1
|
Zagorščak M, Abdelhakim L, Rodriguez-Granados NY, Široká J, Ghatak A, Bleker C, Blejec A, Zrimec J, Novák O, Pěnčík A, Baebler Š, Perez Borroto L, Schuy C, Županič A, Afjehi-Sadat L, Wurzinger B, Weckwerth W, Pompe Novak M, Knight MR, Strnad M, Bachem C, Chaturvedi P, Sonnewald S, Sasidharan R, Panzarová K, Gruden K, Teige M. Integration of multi-omics data and deep phenotyping provides insights into responses to single and combined abiotic stress in potato. PLANT PHYSIOLOGY 2025; 197:kiaf126. [PMID: 40173380 PMCID: PMC12012603 DOI: 10.1093/plphys/kiaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
Potato (Solanum tuberosum) is highly water and space efficient but susceptible to abiotic stresses such as heat, drought, and flooding, which are severely exacerbated by climate change. Our understanding of crop acclimation to abiotic stress, however, remains limited. Here, we present a comprehensive molecular and physiological high-throughput profiling of potato (Solanum tuberosum, cv. Désirée) under heat, drought, and waterlogging applied as single stresses or in combinations designed to mimic realistic future scenarios. Stress responses were monitored via daily phenotyping and multi-omics analyses of leaf samples comprising proteomics, targeted transcriptomics, metabolomics, and hormonomics at several timepoints during and after stress treatments. Additionally, critical metabolites of tuber samples were analyzed at the end of the stress period. We performed integrative multi-omics data analysis using a bioinformatic pipeline that we established based on machine learning and knowledge networks. Waterlogging produced the most immediate and dramatic effects on potato plants, interestingly activating ABA responses similar to drought stress. In addition, we observed distinct stress signatures at multiple molecular levels in response to heat or drought and to a combination of both. In response to all treatments, we found a downregulation of photosynthesis at different molecular levels, an accumulation of minor amino acids, and diverse stress-induced hormones. Our integrative multi-omics analysis provides global insights into plant stress responses, facilitating improved breeding strategies toward climate-adapted potato varieties.
Collapse
Affiliation(s)
- Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lamis Abdelhakim
- PSI (Photon Systems Instruments), spol. s r.o., Prumyslova 470, CZ-664 24 Drásov, Czech Republic
| | | | - Jitka Široká
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc 779 00, Czech Republic
| | - Arindam Ghatak
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Andrej Blejec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Jan Zrimec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc 779 00, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc 779 00, Czech Republic
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lucia Perez Borroto
- Wageningen University and Research, Department of Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christian Schuy
- Department Biologie, Lehrstuhl für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudstr. 5, 91058 Erlangen, Germany
| | - Anže Županič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Leila Afjehi-Sadat
- Mass Spectrometry Unit, Research Support Facilities, Faculty of Life Sciences, University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Maruša Pompe Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Gladni trg 8, 5271 Vipava, Slovenia
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc 779 00, Czech Republic
| | - Christian Bachem
- Wageningen University and Research, Department of Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Palak Chaturvedi
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sophia Sonnewald
- Department Biologie, Lehrstuhl für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudstr. 5, 91058 Erlangen, Germany
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Klára Panzarová
- PSI (Photon Systems Instruments), spol. s r.o., Prumyslova 470, CZ-664 24 Drásov, Czech Republic
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Markus Teige
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Shimakawa G, Krieger‐Liszkay A, Roach T. ROS-derived lipid peroxidation is prevented in barley leaves during senescence. PHYSIOLOGIA PLANTARUM 2022; 174:e13769. [PMID: 36018559 PMCID: PMC9544269 DOI: 10.1111/ppl.13769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Senescence in plants enables resource recycling from senescent leaves to sink organs. Under stress, increased production of reactive oxygen species (ROS) and associated signalling activates senescence. However, senescence is not always associated with stress since it has a prominent role in plant development, in which the role of ROS signalling is less clear. To address this, we investigated lipid metabolism and patterns of lipid peroxidation related to signalling during sequential senescence in first-emerging barley leaves grown under natural light conditions. Leaf fatty acid compositions were dominated by linolenic acid (75% of total), the major polyunsaturated fatty acid (PUFA) in galactolipids of thylakoid membranes, known to be highly sensitive to peroxidation. Lipid catabolism during senescence, including increased lipoxygenase activity, led to decreased levels of PUFA and increased levels of short-chain saturated fatty acids. When normalised to leaf area, only concentrations of hexanal, a product from the 13-lipoxygenase pathway, increased early upon senescence, whereas reactive electrophile species (RES) from ROS-associated lipid peroxidation, such as 4-hydroxynonenal, 4-hydroxyhexenal and acrolein, as well as β-cyclocitral derived from oxidation of β-carotene, decreased. However, relative to total chlorophyll, amounts of most RES increased at late-senescence stages, alongside increased levels of α-tocopherol, zeaxanthin and non-photochemical quenching, an energy dissipative pathway that prevents ROS production. Overall, our results indicate that lipid peroxidation derived from enzymatic oxidation occurs early during senescence in first barley leaves, while ROS-derived lipid peroxidation associates weaker with senescence.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental SciencesKwansei‐Gakuin UniversitySandaJapan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Anja Krieger‐Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thomas Roach
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Hanano A, Perez-Matas E, Shaban M, Cusido RM, Murphy DJ. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. PLANT CELL REPORTS 2022; 41:853-871. [PMID: 34984531 DOI: 10.1007/s00299-021-02823-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Pontypridd, Wales, UK
| |
Collapse
|
4
|
Xiao C, Huang M, Gao J, Wang Z, Zhang D, Zhang Y, Yan L, Yu X, Li B, Shen Y. Comparative proteomics of three Chinese potato cultivars to improve understanding of potato molecular response to late blight disease. BMC Genomics 2020; 21:880. [PMID: 33297944 PMCID: PMC7727141 DOI: 10.1186/s12864-020-07286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Late blight disease (LBD) caused by the pathogen Phytophthora infestans (PI), is the most devastating disease limiting potato (Solanum tuberosum) production globally. Currently, this disease pathogen is re-emerging and appearing in new areas at a very high intensity. A better understanding of the natural defense mechanisms against PI in different potato cultivars especially at the protein level is still lacking. Therefore, to elucidate potato proteome response to PI, we investigated changes in the proteome and leaf morphology of three potato cultivars, namely; Favorita (FA), Mira (MA), and E-malingshu N0.14 (E14) infected with PI by using the iTRAQ-based quantitative proteomics analysis. Results A total of 3306 proteins were found in the three potato genotypes, and 2044 proteins were quantified. Cluster analysis revealed MA and E14 clustered together separately from FA. The protein profile and related functions revealed that the cultivars shared a typical hypersensitive response to PI, including induction of elicitors, oxidative burst, and suppression of photosynthesis in the potato leaves. Meanwhile, MA and E14 deployed additional specific response mechanism different from FA, involving high induction of protease inhibitors, serine/threonine kinases, terpenoid, hormone signaling, and transport, which contributed to MA tolerance of LBD. Furthermore, inductions of pathogenesis-related proteins, LRR receptor-like kinases, mitogen-activated protein kinase, WRKY transcription factors, jasmonic acid, and phenolic compounds mediate E14 resistance against LBD. These proteins were confirmed at the transcription level by a quantitative polymerase chain reaction and at the translation level by western-blot. Conclusions We found several proteins that were differentially abundant among the cultivars, that includes common and cultivar specific proteins which highlighted similarities and significant differences between FA, MA, and E14 in terms of their defense response to PI. Here the specific accumulation of mitogen-activated protein kinase, Serine/threonine kinases, WRKY transcription played a positive role in E14 immunity against PI. The candidate proteins identified reported in this study will form the basis of future studies and may improve our understanding of the molecular mechanisms of late blight disease resistance in potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07286-3.
Collapse
Affiliation(s)
- Chunfang Xiao
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianhua Gao
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Zhen Wang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Denghong Zhang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Yuanxue Zhang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Lei Yan
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yanfen Shen
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China. .,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China.
| |
Collapse
|
5
|
Al-Zahrani W, Bafeel SO, El-Zohri M. Jasmonates mediate plant defense responses to Spodoptera exigua herbivory in tomato and maize foliage. PLANT SIGNALING & BEHAVIOR 2020; 15:1746898. [PMID: 32290765 PMCID: PMC7238883 DOI: 10.1080/15592324.2020.1746898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants evolve diverse strategies to cope with herbivorous insects, in which the lipid-derived phytohormone jasmonic acid (JA) plays a crucial role. This study was conducted to investigate the differential responses of tomato and maize plants to Spodoptera exiguaherbivory and to clarify the role played by JA, methyl-jasmonate (MeJA) and jasmonoyl-L-isoleucine (JA-L-Ile) in their defense responses. JA, MeJA and JA-L-Ile were quantified using HPLC-MS/MS. The results showed that maize plant was more tolerant toS. exiguaherbivory than tomato. Spodopteraexigua attack induced JA, MeJA, and JA-L-Ile to high levels after 2 h of infestation in both test plants. Then, all studied JAsconcentration decreased gradually by increasing infestation time up to 1 week. JA concentration in infested maize was much higher than that in infested tomato leaves. However, MeJA concentration in infested tomato leaves was higher than that in maize. In control plants, JA was not recorded, while MeJA was recorded in comparable values both in tomato and maize. Our results showed that JA plays the main role in increasing defense responses to S. exigua infestation in the studied plants as a direct signaling molecule; however, MeJA could play an indirect role by inducing JA accumulation. JA-L-Ile indicated a less efficient role in defense responses to S. exigua attack in both test plants where its level is much lower than JA and MeJA.
Collapse
Affiliation(s)
- Wafaa Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameera O. Bafeel
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal El-Zohri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
- CONTACT Manal El-Zohri Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
7
|
Mielke S, Gasperini D. Interplay between Plant Cell Walls and Jasmonate Production. PLANT & CELL PHYSIOLOGY 2019; 60:2629-2637. [PMID: 31241137 DOI: 10.1093/pcp/pcz119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| |
Collapse
|
8
|
Holková I, Rauová D, Mergová M, Bezáková L, Mikuš P. Purification and Product Characterization of Lipoxygenase from Opium Poppy Cultures ( Papaver somniferum L.). Molecules 2019; 24:molecules24234268. [PMID: 31771143 PMCID: PMC6930461 DOI: 10.3390/molecules24234268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/31/2023] Open
Abstract
Opium poppy (Papaver somniferum L.) is an ancient medicinal plant producing pharmaceutically important benzylisoquinoline alkaloids. In the present work we focused on the study of enzyme lipoxygenase (LOX, EC 1.13.11.12) from opium poppy cultures. LOX is involved in lipid peroxidation and lipoxygenase oxidation products of polyunsaturated fatty acids have a significant role in regulation of growth, development and plant defense responses to biotic or abiotic stress. The purpose of this study was to isolate and characterize LOX enzyme from opium poppy callus cultures. LOX was purified by ammonium sulfate precipitation and then followed by hydrophobic chromatography using Phenyl-Sepharose CL-4B and hydroxyapatite chromatography using HA Ultrogel sorbent. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting revealed that LOX from opium poppy cultures was a single monomeric protein showing the relative molecular weight of 83 kDa. To investigate the positional specificity of the LOX reaction, purified LOX was incubated with linoleic acid and the products were analyzed by high-performance liquid chromatography in two steps, firstly with reverse phase (120-5 Nucleosil C18 column) and secondly with normal phase (Zorbax Rx-SIL column). LOX converted linoleic acid primarily to 13-hydroperoxy-(9Z,11E)-octadecadienoic acids (78%) and to a lesser extent 9-hydroperoxy-(10E,12Z)-octadecadienoic acids (22%). Characterization of LOX from opium poppy cultures provided valuable information in understanding LOX involvement in regulation of signaling pathways leading to biosynthesis of secondary metabolites with significant biological activity.
Collapse
Affiliation(s)
- Ivana Holková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
- Correspondence: ; Tel.: +421-250-117-313
| | - Drahomíra Rauová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (D.R.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Michaela Mergová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
| | - Lýdia Bezáková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (D.R.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
9
|
Davis JL, Armengaud P, Larson TR, Graham IA, White PJ, Newton AC, Amtmann A. Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid. PLANT, CELL & ENVIRONMENT 2018; 41:2357-2372. [PMID: 29851096 PMCID: PMC6175101 DOI: 10.1111/pce.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2018] [Indexed: 05/20/2023]
Abstract
Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.
Collapse
Affiliation(s)
- Jayne L. Davis
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Ecological SciencesThe James Hutton InstituteDundeeUK
| | - Patrick Armengaud
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | | | | | - Anna Amtmann
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
10
|
Losvik A, Beste L, Glinwood R, Ivarson E, Stephens J, Zhu LH, Jonsson L. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity. Int J Mol Sci 2017; 18:ijms18122765. [PMID: 29257097 PMCID: PMC5751364 DOI: 10.3390/ijms18122765] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.
Collapse
Affiliation(s)
- Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
| | - Lisa Beste
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
| | - Robert Glinwood
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden; (E.I.); (L.-H.Z.)
| | - Jennifer Stephens
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden; (E.I.); (L.-H.Z.)
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
- Correspondence: ; Tel.: +46-8-161-211
| |
Collapse
|
11
|
Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynthesis in fruit. Sci Rep 2017; 7:2816. [PMID: 28588227 PMCID: PMC5460189 DOI: 10.1038/s41598-017-02559-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
To better understand the function role of the melon CmLOX18 gene in the biosynthesis of C6 volatiles during fruit ripening, we biochemically characterized CmLOX18 and identified its subcellular localization in transgenic tomato plants. Heterologous expression in yeast cells showed that the molecular weight of the CmLOX18 protein was identical to that predicted, and that this enzyme possesseed lipoxygenase activity. Linoleic acid was demonstrated to be the preferred substrate for the purified recombinant CmLOX18 protein, which exhibited optimal catalytic activity at pH 4.5 and 30 °C. Chromatogram analysis of the reaction product indicated that the CmLOX18 protein exhibited positional specificity, as evidenced by its release of only a C-13 oxidized product. Subcellular localization analysis by transient expression in Arabidopsis protoplasts showed that CmLOX18 was localized to non-chloroplast organelles. When the CmLOX18 gene was transgenically expressed in tomato via Agrobacterium tumefaciens-mediated transformation, it was shown to enhance expression levels of the tomato hydroperoxide lyase gene LeHPL, whereas the expression levels of six TomLox genes were little changed. Furthermore, transgenic tomato fruits exhibited increases in the content of the C6 volatiles, namely hexanal, (Z)-3-hexanal, and (Z)-3-hexen-1-ol, indicating that CmLOX18 probably plays an important role in the synthesis of C6 compounds in fruits.
Collapse
|
12
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
13
|
Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T, Steppuhn A, Baier M. The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens. FRONTIERS IN PLANT SCIENCE 2017; 8:1650. [PMID: 29018463 PMCID: PMC5615928 DOI: 10.3389/fpls.2017.01650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 05/04/2023]
Abstract
The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.
Collapse
Affiliation(s)
- Christiane Hedtmann
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Wei Guo
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Elena Reifschneider
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Isabelle Heiber
- Plant Physiology and Biochemistry, Bielefeld UniversityBielefeld, Germany
| | - Heiko Hiltscher
- Plant Sciences, Heinrich Heine University of DüsseldorfDüsseldorf, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Aiko Barsch
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Karsten Niehaus
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Tobias Lortzing
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Anke Steppuhn
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
- *Correspondence: Margarete Baier
| |
Collapse
|
14
|
Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc Natl Acad Sci U S A 2016; 113:3383-8. [PMID: 26969728 DOI: 10.1073/pnas.1525747113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.
Collapse
|
15
|
Christensen SA, Nemchenko A, Park YS, Borrego E, Huang PC, Schmelz EA, Kunze S, Feussner I, Yalpani N, Meeley R, Kolomiets MV. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1263-76. [PMID: 25122482 DOI: 10.1094/mpmi-06-13-0184-r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fusarium verticillioides is a major limiting factor for maize production due to ear and stalk rot and the contamination of seed with the carcinogenic mycotoxin fumonisin. While lipoxygenase (LOX)-derived oxylipins have been implicated in defense against diverse pathogens, their function in maize resistance against F. verticillioides is poorly understood. Here, we functionally characterized a novel maize 9-LOX gene, ZmLOX12. This gene is distantly related to known dicot LOX genes, with closest homologs found exclusively in other monocot species. ZmLOX12 is predominantly expressed in mesocotyls in which it is strongly induced in response to F. verticillioides infection. The Mutator transposon-insertional lox12-1 mutant is more susceptible to F. verticillioides colonization of mesocotyls, stalks, and kernels. The infected mutant kernels accumulate a significantly greater amount of the mycotoxin fumonisin. Reduced resistance to the pathogen is accompanied by diminished levels of the jasmonic acid (JA) precursor 12-oxo phytodienoic acid, JA-isoleucine, and expression of jasmonate-biosynthetic genes. Supporting the strong defense role of jasmonates, the JA-deficient opr7 opr8 double mutant displayed complete lack of immunity to F. verticillioides. Unexpectedly, the more susceptible lox12 mutant accumulated higher levels of kauralexins, suggesting that F. verticillioides is tolerant to this group of antimicrobial phytoalexins. This study demonstrates that this unique monocot-specific 9-LOX plays a key role in defense against F. verticillioides in diverse maize tissues and provides genetic evidence that JA is the major defense hormone against this pathogen.
Collapse
|
16
|
Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci 2013; 14:10242-97. [PMID: 23681010 PMCID: PMC3676838 DOI: 10.3390/ijms140510242] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/09/2023] Open
Abstract
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.
Collapse
Affiliation(s)
- Joel Fürstenberg-Hägg
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| | - Søren Bak
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| |
Collapse
|
17
|
Demmig-Adams B, Cohu CM, Amiard V, Zadelhoff G, Veldink GA, Muller O, Adams WW. Emerging trade-offs - impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. THE NEW PHYTOLOGIST 2013; 197:720-9. [PMID: 23418633 DOI: 10.1111/nph.12100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review summarizes evidence for a mechanistic link between plant photoprotection and the synthesis of oxylipin hormones as regulators of development and defense. Knockout mutants of Arabidopsis, deficient in various key components of the chloroplast photoprotection system, consistently produced greater concentrations of the hormone jasmonic acid or its precursor 12- oxo-phytodienoic acid (OPDA), both members of the oxylipin messenger family. Characterized plants include several mutants deficient in PsbS (an intrinsic chlorophyll-binding protein of photosystem II) or pigments (zeaxanthin and/or lutein) required for photoprotective thermal dissipation of excess excitation energy in the chloroplast and a mutant deficient in reactive oxygen detoxification via the antioxidant vitamin E (tocopherol). Evidence is also presented that certain plant defenses against herbivores or pathogens are elevated for these mutants. This evidence furthermore indicates that wild-type Arabidopsis plants possess less than maximal defenses against herbivores or pathogens, and suggest that plant lines with superior defenses against abiotic stress may have lower biotic defenses. The implications of this apparent trade-off between abiotic and biotic plant defenses for plant ecology as well as for plant breeding/engineering are explored, and the need for research further addressing this important issue is highlighted.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sabater B, Martín M. Hypothesis: increase of the ratio singlet oxygen plus superoxide radical to hydrogen peroxide changes stress defense response to programmed leaf death. FRONTIERS IN PLANT SCIENCE 2013; 4:479. [PMID: 24324479 PMCID: PMC3839260 DOI: 10.3389/fpls.2013.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/05/2013] [Indexed: 05/07/2023]
Abstract
The level of reactive oxygen species (ROS) increases under different stresses and, by destroying cellular components, may cause cell death. In addition, ROS are part of the complex network of transduction signals that induce defense reactions against stress or, alternatively, trigger programmed cell death, and key questions are the levels of each ROS that, respectively determine defense and death responses of the cell. The answer to those questions is difficult because there are several patterns of cell death that frequently appear mixed and are hardly distinguishable. Moreover, although considerable progresses have been achieved in the determination of the levels of specific ROS, critical questions remain on the ROS level in specific cell compartments. By considering chloroplasts as the main source of ROS in photosynthetic tissues at light, a comparison of the levels in stress and senescence of the chloroplastic activities involved in the generation and scavenging of ROS suggests plausible differences in the levels of specific ROS between stress defense and death. In effect, the three activities of the chlororespiratory chain increase similarly in stress defense response. However, in senescence, superoxide dismutase (SOD), that converts superoxide anion radical ([Formula: see text]) to hydrogen peroxide (H2O2,) decreases, while the thylakoid Ndh complex, that favors the generation of singlet oxygen ((1)O2) and [Formula: see text], and peroxidase (PX), that consumes H2O2, increase. The obvious inference is that, in respect to defense response, the ratio ((1)O2 plus [Formula: see text])/H2O2 is increased in the senescence previous to cell death. We hypothesize that the different ROS ratios, probably through changes in the jasmonic acid/H2O2 ratio, could determine the activation of the defense network or the death network response of the cell.
Collapse
Affiliation(s)
- Bartolomé Sabater
- *Correspondence: Bartolomé Sabater, Departamento de Ciencias de la Vida (Fisiología Vegetal), Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain e-mail:
| | | |
Collapse
|
19
|
Gottwald S, Samans B, Lück S, Friedt W. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics 2012; 13:369. [PMID: 22857656 PMCID: PMC3533685 DOI: 10.1186/1471-2164-13-369] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/21/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). RESULTS Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. CONCLUSIONS Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies.
Collapse
Affiliation(s)
- Sven Gottwald
- Department of Plant Breeding, Justus-Liebig University, Institute of Agronomy and Plant Breeding I, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Birgit Samans
- Biometry and Population Genetics, Justus-Liebig University, Institute of Agronomy and Plant Breeding II, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Stefanie Lück
- Department of Plant Breeding, Justus-Liebig University, Institute of Agronomy and Plant Breeding I, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Wolfgang Friedt
- Department of Plant Breeding, Justus-Liebig University, Institute of Agronomy and Plant Breeding I, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| |
Collapse
|
20
|
Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE. Basal host resistance of barley to powdery mildew: connecting quantitative trait Loci and candidate genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:91-102. [PMID: 19958142 DOI: 10.1094/mpmi-23-1-0091] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of fungal haustoria. It is not known which of these candidate genes have allelic variation that contributes to the natural variation in powdery mildew resistance, because many of them may be highly conserved within the barley species and may act downstream of the basal resistance reaction. Twenty-two expressed sequence tag or cDNA clone sequences that are likely to play a role in the barley-Blumeria interaction based on transcriptional profiling, gene silencing, or overexpression data, as well as mlo, Ror1, and Ror2, were mapped and considered candidate genes for contribution to basal resistance. We mapped the quantitative trait loci (QTL) for powdery mildew resistance in six mapping populations of barley at seedling and adult plant stages and developed an improved high-density integrated genetic map containing 6,990 markers for comparing QTL and candidate gene positions over mapping populations. We mapped 12 QTL at seedling stage and 13 QTL at adult plant stage, of which four were in common between the two developmental stages. Six of the candidate genes showed coincidence in their map positions with the QTL identified for basal resistance to powdery mildew. This co-localization justifies giving priority to those six candidate genes to validate them as being responsible for the phenotypic effects of the QTL for basal resistance.
Collapse
Affiliation(s)
- Reza Aghnoum
- Laboratory of Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Reinbothe C, Springer A, Samol I, Reinbothe S. Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 2009; 276:4666-81. [PMID: 19663906 DOI: 10.1111/j.1742-4658.2009.07193.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plants are continuously challenged by a variety of abiotic and biotic cues. To deter feeding insects, nematodes and fungal and bacterial pathogens, plants have evolved a plethora of defence strategies. A central player in many of these defence responses is jasmonic acid. It is the aim of this minireview to summarize recent findings that highlight the role of jasmonic acid during programmed cell death, plant defence and leaf senescence.
Collapse
|
22
|
Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:511-7. [PMID: 19167233 DOI: 10.1016/j.plaphy.2008.12.011] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/13/2008] [Accepted: 12/08/2008] [Indexed: 05/19/2023]
Abstract
Oxylipins are lipophilic signaling molecules derived from the oxidation of polyunsaturated fatty acids. Initial fatty acid oxidation occurs mainly by the enzymatic or chemical formation of fatty acid hydroperoxides. An array of alternative reactions further converting fatty acid hydroperoxides gives rise to a multitude of oxylipin classes, many with reported signaling functions in plants. Oxylipins include the phytohormone, jasmonic acid, and a number of other molecules including hydroxy-, oxo- or keto-fatty acids or volatile aldehydes that may perform various biological roles as second messengers, messengers in inter-organismic signaling, or even as bactericidal agents. The structural diversity of oxylipins is further increased by esterification of the compounds in plastidial glycolipids, for instance the Arabidopsides, or by conjugation of oxylipins to amino acids or other metabolites. The enzymes involved in oxylipin metabolism are diverse and comprise a multitude of examples with interesting and unusual catalytic properties. In addition, the interplay of different subcellular compartments during oxylipin biosynthesis suggests complex mechanisms of regulation that are not well understood. This review aims at giving an overview of plant oxylipins and the multitude of enzymes responsible for their biosynthesis.
Collapse
Affiliation(s)
- Alina Mosblech
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
23
|
Renard-Merlier D, Laruelle F, Nowak E, Durand R, Reignault P. Changes in C12:0, C18:1, C18:2 and C20:2 fatty acid content in wheat treated with resistance inducers and infected by powdery mildew. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:75-82. [PMID: 19121116 DOI: 10.1111/j.1438-8677.2008.00169.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This work presents a global investigation of total fatty acid (FA) content in wheat in relation to treatment with four inducers of resistance and to powdery mildew infection. Linolenic acid (C18:3), linoleic acid (C18:2) and palmitic acid (16:0) were the most abundant FAs in wheat leaves. We investigated the effect of the following inducers of resistance: Iodus40, heptanoyl salicylic acid (HSA), Milsana and trehalose on FA accumulation. Previous studies established that lipid metabolism is altered by these compounds, and we therefore aimed to characterise their impact at the FA level. During a time course experiment, content (quantitative analysis) and percentage (qualitative analysis) of FAs were compared in treated plants and in controls, as well as in plants inoculated with Blumeria graminis f. sp. tritici (i) and non-inoculated (ni) plants. No change in C18:3 content was observed. C18:1 in Iodus 40-treated (ni) plants showed a quantitative 1.2-fold increase. Lauric acid (C12:0) content quantitatively increased after Iodus 40 (2.8-fold), Milsana (4.8-fold) and trehalose (4.0-fold) treatment in (i) plants. However, eicosadienoic acid (C20:2) quantitatively decreased in (ni) plants after Iodus 40 (1.5-fold) and Milsana (2.3-fold) treatment. The amount of C18:2 increased (1.6-fold) after HSA treatment in (i) plants. All these variations in FA content were correlated with variations in the corresponding relative percentages. Our work provides the first evidence for alterations in C12:0, C18:1, C18:2 and C20:2 FA content caused by four resistance inducers. We also compared the amount and percentage of each FA in untreated (i) and (ni) plants. In (i) plants, eicosadienoic acid (C20:2) increased and C18:2 decreased slightly. The potential involvement of these FAs during induced resistance and infection is discussed.
Collapse
Affiliation(s)
- D Renard-Merlier
- Laboratoire Mycologie-Phytopathologie-Environnement, Université du Littoral Côte d'Opale, Calais, France
| | | | | | | | | |
Collapse
|
24
|
Mashiguchi K, Urakami E, Hasegawa M, Sanmiya K, Matsumoto I, Yamaguchi I, Asami T, Suzuki Y. Defense-related signaling by interaction of arabinogalactan proteins and beta-glucosyl Yariv reagent inhibits gibberellin signaling in barley aleurone cells. PLANT & CELL PHYSIOLOGY 2008; 49:178-190. [PMID: 18156132 DOI: 10.1093/pcp/pcm175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.
Collapse
Affiliation(s)
- Kiyoshi Mashiguchi
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Porta H, Figueroa-Balderas RE, Rocha-Sosa M. Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.). PLANTA 2008; 227:363-73. [PMID: 17899174 DOI: 10.1007/s00425-007-0623-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/27/2007] [Indexed: 05/17/2023]
Abstract
Chloroplastic LOXs are implicated in the biosynthesis of oxylipins like jasmonic acid and C6 volatiles among others. In this study, we isolated the cDNA of a novel chloroplast-targeted Phaseolus vulgaris LOX, (PvLOX6). This gene is highly induced after wounding, non-host pathogen infection, and by signaling molecules as H2O2, SA, ethylene and MeJA. The phylogenetic analysis of PvLOX6 showed that it is closely related to chloroplast-targeted LOX from potato (H1) and tomato (TomLOXC); both of them are implicated in the biosynthesis of C6 volatiles. Induction of PvLOX6 mRNA by wounding ethylene and jasmonic acid on the one side, and non-host pathogen, salicylic acid on the other indicates that common bean uses the same LOX to synthesize oxylipins in response to different stresses.
Collapse
Affiliation(s)
- Helena Porta
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, C. P. 6100, Mexico.
| | | | | |
Collapse
|
26
|
Gao X, Stumpe M, Feussner I, Kolomiets M. A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. PLANTA 2008; 227:491-503. [PMID: 17922288 DOI: 10.1007/s00425-007-0634-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 09/17/2007] [Indexed: 05/21/2023]
Abstract
Lipoxygenases (LOXs) are members of a large enzyme family that catalyze oxygenation of free polyunsaturated fatty acids into diverse hydroperoxide compounds, collectively called oxylipins. Although LOXs have been well studied in dicot species, reports of the genes encoding these enzymes are scarce for monocots, especially maize. Herein, we reported the cloning, characterization and molecular functional analysis of a novel maize LOX gene, ZmLOX6. The ZmLOX6 nucleotide sequence encodes a deduced translation product of 892 amino acids. Phylogenetic analysis showed that ZmLOX6 is distantly related to previously reported 9- or 13-LOXs from maize and other plant species, including rice and Arabidopsis. Although sequence prediction suggested cytoplasmic localization of this protein, ZmLOX6 protein has been reportedly isolated from mesophyll cell chloroplasts, emphasizing the unique features of this protein. Plastidial localization was confirmed by chloroplast uptake experiments with the in vitro translated protein. Analysis of recombinant protein revealed that ZmLOX6 has lost fatty acid hydroperoxide forming activity but 13-LOX-derived fatty acid hydroperoxides were cleaved into odd-chain omega-oxo fatty acids and as yet not identified C5-compound. In line with its reported abundance in mesophyll cells, ZmLOX6 was predominantly expressed in leaf tissue. Northern blot analysis demonstrated that ZmLOX6 was induced by jasmonic acid, but repressed by abscisic acid, salicylic acid and ethylene and was not responsive to wounding or insects. Further, this gene was strongly induced by the fungal pathogen Cochliobolus carbonum during compatible interactions, suggesting that ZmLOX6 may contribute to susceptibility to this pathogen. The potential involvement of ZmLOX6 in maize interactions with pathogens is discussed.
Collapse
Affiliation(s)
- Xiquan Gao
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843-2132, USA.
| | | | | | | |
Collapse
|
27
|
Cenzano A, Abdala G, Hause B. Cytochemical immuno-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1449-56. [PMID: 17223227 DOI: 10.1016/j.jplph.2006.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 05/13/2023]
Abstract
The involvement of jasmonates in the tuber development has been proved by the presence of many of these compounds in potato stolons, modification of their levels during the transition of the stolon into tuber, and induction of cell expansion upon exogenous jasmonates treatment. However, to date there is only little evidence of the presence of the jasmonic acid-biosynthetic enzymes in stolons or young tubers. As allene oxide cyclase represents the major control point for jasmonic acid biosynthesis, we studied the occurrence of allene oxide cyclase by immunological approaches in the early stages of tuber formation. In developing stolons, allene oxide cyclase as well as lipoxygenase were clearly detectable, but their levels did not change during development. Jasmonic acid treatment for 24h, however, increased lipoxygenase and allene oxide cyclase protein levels in both developmental stages analyzed. In longitudinal sections of stolons of stages 1 and 2, allene oxide cyclase and lipoxygenase occurred in the apex and along the stolon axis. Allene oxide cyclase was clearly detectable in epidermal, cortical and pith parenchymatic cells, showing the highest levels in vascular tissues surrounding cells. Lipoxygenase was mainly located in the parenchymatic cortex cells. The occurrence of allene oxide cyclase in stolons together with the previous identification of jasmonates from developing stolons reveals that these organs are capable to synthesize and metabolize jasmonates.
Collapse
Affiliation(s)
- Ana Cenzano
- Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Ruta 36, Km 601, CP 5800 Río Cuarto, Córdoba, Argentina
| | | | | |
Collapse
|
28
|
Koeduka T, Kajiwara T, Matsui K. Cloning of lipoxygenase genes from a cyanobacterium, Nostoc punctiforme, and its expression in Eschelichia coli. Curr Microbiol 2007; 54:315-9. [PMID: 17375360 DOI: 10.1007/s00284-006-0512-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Oxylipin metabolism represents one of the important hormonal and defensive mechanisms employed by plants, algae, or animals. It begins mostly with the reaction of lipoxygenases (LOXs), which catalyze the oxygenation of polyunsaturated fatty acids to form the corresponding hydroperoxides. At present, little information about LOXs in cyanobacteria has been reported. Herein, we report the first isolation of two LOX genes (NpLOX1 and NpLOX2) from a cyanobacterium, Nostoc punctiforme ATCC29133. Incubations of recombinant NpLOX1 and NpLOX2 proteins expressed in Eschelichia coli with linoleic acid resulted in the predominant formation of linoleic acid 13-S-hydroperoxide. Other C18 and C20 fatty acids could also be substrates for NpLOX enzymes. Phylogenetic analysis of NpLOX sequences showed that the NpLOX enzymes shared a high homology with LOX sequence of a bacterial pathogen, Pseudomonas aeruginosa, and these bacterial LOXs formed a subfamily distinct from those of plants, algae, and mammals.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | | | | |
Collapse
|
29
|
Gaquerel E, Hervé C, Labrière C, Boyen C, Potin P, Salaün JP. Evidence for oxylipin synthesis and induction of a new polyunsaturated fatty acid hydroxylase activity in Chondrus crispus in response to methyljasmonate. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:565-75. [PMID: 17428728 DOI: 10.1016/j.bbalip.2007.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 02/01/2007] [Accepted: 02/13/2007] [Indexed: 11/29/2022]
Abstract
Signaling cascades involving oxygenated derivatives (oxylipins) of polyunsaturated fatty acids (PUFAs) are known to operate in response to external stimuli. The marine red alga Chondrus crispus uses both oxygenated derivatives of C18 (octadecanoids) and C20 (eicosanoids) PUFAs as developmental or defense hormones. The present study demonstrates that methyljasmonate (MeJA) triggers a cascade of oxidation of PUFAs leading to the synthesis of prostaglandins and other oxygenated fatty acids. As a result of a lipoxygenase-like activation, MeJA induces a concomitant accumulation of 13-hydroxy-9Z,11E-octadecadienoic acid (13-HODE) and 13-oxo-9Z,11E-octadecadienoic acid (13-oxo-ODE) in a dose-dependent manner in C. crispus. Furthermore, MeJA increases the level of mRNA encoding a gluthatione S-transferase and induces the activity of a new enzyme catalyzing the regio- and stereoselective bisallylic hydroxylation of polyunsaturated fatty acids from C(18) to C(22). The enzyme selectively oxidized the omega minus 7 carbon position (omega-7) and generated the stereoselective (R)-hydroxylated metabolites with a large enantiomeric excess. The enzyme specificity for the fatty acid recognition was not dependent of the position of double bonds but at least requires a methylene interrupted double bond 1,4-pentadiene motif involving the omega-7 carbon.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris6, Laboratoire International Associé-Dispersal and Adaptation in Marine Species, Unité Mixte de Recherche 7139, Station Biologique, F-29682 Roscoff Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:310-27. [PMID: 16771774 DOI: 10.1111/j.1365-313x.2006.02789.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Gene expression patterns covering over 10,000 seed-expressed sequences were analyzed by macroarray technology in maternal tissue (mainly pericarp) and filial endosperm and embryo during barley seed development from anthesis until late maturation. Defined sets of genes showing distinct expression patterns characterized both tissue type and major developmental phases. The analysis focused on regulatory networks involved in programmed cell death (PCD) and abscisic acid (ABA)-mediated maturation. These processes were similar in the different tissues, but typically involved the expression of alternative members of a common gene family. The analysis of co-expressed gene sets and the identification of cis regulatory elements in orthologous rice gene 'promoter' regions suggest that PCD in the pericarp is mediated by distinct classes of proteases and is under the hormonal control of both jasmonic acid (JA) and ethylene via ethylene-responsive element binding protein (EREBP) transcription factors (TFs). On the other hand, PCD in endosperm apparently involves only the ethylene pathway, but employs distinct gene family members from those active in the pericarp, and a different set of proteases and TFs. JA biosynthetic genes are hardly activated. Accordingly, JA levels are high in the pericarp but low in the endosperm during middle and late developmental stages. Similarly, genes acting in the deduced ABA biosynthetic pathway and signaling network differ between endosperm and embryo. ABA in the endosperm appears to exert an influence over storage product synthesis via SNF1 kinase. In the embryo, ABA seems to influence the acquisition of desiccation tolerance via ABA response element binding factors, but the data also suggest the existence of an ABA-independent but interactive pathway acting via the dehydration-responsive element binding (DREB) 2A TF.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Sharma VK, Monostori T, Göbel C, Hänsch R, Bittner F, Wasternack C, Feussner I, Mendel RR, Hause B, Schulze J. Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature. PHYTOCHEMISTRY 2006; 67:264-76. [PMID: 16376956 DOI: 10.1016/j.phytochem.2005.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 05/05/2023]
Abstract
Three chimeric gene constructs were designed comprising the full length cDNA of a lipoxygenase (LOX) from barley (LOX2:Hv:1) including its chloroplast targeting sequence (cTP) under control of either (1) CaMV35S- or (2) polyubiquitin-1-promoter, whereas the third plasmid contains 35S promoter and the cDNA without cTP. Transgenic barley plants overexpressing LOX2:Hv:1 were generated by biolistics of scutella from immature embryos. Transformation frequency for 35S::LOX with or without cTP was in a range known for barley particle bombardment, whereas for Ubi::cTP-LOX no transgenic plants were detected. In general, a high number of green plantlets selected on bialaphos became yellow and finally died either in vitro or after potting. All transgenic plants obtained were phenotypically indistinguishable from wild type plants and all of them set seeds. The corresponding protein (LOX-100) in transgenic T0 and T1 plants accumulated constitutively to similar levels as in the jasmonic acid methyl ester (JAME)-treated wild type plants. Moreover, LOX-100 was clearly detectable immunocytochemically within the chloroplasts of untreated T0 plants containing the LOX-100-cDNA with the chloroplast target sequence. In contrast, an exclusive localization of LOX-100 in the cytoplasm was detectable when the target sequence was removed. In comparison to sorbitol-treated wild type leaves, analysis of oxylipin profiles in T2 progenies showed higher levels of jasmonic acid (JA) for those lines that displayed elevated levels of LOX-100 in the chloroplasts and for those lines that harboured LOX-100 in the cytoplasm, respectively. The studies demonstrate for the first time the constitutive overexpression of a cDNA coding for a 13-LOX in a monocotyledonous species and indicate a link between the occurrence of LOX-100 and senescence.
Collapse
Affiliation(s)
- Vijendra K Sharma
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstr. 1, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Salas JJ, Sánchez C, García-González DL, Aparicio R. Impact of the suppression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:1648-1655. [PMID: 15740054 DOI: 10.1021/jf040331l] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most of the volatile compounds responsible for the "green" notes to the aroma of fruits and vegetables are produced by the degradation of polyunsaturated fatty acids through the lipoxygenase pathway. The most determinant steps of this pathway are the peroxidation of free linoleic or linolenic acid by the action of lipoxygenase and then the lysis of the resulting hydroperoxides through a reaction catalyzed by the hydroperoxide lyase. This work analyzes the impact of the depletion of these enzymes on the volatile composition of leaves from potato plants. A characterization of the volatile profiles of the different potato mutants, a study of the metabolism of radiolabeled linoleic acid, and a determination of lipoxygenase activity have been carried out. The depletion of hydroperoxide lyase induced an increase in the lipoxygenase activity and the content of C5 volatiles, whereas the lipoxygenase silencing caused a severe decrease in the amount of volatiles produced by the leaves and always in the intensity of their aroma. The changes in the sensory evaluation of leaf aroma, as correlated to depletion of the two enzymes, have been investigated. The perspectives of producing vegetable products with a modified aroma by genetic engineering are discussed in light of the statistical results.
Collapse
Affiliation(s)
- Joaquín J Salas
- Instituto de la Grasa, CSIC, Avenida Padre García Tejero 4, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
33
|
Koeduka T, Stumpe M, Matsui K, Kajiwara T, Feussner I. Kinetics of barley FA hydroperoxide lyase are modulated by salts and detergents. Lipids 2004; 38:1167-72. [PMID: 14733362 DOI: 10.1007/s11745-003-1175-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cDNA from barley coding FA hydroperoxide lyase (HPL) was cloned. A recombinant protein derived from the cDNA was expressed in Escherichia coli as an active enzyme. Thus far, there have been no reports on HPL in monocotyledonous plants. The recombinant protein was shown to be most active to linolenic acid 13-hydroperoxide, followed by linoleic acid 13-hydroperoxide. 9-Hydroperoxides of the FA could not be substrates for the recombinant HPL. The activity was dramatically enhanced in the presence of a detergent and/or a salt in the reaction mixture. At the same time, the kinetics of the reaction, including inactivation and the Vmax value of the HPL, were also greatly modulated, depending on the concentration of a monovalent cation and/or a detergent in the reaction mixture. These results suggest that these effectors induced a conformational change in barley HPL, resulting in an improvement in substrate binding and in enzyme activity.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | | | | | | | | |
Collapse
|
34
|
Franck T, Kevers C, Gaspar T, Dommes J, Deby C, Greimers R, Serteyn D, Deby-Dupont G. Hyperhydricity of Prunus avium shoots cultured on gelrite: a controlled stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:519-527. [PMID: 15246065 DOI: 10.1016/j.plaphy.2004.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/06/2004] [Indexed: 05/24/2023]
Abstract
Hyperhydricity is a physiological disorder frequently affecting shoots vegetatively propagated in vitro. Hyperhydric shoots are characterised by a translucent aspect due to a chlorophyll deficiency, a not very developed cell wall and a high water content. Hyperhydricity of Prunus avium shoots was expressed in vitro in one multiplication cycle by replacing the gelling agent agar (normal shoots: NS) by gelrite (hyperhydric shoots: HS). P. avium shoots evolving towards the hyperhydric state produced higher amounts of ethylene, polyamines (PAs) and proline, which are substances considered as stress markers. A higher activity of glutathione peroxidase (GPX; EC 1.11.1.9), involved in organic hydroperoxide elimination, suggested an increased production of these compounds in HS. The unchanged free fatty acid composition indicated no HS membrane damages compared to NS. The ploidy level of HS nuclei was not affected, but the bigger size and the lower percentage of nuclei during the S phase suggested a slowing down of the cell cycle. The results argued for a stress response of the HS, but no signs of oxidative damages of lipid membrane and nucleus were observed. The discussion points out paradoxical results in a classical analysis of stress and suggests an alternative way of defense mechanisms in HS, involving homeostatic regulation and controlled degradation processes to maintain integrity and vital functions of the cell.
Collapse
Affiliation(s)
- Thierry Franck
- Anesthésiologie et Pathologie Chirurgicale des Grands Animaux, Institut Vétérinaire, B 41, Université de Liège, Sart Tilman 4000, Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R. Rice octadecanoid pathway. Biochem Biophys Res Commun 2004; 317:1-15. [PMID: 15047141 DOI: 10.1016/j.bbrc.2004.03.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Plant jasmonic acid (JA) and structurally similar animal prostaglandins play pivotal roles in regulating cellular responses against environmental cues, including the innate immune response(s). In plants, JA and its immediate precursor 12-oxo-phytodienoic acid (OPDA) are synthesized by the octadecanoid pathway, which employs at least five enzymes (lipase, lipoxygenase, allene oxide synthase and cyclase, and OPDA reductase), in addition to the enzymes involved in the beta-oxidation steps. Genetic, molecular, and biochemical analyses have led to the identification of almost all the genes of the octadecanoid pathway in Arabidopsis--a model dicotyledonous plant. In this regard, rice (Oryza sativa L.)--an important socio-economic monocotyledonous model research plant--remains poorly characterized. Until now, no gene has been specifically associated with this pathway. It is therefore of utmost importance to identify, characterize, and assign the pathway specific genes in rice. In this review, we have surveyed the rice genome, extracted a large number of putative genes of the octadecanoid pathway, and discussed their relationship with the known pathway genes from other plant species. Moreover, the achievements made so far on the rice octadecanoid pathway have also been summarized to reflect the contribution of rice towards extending our knowledge on this critical pathway in plants.
Collapse
Affiliation(s)
- Ganesh K Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry, Kathmandu, Nepal.
| | | | | | | | | |
Collapse
|
36
|
Miersch O, Weichert H, Stenzel I, Hause B, Maucher H, Feussner I, Wasternack C. Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves. PHYTOCHEMISTRY 2004; 65:847-56. [PMID: 15081284 DOI: 10.1016/j.phytochem.2004.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 01/22/2004] [Indexed: 05/05/2023]
Abstract
The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.
Collapse
Affiliation(s)
- Otto Miersch
- Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle/S, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Maucher H, Stenzel I, Miersch O, Stein N, Prasad M, Zierold U, Schweizer P, Dorer C, Hause B, Wasternack C. The allene oxide cyclase of barley (Hordeum vulgare L.)--cloning and organ-specific expression. PHYTOCHEMISTRY 2004; 65:801-811. [PMID: 15081279 DOI: 10.1016/j.phytochem.2004.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 01/12/2004] [Indexed: 05/24/2023]
Abstract
The naturally occurring enantiomer of the various octadecanoids and jasmonates is established in a biosynthetic step catalyzed by the allene oxide cyclase (AOC). The AOC converts an allene oxide formed by an allene oxide synthase (AOS). Here, we show cloning and characterization of cDNAs encoding the AOC and a third AOS, respectively, in addition to the two AOSs previously published (Plant J. 21, 199-213, 2000). The ORF of the AOC-cDNA of 717 bp codes for a protein of 238 amino acid residues carrying a putative chloroplast target sequence. Overexpression without chloroplast target sequence revealed AOC activity. The AOC was found to be a single copy gene which mapped on chromosome 6H. AOC mRNA accumulation appeared in leaf segments upon treatment with various jasmonates, octadecanoids and ABA or during stress such as treatment with sorbitol or glucose solutions. Infection with powdery mildew activated AOC expression in susceptible and resistant lines of barley which correlated with PR1b expression. Among different tissues of barley seedlings, the scutellar node and leaf base accumulated AOC mRNA preferentially which correlated with accumulation of mRNAs for other biosynthetic enzymes (lipoxygenases, AOSs). AOC mRNA accumulation appeared also abundantly in parts of the root containing the tip and correlated with elevated levels of jasmonates. The data suggest a link of AOC expression and JA formation and support role of JA in stress responses and development of barley.
Collapse
Affiliation(s)
- Helmut Maucher
- Institute of Plant Science and Crop Research, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|