zhang Z, Jing D, Huang X, Ren D, Shao Z, Zhang Z. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis 2022; 13:523. [PMID: 35662245 PMCID: PMC9166744 DOI: 10.1038/s41419-022-04980-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) is an important mediator of epithelial glucose transport and has been reported that SGLT2, robustly and diffusely expressed in malignant cancer cells, was overexpressed in various tumors, and inhibiting the SGLT2 expression significantly inhibited tumor progression. By blocking the functional activity of SGLT2, SGLT2 inhibitors have shown anticancer effects in several malignant cancers, including breast cancer, cervical cancer, hepatocellular cancer, prostate cancer, and lung cancer. However, the anticancer effect of SGLT2 inhibitors in osteosarcoma and the specific mechanism are still unclear. In the present study, we found that SGLT2 was overexpressed at the protein level in osteosarcoma. Furthermore, our results showed that the SGLT2 inhibitor significantly inhibited osteosarcoma tumor growth and induced infiltration of immune cells in vivo by upregulating STING expression and activating the IRF3/IFN-β pathway, which could attribute to the suppression of AKT phosphorylation. In addition, the combined treatment with SGLT2 inhibitor and STING agonist 2'3'-cGAMP exerted synergistic antitumor effects in osteosarcoma. Furthermore, the overexpression of SGLT2 at the protein level was correlated with the degradation of SGLT2 induced by TRIM21. This result demonstrated that SGLT2 is a novel therapeutic target of osteosarcoma, and that the SGLT2 inhibitor, especially in combination with 2'3'-cGAMP, is a potential therapeutic drug.
Collapse
Affiliation(s)
- Wei Wu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhenhao Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Doudou Jing
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin Huang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dianyun Ren
- grid.33199.310000 0004 0368 7223Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zengwu Shao
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhicai Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
40
|
Akingbesote ND, Norman A, Zhu W, Halberstam AA, Zhang X, Foldi J, Lustberg MB, Perry RJ. A precision medicine approach to metabolic therapy for breast cancer in mice. Commun Biol 2022; 5:478. [PMID: 35595952 PMCID: PMC9122928 DOI: 10.1038/s42003-022-03422-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence highlights approaches targeting metabolism as potential adjuvants to cancer therapy. Sodium-glucose transport protein 2 (SGLT2) inhibitors are the newest class of antihyperglycemic drugs. To our knowledge, SGLT2 inhibitors have not been applied in the neoadjuvant setting as a precision medicine approach for this devastating disease. Here, we treat lean breast tumor-bearing mice with the SGLT2 inhibitor dapagliflozin as monotherapy and in combination with paclitaxel chemotherapy. We show that dapagliflozin enhances the efficacy of paclitaxel, reducing tumor glucose uptake and prolonging survival. Further, the ability of dapagliflozin to enhance the efficacy of chemotherapy correlates with its effect to reduce circulating insulin in some but not all breast tumors. Our data suggest a genetic signature for breast tumors more likely to respond to dapagliflozin in combination with paclitaxel. In the current study, tumors driven by mutations upstream of canonical insulin signaling pathways responded to this combined treatment, whereas tumors driven by mutations downstream of canonical insulin signaling did not. These data demonstrate that dapagliflozin enhances the response to chemotherapy in mice with breast cancer and suggest that patients with driver mutations upstream of canonical insulin signaling may be most likely to benefit from this neoadjuvant approach.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Aaron Norman
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Wanling Zhu
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra A Halberstam
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Xinyi Zhang
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Julia Foldi
- Department of Internal Medicine (Hematology/Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Maryam B Lustberg
- Department of Internal Medicine (Hematology/Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Benedetti R, Benincasa G, Glass K, Chianese U, Vietri MT, Congi R, Altucci L, Napoli C. Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacol Res 2021; 175:106039. [PMID: 34929299 DOI: 10.1016/j.phrs.2021.106039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological evidence shows that diabetic patients have an increased cancer risk and a higher mortality rate. Glucose could play a central role in metabolism and growth of many tumor types, and this possible mechanism is supported by the high rate of glucose demand and uptake in cancer. Thus, growing evidence suggests that hyperglycemia contributes to cancer progression but also to its onset. Many mechanisms underlying this association have been hypothesized, such as insulin resistance, hyperinsulinemia, and increased inflammatory processes. Inflammation is a common pathophysiological feature in both diabetic and oncological patients, and inflammation linked to high glucose levels sensitizes microenvironment to tumorigenesis, promoting the development of malignant lesions by altering and sustaining a pathological condition in tissues. Glycemic control is the first goal of antidiabetic therapy, and glucose level reduction has also been associated with favorable outcomes in cancer. Here, we describe key events in carcinogenesis focusing on hyperglycemia as supporter in tumor progression and in particular, related to the role of a specific hypoglycemic drug class, sodium-glucose linked transporters (SGLTs). We also discuss the use of SGLT2 inhibitors as a novel potential cancer therapy. Our meta-analysis showed that SGLT-2 inhibitors were significantly associated with an overall reduced risk of cancer as compared to placebo (RR = 0.35, CI 0.33-0.37, P = 0. 00) with a particular effectiveness for dapaglifozin and ertuglifozin (RR = 0. 06, CI 0. 06-0. 07 and RR = 0. 22, CI 0. 18-0. 26, respectively). Network Medicine approaches may advance the possible repurposing of these drugs in patients with concomitant diabetes and cancer.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Pz. Miraglia 2, 80138 Naples, Italy.
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Raffaella Congi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Pz. Miraglia 2, 80138 Naples, Italy; Clinical Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Transfusion Medicine and Transplant Immunology, AOU University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
42
|
Lau KTK, Ng L, Wong JWH, Loong HHF, Chan WWL, Lee CH, Wong CKH. Repurposing sodium-glucose co-transporter 2 inhibitors (SGLT2i) for cancer treatment - A Review. Rev Endocr Metab Disord 2021; 22:1121-1136. [PMID: 34272645 DOI: 10.1007/s11154-021-09675-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 01/24/2023]
Abstract
Developed as an antidiabetic drug, recent evidence suggests that several sodium-glucose co-transporter 2 inhibitors (SGLT2i), especially canagliflozin and dapagliflozin, may exhibit in vitro and in vivo anticancer activities in selected cancer types, including an inhibition of tumor growth and induction of cell death. When used in combination with chemotherapy or radiotherapy, SGLT2i may offer possible synergistic effects in enhancing their treatment efficacy while alleviating associated side effects. Potential mechanisms include a reduction of glucose uptake into cancer cells, systemic glucose restriction, modulation of multiple signaling pathways, and regulation of different gene and protein expression. Furthermore, preliminary clinical findings have reported potential anticancer properties of canagliflozin and dapagliflozin in patients with liver and colon cancers respectively, with reference to decreases in their tumor marker levels. Given its general tolerability and routine use in diabetes management, SGLT2i may be a good candidate for drug repurposing in cancer treatment and as adjunct to conventional therapies. While current evidence reveals that only certain SGLT2i appear to be effective against selected cancer types, further studies are needed to explore the antitumor abilities of each SGLT2i in various cancers. Moreover, clinical trials are called for to evaluate the safety and feasibility of introducing SGLT2i in the treatment regimen of patients with specific cancers, and to identify the preferred route of drug administration for targeted delivery to selected tumor sites.
Collapse
Affiliation(s)
- Kristy T K Lau
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jason W H Wong
- School of Biomedical Sciences, Faculty of Medicine, Li Ka Shing, The University of Hong Kong, Hong Kong SAR, China
| | - Herbert H F Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wendy W L Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lee
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Carlos K H Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
43
|
Yamamoto L, Yamashita S, Nomiyama T, Kawanami T, Hamaguchi Y, Shigeoka T, Horikawa T, Tanaka Y, Yanase T, Kawanami D, Iwasaki A. Sodium-glucose cotransporter 2 inhibitor canagliflozin attenuates lung cancer cell proliferation in vitro. Diabetol Int 2021; 12:389-398. [PMID: 34567921 PMCID: PMC8413406 DOI: 10.1007/s13340-021-00494-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/26/2021] [Indexed: 01/14/2023]
Abstract
Cancer is a major cause of death in patients with type 2 diabetes mellitus (T2DM) and lung cancer is one of the most prevalent cancers in patients with T2DM. In the present study, we examined the anti-cancer effect of the Sodium-glucose cotransporter 2 (SGLT2) inhibitor, canagliflozin, using a lung cancer model. In lung cancer tissues from non-T2DM human subjects, SGLT2 was detected by immunohistochemistry. SGLT2 mRNA and protein were also detected in A549, H1975 and H520 lung cancer cell lines by RT-PCR and immunohistochemistry, respectively. Canagliflozin at 1-50 µM significantly suppressed the growth of A549 cells in a dose-dependent manner. In BrdU assays, canagliflozin attenuated the proliferation of A549 cells, but did not induce apoptosis. In cell cycle analysis, S phase entry was attenuated by canagliflozin in A549 cells. In in vivo experiments, a xenograft model of athymic mice implanted with A549 lung cancer cells was treated with low and high dose oral canagliflozin. Despite the results of the in vitro experiments, tumor weight was not decreased by canagliflozin. In addition, the serum insulin level, but not body weight or blood glucose level, was decreased by canagliflozin. The number of cells positive for Ki67 was slightly decreased by canagliflozin, but this was not statistically significant. In conclusion, SGLT2 is expressed in human lung cancer tissue and cell lines, and the SGLT2 inhibitor, canagliflozin, attenuated proliferation of A549 lung cancer cells by inhibiting cell cycle progression in vitro but not in vivo.
Collapse
Affiliation(s)
- Leona Yamamoto
- Department of General Thoracic, Breast and Pediatric Surgery, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Shinichi Yamashita
- Department of General Thoracic, Breast and Pediatric Surgery, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Takashi Nomiyama
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare Ichikawa Hospital, 6-1-14, Kounodai, Ichikawa, Chiba 272-0827 Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686 Japan
| | - Takako Kawanami
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Toru Shigeoka
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Tsuyoshi Horikawa
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Yuki Tanaka
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Toshihiko Yanase
- Muta Hospital, 3-9-1 Hoshikuma, Sawara-ku, Fukuoka 814-0163 Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| | - Akinori Iwasaki
- Department of General Thoracic, Breast and Pediatric Surgery, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 Japan
| |
Collapse
|
44
|
Hoong CWS, Chua MWJ. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 2021; 162:6226811. [PMID: 33857309 DOI: 10.1210/endocr/bqab079] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors induce glycosuria, reduce insulin levels, and promote fatty acid oxidation and ketogenesis. By promoting a nutrient deprivation state, SGLT2 inhibitors upregulate the energy deprivation sensors AMPK and SIRT1, inhibit the nutrient sensors mTOR and insulin/IGF1, and modulate the closely linked hypoxia-inducible factor (HIF)-2α/HIF-1α pathways. Phosphorylation of AMPK and upregulation of adiponectin and PPAR-α favor a reversal of the metabolic syndrome which have been linked to suppression of chronic inflammation. Downregulation of insulin/IGF1 pathways and mTOR signaling from a reduction in glucose and circulating amino acids promote cellular repair mechanisms, including autophagy and proteostasis which confer cellular stress resistance and attenuate cellular senescence. SIRT1, another energy sensor activated by NAD+ in nutrient-deficient states, is reciprocally activated by AMPK, and can deacetylate and activate transcription factors, such as PCG-1α, mitochondrial transcription factor A (TFAM), and nuclear factor E2-related factor (NRF)-2, that regulate mitochondrial biogenesis. FOXO3 transcription factor which target genes in stress resistance, is also activated by AMPK and SIRT1. Modulation of these pathways by SGLT2 inhibitors have been shown to alleviate metabolic diseases, attenuate vascular inflammation and arterial stiffness, improve mitochondrial function and reduce oxidative stress-induced tissue damage. Compared with other calorie restriction mimetics such as metformin, rapamycin, resveratrol, and NAD+ precursors, SGLT2 inhibitors appear to be the most promising in the treatment of aging-related diseases, due to their regulation of multiple longevity pathways that closely resembles that achieved by calorie restriction and their established efficacy in reducing cardiovascular events and all-cause mortality. Evidence is compelling for the role of SGLT2 inhibitors as a calorie restriction mimetic in anti-aging therapeutics.
Collapse
Affiliation(s)
- Caroline W S Hoong
- Division of Endocrinology, Department of General Medicine, Woodlands Health Campus, National Healthcare Group Singapore, Woodlands Health Campus Singapore, 768024, Singapore
| | - Marvin W J Chua
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, SingHealth Group Singapore, Sengkang General Hospital Singapore, 544886, Singapore
| |
Collapse
|
45
|
Ren D, Sun Y, Zhang D, Li D, Liu Z, Jin X, Wu H. SGLT2 promotes pancreatic cancer progression by activating the Hippo signaling pathway via the hnRNPK-YAP1 axis. Cancer Lett 2021; 519:277-288. [PMID: 34314754 DOI: 10.1016/j.canlet.2021.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
SGLT2 is overexpressed in various cancers, including pancreatic cancer. However, the mechanisms underlying the tumorigenic effects of SGLT2 in pancreatic cancer remain unclear. In this study, we demonstrated that SGLT2 inhibition significantly suppressed the growth of pancreatic cancer cells in vitro and in vivo. RNA sequencing, real-time PCR, and Western blot analyses revealed that SGLT2 silencing or inhibition suppressed Hippo signaling activation by downregulating YAP1 expression. Liquid chromatography-mass spectrometry and immunoprecipitation analyses showed that SGLT2 interacted with hnRNPK, promoting its nuclear translocation and thereby enhancing hnRNPK-induced YAP1 transcription. Importantly, YAP1 inhibitor enhanced the anti-pancreatic cancer effect of SGLT2 inhibitor in mice bearing pancreatic tumors. These findings suggest that SGLT2 promotes pancreatic cancer progression by activating the Hippo signaling pathway through the hnRNPK-YAP1 axis. Hence, SGLT2 inhibition alone or combined with YAP1 inhibition may represent a promising therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Dan Li
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha,Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Tsai KF, Chen YL, Chiou TTY, Chu TH, Li LC, Ng HY, Lee WC, Lee CT. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel) 2021; 10:1166. [PMID: 34439414 PMCID: PMC8388972 DOI: 10.3390/antiox10081166] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral glucose-lowering agents. Apart from their glucose-lowering effects, large clinical trials assessing certain SGLT2 inhibitors have revealed cardiac and renal protective effects in non-diabetic patients. These excellent outcomes motivated scientists and clinical professionals to revisit their underlying mechanisms. In addition to the heart and kidney, redox homeostasis is crucial in several human diseases, including liver diseases, neural disorders, and cancers, with accumulating preclinical studies demonstrating the therapeutic benefits of SGLT2 inhibitors. In the present review, we aimed to update recent advances in the antioxidant roles of SGLT2 inhibitors in common but debilitating human diseases. We anticipate that this review will guide new research directions and novel therapeutic strategies for diabetes, cardiovascular diseases, nephropathies, liver diseases, neural disorders, and cancers in the era of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Yung-Lung Chen
- Section of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Terry Ting-Yu Chiou
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tian-Huei Chu
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| |
Collapse
|
47
|
Shi N, Shi Y, Xu J, Si Y, Yang T, Zhang M, Ng DM, Li X, Xie F. SGLT-2i and Risk of Malignancy in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Front Public Health 2021; 9:668368. [PMID: 34164370 PMCID: PMC8215266 DOI: 10.3389/fpubh.2021.668368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Currently, the association between sodium-glucose cotransporter 2 inhibitor (SGLT-2i) and malignancy risk has yet to be fully elucidated. This meta-analysis aimed to determine the relationship between SGLT-2i and malignancy risk in type 2 diabetes (T2D) patients. Methods: We searched PubMed, ScienceDirect, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science to identify randomized controlled trials (RCTs) published up to August 2020 related to T2D patients treated with SGLT-2i vs. placebo or other hypoglycemic agents. The meta-analysis's primary outcome was malignancies' incidence, and the results were evaluated using risk ratio (RR) and 95% confidence interval (CI). Results: We reviewed 76 articles (77 RCTs), comprising 45,162 and 43,811 patients in SGLT-2i and control groups, respectively. Compared with the control group, SGLT-2i had no significant association with augmented overall malignancy risk in T2D patients (RR = 1.05, 95% CI = 0.97–1.14, P = 0.20), but ertugliflozin may upsurge the risk (RR = 1.80, 95% CI = 1.02–3.17, P = 0.04). Compared with active hypoglycemic agents, dapagliflozin may increase (RR = 2.71, 95% CI = 1.46–6.43, P = 0.02) and empagliflozin may decrease (RR = 0.67, 95% CI = 0.45–0.98, P = 0.04) the malignancy risk. Compared with placebo, empagliflozin may exhibit risk increase (RR = 1.25, 95% CI = 1.05–1.49, P = 0.01), primarily in digestive system (RR = 1.48, 95% CI = 0.99–2.21, P = 0.05). Conclusions: Our results proposed that in diverse comparisons, ertugliflozin and dapagliflozin seemed to increase the malignancy risk in T2D patients. Empagliflozin may cause malignancy risk reduction compared with active hypoglycemic agents but increase overall risk primarily in the digestive system compared with placebo. In short, the relationship between SGLT-2i and malignancy in T2D patients remains unclear.
Collapse
Affiliation(s)
- Nanjing Shi
- Department of Endocrinology, Affiliated Hangzhou First People' Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yetan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingsi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Yang
- Department of Tumor High Intensity Focused Ultrasound Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Mengting Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Xiangyuan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Xie
- Department of Endocrinology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| |
Collapse
|
48
|
Heerspink HJL, Sjöström CD, Jongs N, Chertow GM, Kosiborod M, Hou FF, McMurray JJV, Rossing P, Correa-Rotter R, Kurlyandskaya R, Stefansson BV, Toto RD, Langkilde AM, Wheeler DC. Effects of dapagliflozin on mortality in patients with chronic kidney disease: a pre-specified analysis from the DAPA-CKD randomized controlled trial. Eur Heart J 2021; 42:1216-1227. [PMID: 33792669 PMCID: PMC8244648 DOI: 10.1093/eurheartj/ehab094] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Aims Mortality rates from chronic kidney disease (CKD) have increased in the last decade. In this pre-specified analysis of the DAPA-CKD trial, we determined the effects of dapagliflozin on cardiovascular and non-cardiovascular causes of death. Methods and results DAPA-CKD was an international, randomized, placebo-controlled trial with a median of 2.4 years of follow-up. Eligible participants were adult patients with CKD, defined as a urinary albumin-to-creatinine ratio (UACR) 200–5000 mg/g and an estimated glomerular filtration rate (eGFR) 25–75 mL/min/1.73 m2. All-cause mortality was a key secondary endpoint. Cardiovascular and non-cardiovascular death was adjudicated by an independent clinical events committee. The DAPA-CKD trial randomized participants to dapagliflozin 10 mg/day (n = 2152) or placebo (n = 2152). The mean age was 62 years, 33% were women, the mean eGFR was 43.1 mL/min/1.73 m2, and the median UACR was 949 mg/g. During follow-up, 247 (5.7%) patients died, of whom 91 (36.8%) died due to cardiovascular causes, 102 (41.3%) due to non-cardiovascular causes, and in 54 (21.9%) patients, the cause of death was undetermined. The relative risk reduction for all-cause mortality with dapagliflozin (31%, hazard ratio [HR] [95% confidence interval (CI)] 0.69 [0.53, 0.88]; P = 0.003) was consistent across pre-specified subgroups. The effect on all-cause mortality was driven largely by a 46% relative risk reduction of non-cardiovascular death (HR [95% CI] 0.54 [0.36, 0.82]). Deaths due to infections and malignancies were the most frequently occurring causes of non-cardiovascular deaths and were reduced with dapagliflozin vs. placebo. Conclusion In patients with CKD, dapagliflozin prolonged survival irrespective of baseline patient characteristics. The benefits were driven largely by reductions in non-cardiovascular death.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB Groningen, Netherlands.,The George Institute for Global Health, Level 5, 1 King Street, Newtown, Sydney, NSW 2042, Australia
| | - C David Sjöström
- Late-stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Gothenburg, Sweden
| | - Niels Jongs
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB Groningen, Netherlands
| | - Glenn M Chertow
- Department of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford University School of Medicine, Stanford, CA 94305-5101 USA; Department of Epidemiology and Population Health, 150 Governor's LaneHRP Redwood Building Stanford University School of Medicine, Stanford, CA 94305-5405 USA
| | - Mikhail Kosiborod
- The George Institute for Global Health, Level 5, 1 King Street, Newtown, Sydney, NSW 2042, Australia.,Saint Luke's Mid America Heart Institute, 4401 Wornall Rd. Kansas City, MO 64111, USA.,University of Missouri-Kansas City, 5000 Holmes St, Kansas City, MO 64110, USA
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, 1838 Guangzhou N Ave, Baiyun, Guangzhou, Guangdong Province, China
| | - John J V McMurray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Pl, Glasgow, G12 8TA, UK
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820 Gentofte, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 33.5.18-21DK-2200 Copenhagen, Denmark
| | - Ricardo Correa-Rotter
- National Medical Science and Nutrition Institute Salvador Zubirán, Vasco de Quiroga 15, Belisario Dom쭧uez Secc 16, Tlalpan, 14080 Ciudad de México, CDMX, Mexico
| | - Raisa Kurlyandskaya
- Late-Stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Postępu 14, 02-676 Warsaw, Poland
| | - Bergur V Stefansson
- Late-stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Gothenburg, Sweden
| | - Robert D Toto
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Anna Maria Langkilde
- Late-stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Gothenburg, Sweden
| | - David C Wheeler
- The George Institute for Global Health, Level 5, 1 King Street, Newtown, Sydney, NSW 2042, Australia.,Department of Renal Medicine, UCL Medical School, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | | |
Collapse
|
49
|
Yang L, Li J, Li Y, Zhou Y, Wang Z, Zhang D, Liu J, Zhang X. Diclofenac impairs the proliferation and glucose metabolism of triple-negative breast cancer cells by targeting the c-Myc pathway. Exp Ther Med 2021; 21:584. [PMID: 33850556 PMCID: PMC8027724 DOI: 10.3892/etm.2021.10016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) cells obtain energy mainly through aerobic glycolysis, and their glycolytic rate is significantly higher compared with that of non-TNBC cells. Glucose transporter 1 (GLUT1) is a transmembrane transporter necessary for the entry of glucose into tumor cells, hexokinase (HK) is a key enzyme in the glycolytic pathway, and both are targets of the transcription factor c-Myc. c-Myc can promote aerobic glycolysis by upregulating GLUT1 expression and enhancing HK activity. c-Myc and GLUT1 are highly expressed in TNBC. The non-steroidal anti-inflammatory drug diclofenac can inhibit glycolysis in melanoma cells and thereby promote apoptosis by downregulating c-Myc and GLUT1. To explore the effect of diclofenac on the energy metabolism of TNBC cells and determine the underlying mechanism, a comparative study in two TNBC cell lines (MDA-MB-231 and HCC1937) and one non-TNBC cell line (MCF-7) was conducted. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) and flow cytometric assays; GLUT1 and c-Myc expression was measured by western blotting. Diclofenac significantly inhibited cell proliferation, downregulated GLUT1 and c-Myc expression, and decreased HK activity in TNBC cells compared with non-TNBC cells. In conclusion, the studies suggested that diclofenac inhibited cell glycolysis and suppressed TNBC cell growth by decreasing GLUT1 protein expression and HK activity through the c-Myc pathway.
Collapse
Affiliation(s)
- Lihui Yang
- Department of Nursing, Guangxi Medical University Nursing College, Nanning, Guangxi 530021, P.R. China
| | - Jiachen Li
- Department of Clinical Medicine, Guangxi Medical University The First Clinical Medical College, Nanning, Guangxi 530021, P.R. China
| | - Yongzhuo Li
- Department of Medicine Guangxi University Medical College, Nanning, Guangxi 530004, P.R. China
| | - Yongli Zhou
- Department of Clinical Medicine, Guangxi Medical University The First Clinical Medical College, Nanning, Guangxi 530021, P.R. China
| | - Ziqian Wang
- Department of Clinical Medicine, Guangxi Medical University The First Clinical Medical College, Nanning, Guangxi 530021, P.R. China
| | - Dahao Zhang
- Department of Clinical Medicine, Guangxi Medical University The First Clinical Medical College, Nanning, Guangxi 530021, P.R. China
| | - Jinlu Liu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaodong Zhang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
50
|
Dąbrowski M. Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 Inhibitors. Int J Mol Sci 2021; 22:1680. [PMID: 33562380 PMCID: PMC7915237 DOI: 10.3390/ijms22041680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, cancer became the leading cause of death in the population under 65 in the European Union. Diabetes is also considered as a factor increasing risk of cancer incidence and mortality. Type 2 diabetes is frequently associated with being overweight and obese, which also plays a role in malignancy. Among biological mechanisms linking diabetes and obesity with cancer hyperglycemia, hyperinsulinemia, insulin resistance, increased levels of growth factors, steroid and peptide hormones, oxidative stress and increased activity of pro-inflammatory cytokines are listed. Antidiabetic medications can modulate cancer risk through directly impacting metabolism of cancer cells as well as indirectly through impact on risk factors of malignancy. Some of them are considered beneficial (metformin and thiazolidinedions-with the exception of bladder cancer); on the other hand, excess of exogenous insulin may be potentially harmful, while other medications seem to have neutral impact on cancer risk. Inhibitors of the sodium-glucose cotransporter-2 (SGLT-2) are increasingly used in the treatment of type 2 diabetes. However, their association with cancer risk is unclear. The aim of this review was to analyze the anticancer potential of this class of drugs, as well as risks of site-specific malignancies associated with their use.
Collapse
Affiliation(s)
- Mariusz Dąbrowski
- College of Medical Sciences, University of Rzeszów, Al. Rejtana 16C, 35-959 Rzeszów, Poland
| |
Collapse
|