1
|
Lee WH, Zygiel EM, Lee CH, Oglesby AG, Nolan EM. Calprotectin-mediated survival of Staphylococcus aureus in coculture with Pseudomonas aeruginosa occurs without nutrient metal sequestration. mBio 2025:e0384624. [PMID: 40152583 DOI: 10.1128/mbio.03846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens of major clinical concern that cause polymicrobial infections in diverse patient populations. Human calprotectin (CP; S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) is a host-defense protein that contributes to nutritional immunity by sequestering multiple nutrient metal ions including Mn(II), Fe(II), and Zn(II). Here, we examine the consequences of metal availability and CP treatment on cocultures of P. aeruginosa and S. aureus. We report that CP elicits Fe-starvation responses in both P. aeruginosa and S. aureus in coculture, including the upregulation of genes involved in Fe uptake by both organisms. Moreover, analyses of pseudomonal metabolites in coculture supernatants further demonstrate Fe-starvation responses, showing that CP treatment leads to increased siderophore levels and reduced phenazine levels. Consistent with prior studies, growth under conditions of Fe depletion accelerated P. aeruginosa killing of S. aureus in coculture, but treatment with CP promoted S. aureus survival. Treatment with CP site variants lacking functional transition-metal-binding sites and metalated CP also enhanced S. aureus survival in coculture with P. aeruginosa, revealing that this consequence of CP treatment is independent of its canonical metal-sequestering function. Thus, the protective effects of CP treatment during coculture appear to override the observed Fe-starvation effects that make P. aeruginosa more virulent toward S. aureus. This work highlights an unappreciated facet of how CP contributes to host-pathogen and pathogen-pathogen interactions that are relevant to human infectious disease. IMPORTANCE The current working model that describes how the innate immune protein calprotectin (CP) protects the host against bacterial pathogens focuses on its capacity to sequester multiple essential metal nutrients in a process called nutritional immunity. Our study further explores this function by focusing on the effects of metal availability and CP treatment on the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus grown in coculture. These two bacterial pathogens are of significant clinical concern and colocalize with CP at infection sites. This work reveals that CP modulates P. aeruginosa/S. aureus coculture dynamics in a manner that is independent of its ability to sequester nutrient metal ions. This surprising result is important because it demonstrates that CP has metal-independent function and thus contributes to the host-pathogen and pathogen-pathogen interactions in ways that are not accounted for in the current working model focused on metal sequestration.
Collapse
Affiliation(s)
- Wei H Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily M Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Celis H Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
3
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Nijakowski K, Surdacka A. Salivary Biomarkers for Diagnosis of Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2020; 21:ijms21207477. [PMID: 33050496 PMCID: PMC7589027 DOI: 10.3390/ijms21207477] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Saliva as a biological fluid has a remarkable potential in the non-invasive diagnostics of several systemic disorders. Inflammatory bowel diseases are chronic inflammatory disorders of the gastrointestinal tract. This systematic review was designed to answer the question “Are salivary biomarkers reliable for the diagnosis of inflammatory bowel diseases?”. Following the inclusion and exclusion criteria, eleven studies were included (according to PRISMA statement guidelines). Due to their heterogeneity, the potential salivary markers for IBD were divided into four groups: oxidative status markers, inflammatory cytokines, microRNAs and other biomarkers. Active CD patients manifest decreased activity of antioxidants (e.g., glutathione, catalase) and increased lipid peroxidation. Therefore, malondialdehyde seems to be a good diagnostic marker of CD. Moreover, elevated concentrations of proinflammatory cytokines (such as interleukin 1β, interleukin 6 or tumour necrosis factor α) are associated with the activity of IBD. Additionaly, selected miRNAs are altered in saliva (overexpressed miR-101 in CD; overexpressed miR-21, miR-31, miR-142-3p and underexpressed miR-142-5p in UC). Among other salivary biomarkers, exosomal PSMA7, α-amylase and calprotectin are detected. In conclusion, saliva contains several biomarkers which can be used credibly for the early diagnosis and regular monitoring of IBD. However, further investigations are necessary to validate these findings, as well as to identify new reliable salivary biomarkers.
Collapse
|
5
|
Majster M, Almer S, Boström EA. Salivary calprotectin is elevated in patients with active inflammatory bowel disease. Arch Oral Biol 2019; 107:104528. [PMID: 31442931 DOI: 10.1016/j.archoralbio.2019.104528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess the concentration of calprotectin, a heterodimer of S100A8 and S100A9 implicated in inflammatory bowel disease (IBD), in saliva of IBD patients compared to controls. METHODS Unstimulated and stimulated saliva, and serum was collected from 23 IBD patients with active intestinal inflammation, verified by endoscopy. Fifteen patients were re-sampled after treatment. Saliva was collected from 15 controls for protocol validation and group comparisons. Calprotectin concentrations were measured by enzyme-linked immunosorbent assay, correlated to clinical data/indexes and routine laboratory parameters. RESULTS Calprotectin was 4.0-fold (median) elevated in stimulated saliva of IBD patients compared to controls and tended to be elevated in unstimulated saliva (P = 0.001, P = 0.090). Crohn's (CD) patients had significantly elevated calprotectin in both unstimulated and stimulated saliva compared to controls (P = 0.011, P = 0.002). Newly diagnosed, treatment naïve CD patients had 8.2-fold (median) higher calprotectin concentrations in unstimulated saliva and 1.5-fold in stimulated saliva, compared to CD patients with established disease (P = 0.059, P = 0.019). Calprotectin decreased in serum of IBD patients after treatment (P = 0.011), and in unstimulated saliva of newly diagnosed, treatment naïve CD patients (P = 0.046, P = 0.028). CONCLUSION Salivary calprotectin is elevated in IBD, which suggests subclinical inflammatory responses in the oral cavity as a manifestation of IBD.
Collapse
Affiliation(s)
- Mirjam Majster
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven Almer
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth A Boström
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Dentistry, Public Dental Health Services, Folktandvården, Stockholm, Sweden.
| |
Collapse
|
6
|
Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 2018; 67:801-812. [PMID: 30083975 DOI: 10.1007/s00011-018-1173-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calprotectin (S100A8/S100A9), a heterodimeric EF-hand Ca2+ binding protein, are abundant in cytosol of neutrophils and are involved in inflammatory processes and several cancerous pathogens. OBJECTIVE The purpose of the present systematic review is to evaluate the pro- and anti-tumorigenic functions of calprotectin and its relation to inflammation. MATERIALS AND METHODS We conducted a review of studies published in the Medline (1966-2018), Scopus (2004-2018), ClinicalTrials.gov (2008-2018) and Google Scholar (2004-2018) databases, combined with studies found in the reference lists of the included studies. RESULTS Elevated levels of S100A8/S100A9 were detected in inflammation, neoplastic tumor cells and various human cancers. Recent data have explained that many cancers arise from sites of infection, chronic irritation, and inflammation. The inflammatory microenvironment which largely includes calprotectin, has an essential role on high producing of inflammatory factors and then on neoplastic process and metastasis. CONCLUSION Scientists have shown different outcomes in inflammation, malignancy and apoptosis whether the source of the aforementioned protein is extracellular or intracellular. These findings are offering new insights that anti-inflammatory therapeutic agents and anti-tumorigenic functions of calprotectin can lead to control cancer development.
Collapse
|
7
|
Wen H, Ma H, Cai Q, Lin S, Lei X, He B, Wu S, Wang Z, Gao Y, Liu W, Liu W, Tao Q, Long Z, Yan M, Li D, Kelley KW, Yang Y, Huang H, Liu Q. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med 2018; 24:154-164. [PMID: 29291352 DOI: 10.1038/nm.4456] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/10/2017] [Indexed: 02/05/2023]
Abstract
Hemophagocytic syndrome (HPS) is a fatal hyperinflammatory disease with a poorly understood mechanism that occurs most frequently in extranodal natural killer/T cell lymphoma (ENKTL). Through exome sequencing of ENKTL tumor-normal samples, we have identified a hotspot mutation (c.419T>C) in the evolutionarily conserved signaling intermediate in Toll pathway (ECSIT) gene, encoding a V140A variant of ECSIT. ECSIT-V140A activated NF-κB more potently than the wild-type protein owing to its increased affinity for the S100A8 and S100A9 heterodimer, which promotes NADPH oxidase activity. ECSIT-T419C knock-in mice showed higher peritoneal NADPH oxidase activity than mice with wild-type ECSIT in response to LPS. ECSIT-T419C-transfected ENKTL cell lines produced tumor necrosis factor (TNF)-α and interferon (IFN)-γ, which induced macrophage activation and massive cytokine secretion in cell culture and mouse xenografts. In individuals with ENKTL, ECSIT-V140A was associated with activation of NF-κB, higher HPS incidence, and poor prognosis. The immunosuppressive drug thalidomide prevented NF-κB from binding to the promoters of its target genes (including TNF and IFNG), and combination treatment with thalidomide and dexamethasone extended survival of mice engrafted with ECSIT-T419C-transfected ENKTL cells. We added thalidomide to the conventional dexamethasone-containing therapy regimen for two patients with HPS who expressed ECSIT-V140A, and we observed reversal of their HPS and disease-free survival for longer than 3 years. These findings provide mechanistic insights and a potential therapeutic strategy for ENKTL-associated HPS.
Collapse
Affiliation(s)
- Haijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huajuan Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qichun Cai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Lymphoma Center, Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Xinxing Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bin He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sijin Wu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Lymphoma Center, Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wensheng Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiping Liu
- Department of Pathology, West-China Hospital of Sichuan University, Chengdu, China
| | - Qian Tao
- State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Zijie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dali Li
- Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of Agricultural, Consumer and Environmental Science (ACES) and Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huiqiang Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Lymphoma Center, Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Lopez RN, Leach ST, Lemberg DA, Duvoisin G, Gearry RB, Day AS. Fecal biomarkers in inflammatory bowel disease. J Gastroenterol Hepatol 2017; 32:577-582. [PMID: 27723123 DOI: 10.1111/jgh.13611] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Over the last two decades, knowledge on fecal biomarkers has substantially increased. Nowadays, these non-invasive markers of inflammation have significant clinical utility in the management of inflammatory bowel disease. Their use informs the decision to perform endoscopy before diagnosis is made right through to influencing therapeutic choices and the need for interval endoscopic assessment. In this review, the roles of two S100 proteins, calprotectin, and S100A12 are described along with that of lactoferrin, in the context of inflammatory bowel disease.
Collapse
Affiliation(s)
- Robert N Lopez
- Department of Paediatrics, University of Otago (Christchurch), Christchurch, New Zealand
| | - Steven T Leach
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel A Lemberg
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Gilles Duvoisin
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard B Gearry
- Department of Medicine, University of Otago (Christchurch), Christchurch, New Zealand
| | - Andrew S Day
- Department of Paediatrics, University of Otago (Christchurch), Christchurch, New Zealand
| |
Collapse
|
9
|
Asghari H, Chegini KG, Amini A, Gheibi N. Effect of poly and mono-unsaturated fatty acids on stability and structure of recombinant S100A8/A9. Int J Biol Macromol 2015; 84:35-42. [PMID: 26642838 DOI: 10.1016/j.ijbiomac.2015.11.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Recombinant pET 15b vectors containing the coding sequences S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. The structural changes of S100A8/A9 complex are analyzed upon interaction with poly/mono-unsaturated fatty acids (UFAs). The thermodynamic values, Gibbs free energy and the protein melting point, are obtained through thermal denaturation of protein both with and without UFAs by thermal scanning of protein emission using the fluorescence spectroscopy technique. The far-ultraviolet circular dichroism spectra show that all studied unsaturated fatty acids, including arachidonic, linoleic, alpha-linolenic and oleic acids, induce changes in the secondary structure of S100A8/A9 by reducing the α-helix and β-sheet structures. The tertiary structure of S100A8/A9 has fluctuations in the fluorescence emission spectra after the incubation of protein with UFAs. The blue-shift of emission maximum wavelength and the increase in fluorescence intensity of anilino naphthalene-8-sulfonic acid confirm that the partial unfolding is caused by the conformational changes in the tertiary structure in the presence of UFAs. The structural changes in S100A8/A9 and its lower stability in the presence of UFAs may be necessary for S100A8/A9 to play a biological role in the inflammatory milieu.
Collapse
Affiliation(s)
- Hamideh Asghari
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Koorosh Goodarzvand Chegini
- Department of Clinical Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abbas Amini
- School of Computing, Engineering and Mathematics, Western Sydney University, Bld Y, Locked Bag 1797, NSW 2751, Australia.
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O. Box 34199-15315, Qazvin, Iran.
| |
Collapse
|
10
|
Brophy MB, Nakashige TG, Gaillard A, Nolan EM. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J Am Chem Soc 2013; 135:17804-17. [PMID: 24245608 PMCID: PMC3892207 DOI: 10.1021/ja407147d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.
Collapse
Affiliation(s)
- Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Aleth Gaillard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
11
|
Markowitz J, Carson WE. Review of S100A9 biology and its role in cancer. Biochim Biophys Acta Rev Cancer 2012; 1835:100-9. [PMID: 23123827 DOI: 10.1016/j.bbcan.2012.10.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/28/2022]
Abstract
S100A9 is a calcium binding protein with multiple ligands and post-translation modifications that is involved in inflammatory events and the initial development of the cancer cell through to the development of metastatic disease. This review has a threefold purpose: 1) describe the S100A9 structural elements important for its biological activity, 2) describe the S100A9 biology in the context of the immune system, and 3) illustrate the role of S100A9 in the development of malignancy via interactions with the immune system and other cellular processes.
Collapse
Affiliation(s)
- Joseph Markowitz
- OSU Comprehensive Cancer Center, The Ohio State University, 320 West 10th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
12
|
Berthier S, Nguyen MVC, Baillet A, Hograindleur MA, Paclet MH, Polack B, Morel F. Molecular interface of S100A8 with cytochrome b558 and NADPH oxidase activation. PLoS One 2012; 7:e40277. [PMID: 22808130 PMCID: PMC3393751 DOI: 10.1371/journal.pone.0040277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022] Open
Abstract
S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b558; and (iii) to determine the S100A8 consensus site involved in cytochrome b558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8 colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8, loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin, induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8 truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b558 suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase activation.
Collapse
Affiliation(s)
- Sylvie Berthier
- Groupe de Recherche et d’Etude du Processus Inflammatoire (GREPI), Laboratoire “Aging Imaging Modeling” (AGIM), Formation de Recherche en évolution (FRE) Centre National de la Recherche Scientifique CNRS 3405, Université Joseph Fourier UJF, Grenoble, France
| | - Minh Vu Chuong Nguyen
- Groupe de Recherche et d’Etude du Processus Inflammatoire (GREPI), Laboratoire “Aging Imaging Modeling” (AGIM), Formation de Recherche en évolution (FRE) Centre National de la Recherche Scientifique CNRS 3405, Université Joseph Fourier UJF, Grenoble, France
- * E-mail:
| | - Athan Baillet
- Groupe de Recherche et d’Etude du Processus Inflammatoire (GREPI), Laboratoire “Aging Imaging Modeling” (AGIM), Formation de Recherche en évolution (FRE) Centre National de la Recherche Scientifique CNRS 3405, Université Joseph Fourier UJF, Grenoble, France
- Clinic of Rheumatology, Centre Hospitalier Universitaire (CHU), Grenoble, France
| | - Marc-André Hograindleur
- Groupe de Recherche et d’Etude du Processus Inflammatoire (GREPI), Laboratoire “Aging Imaging Modeling” (AGIM), Formation de Recherche en évolution (FRE) Centre National de la Recherche Scientifique CNRS 3405, Université Joseph Fourier UJF, Grenoble, France
| | - Marie-Hélène Paclet
- Groupe de Recherche et d’Etude du Processus Inflammatoire (GREPI), Laboratoire “Aging Imaging Modeling” (AGIM), Formation de Recherche en évolution (FRE) Centre National de la Recherche Scientifique CNRS 3405, Université Joseph Fourier UJF, Grenoble, France
- « Laboratoire des Enzymes et des Protéines », Centre Hospitalier Universitaire (CHU), Grenoble, France
- « Institut de Biologie et Pathologie », Centre Hospitalier Universitaire (CHU), Grenoble, France
| | - Benoît Polack
- « Institut de Biologie et Pathologie », Centre Hospitalier Universitaire (CHU), Grenoble, France
- Techniques de l’Ingénierie Médicale et de la Complexité–Informatique, Mathématiques et Applications de Grenoble (TIMC-IMAG) Unité Mixte de Recherche (UMR) 5525 Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier UJF, Grenoble, France
| | - Françoise Morel
- Groupe de Recherche et d’Etude du Processus Inflammatoire (GREPI), Laboratoire “Aging Imaging Modeling” (AGIM), Formation de Recherche en évolution (FRE) Centre National de la Recherche Scientifique CNRS 3405, Université Joseph Fourier UJF, Grenoble, France
| |
Collapse
|
13
|
Ghavami S, Chitayat S, Hashemi M, Eshraghi M, Chazin WJ, Halayko AJ, Kerkhoff C. S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis. Eur J Pharmacol 2009; 625:73-83. [PMID: 19835859 DOI: 10.1016/j.ejphar.2009.08.044] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/31/2009] [Accepted: 08/19/2009] [Indexed: 11/28/2022]
Abstract
Correlations exist between the abundance of S100 proteins and disease pathologies. Indeed, this is evidenced by the heterodimeric S100 protein complex S100A8/A9 which has been shown to be involved in inflammatory and neoplastic disorders. However, S100A8/A9 appears as a Janus-faced molecule in this context. On the one hand, it is a powerful apoptotic agent produced by immune cells, making it a very fascinating tool in the battle against cancer. It spears the risk to induce auto-immune response and may serve as a lead compound for cancer-selective therapeutics. In contrast, S100A8/A9 expression in cancer cells has also been associated with tumor development, cancer invasion or metastasis. Clearly, there is a dichotomy and future investigations into the role of S100A8/A9 in cancer biology need to consider both sides of the same coin.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Dale CS, Altier C, Cenac N, Giorgi R, Juliano MA, Juliano L, Zamponi GW, Vergnolle N. Analgesic properties of S100A9 C-terminal domain: a mechanism dependent on calcium channel inhibition. Fundam Clin Pharmacol 2009; 23:427-38. [DOI: 10.1111/j.1472-8206.2009.00686.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Roberts-Crowley ML, Mitra-Ganguli T, Liu L, Rittenhouse AR. Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 2009; 45:589-601. [PMID: 19419761 PMCID: PMC2964877 DOI: 10.1016/j.ceca.2009.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/23/2022]
Abstract
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca(2+) channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in Ca(V)2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP(2)), a palmitoylated accessory subunit (beta(2a)) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M(1) muscarinic receptors may stimulate multiple lipases to break down the PIP(2) associated with VGCCs and leave PIP(2)'s freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.
Collapse
Affiliation(s)
- Mandy L. Roberts-Crowley
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Tora Mitra-Ganguli
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Liwang Liu
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Ann R. Rittenhouse
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| |
Collapse
|
16
|
Lim SY, Raftery MJ, Goyette J, Hsu K, Geczy CL. Oxidative modifications of S100 proteins: functional regulation by redox. J Leukoc Biol 2009; 86:577-87. [DOI: 10.1189/jlb.1008608] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Champaiboon C, Sappington KJ, Guenther BD, Ross KF, Herzberg MC. Calprotectin S100A9 calcium-binding loops I and II are essential for keratinocyte resistance to bacterial invasion. J Biol Chem 2009; 284:7078-90. [PMID: 19122197 DOI: 10.1074/jbc.m806605200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial cells expressing calprotectin, a heterodimer of S100A8 and S100A9 proteins, are more resistant to bacterial invasion. To determine structural motifs that affect resistance to bacterial invasion, mutations were constructed in S100A9 targeting the calcium-binding loops I and II (E36Q, E78Q, E36Q,E78Q) and the C terminus (S100A9(1-99) and S100A9(1-112)), which contains putative antimicrobial zinc-binding and phosphorylation sites. The S100A8 and mutated S100A9 encoding plasmids were transfected into calprotectin-negative KB carcinoma cells. All transfected cells (except KB-sham) expressed 27E10-reactive heterodimers. In bacterial invasion assays with Listeria monocytogenes and Salmonella enterica serovar Typhimurium (Salmonella typhimurium), cell lines expressing S100A8 in complex with S100A9E36Q, S100A9E78Q, S100A9(1-99), or S100A9(1-112) mutants or the S100A9(1-114) (full-length) calprotectin resisted bacterial invasion better than KB-sham. When compared with KB-S100A8/A9(1-114), cells expressing truncated S100A9(1-99) or S100A9(1-112) with S100A8 also showed increased resistance to bacterial invasion. In contrast, glutamic acid residues 36 and 78 in calcium-binding loops I and II promote resistance in epithelial cells, because cells expressing S100A9E36Q,E78Q with S100A8 were unable to resist bacterial invasion. Mutations in S100A9 E36Q, E78Q were predicted to cause loss of the calcium-induced positive face in calprotectin, reducing interactions with microtubules and appearing to be crucial for keratinocyte resistance to bacterial invasion.
Collapse
Affiliation(s)
- Chantrakorn Champaiboon
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
18
|
Paccola CC, Gutierrez VP, Longo I, Juliano L, Juliano MA, Giorgi R. Antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic pain. Peptides 2008; 29:1806-14. [PMID: 18582512 DOI: 10.1016/j.peptides.2008.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 11/30/2022]
Abstract
The synthetic peptide identical to the C-terminus of murine S100A9 protein (mS100A9p) has antinociceptive effect on different acute inflammatory pain models. In this study, the effect of mS100A9p was investigated on neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. Hyperalgesia, allodynia, and spontaneous pain were assessed to evaluate nociception. These three signs were detected as early as 2 days after sciatic nerve constriction and lasted for over 14 days after CCI. Rats were treated with different doses of mS100A9p by intraplantar, oral, or intrathecal routes on day 14 after CCI, and nociception was evaluated 1h later. These three routes of administration blocked hyperalgesia, allodynia and spontaneous pain. The duration of the effect of mS100A9p depends on the route used and phenomenon analyzed. Moreover, intraplantar injection of mS100A9p in the contralateral paw inhibited the hyperalgesia on day 14 days after CCI. The results obtained herein demonstrate the antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic pain, suggesting a potential therapeutic use for it in persistent pain syndromes, assuming that tolerance does not develop to mS100A9p.
Collapse
|
19
|
Leach ST, Yang Z, Messina I, Song C, Geczy CL, Cunningham AM, Day AS. Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand J Gastroenterol 2007; 42:1321-1331. [PMID: 17852869 DOI: 10.1080/00365520701416709] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Various markers characterize the complex inflammatory processes seen in chronic inflammatory bowel disease (IBD) including calprotectin, a complex of two S100 proteins, which has been evaluated and validated as a faecal marker of inflammation. However, the systemic and mucosal expression patterns of calprotectin and related S100 proteins are not well characterized in this disease. The objective of this study was to assess serum and mucosal levels of calprotectin, S100A12 and soluble receptor for advanced glycation end products (sRAGE), a putative S100 ligand, in a paediatric population with IBD. MATERIAL AND METHODS Children were enrolled at diagnosis of IBD, along with groups of children without IBD. Standard inflammatory markers and disease activity scores were collated. Calprotectin, S100A12 and sRAGE levels in serum and biopsy culture supernatants were measured by ELISA and tissue distribution of S100 proteins was investigated by immunohistochemistry. RESULTS Serum and mucosal calprotectin and S100A12 levels were increased in children with IBD as compared with non-IBD controls. Serum calprotectin levels correlated with S100A12 levels and with disease activity scores in children with IBD. sRAGE levels were not increased in IBD. S100A8, S100A9 and S100A12 were abundantly expressed throughout the lamina propria and epithelium in inflamed mucosa. In contrast, these proteins were present in the lamina propria, but not the epithelium, in non-inflamed mucosa. CONCLUSIONS Serum calprotectin and S100A12 are increased in children with IBD and indicate disease activity. Elevated levels of these proteins are present in the colonic mucosa and may contribute to the pathogenesis of IBD. Furthermore, an imbalance between sRAGE and S100A12 may contribute to inflammatory changes present in IBD.
Collapse
Affiliation(s)
- Steven T Leach
- School of Women's and Children's Health, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Korndörfer IP, Brueckner F, Skerra A. The Crystal Structure of the Human (S100A8/S100A9)2 Heterotetramer, Calprotectin, Illustrates how Conformational Changes of Interacting α-Helices Can Determine Specific Association of Two EF-hand Proteins. J Mol Biol 2007; 370:887-98. [PMID: 17553524 DOI: 10.1016/j.jmb.2007.04.065] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 04/22/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022]
Abstract
The EF-hand proteins S100A8 and S100A9 are important calcium signalling proteins that are involved in wound healing and provide clinically relevant markers of inflammatory processes, such as rheumatoid arthritis and inflammatory bowel disease. Both can form homodimers via distinct modes of association, probably of lesser stability in the case of S100A9, whereas in the presence of calcium S100A8 and S100A9 associate to calprotectin, the physiologically active heterooligomer. Here we describe the crystal structure of the (S100A8/S100A9)(2) heterotetramer at 1.8 A resolution. Its quaternary structure illustrates how specific heteroassociation is energetically driven by a more extensive burial of solvent accessible surface areas in both proteins, most pronounced for S100A9, thus leading to a dimer of heterodimers. A major contribution to tetramer association is made by the canonical calcium binding loops in the C-terminal halves of the two proteins. The mode of heterodimerisation in calprotectin more closely resembles the subunit association previously observed in the S100A8 homodimer and provides trans stabilisation for S100A9, which manifests itself in a significantly elongated C-terminal alpha-helix in the latter. As a consequence, two different putative zinc binding sites emerge at the S100A8/S100A9 subunit interface. One of these corresponds to a high affinity arrangement of three His residues and one Asp side-chain, which is unique to the heterotetramer. This structural feature explains the well known Zn(2+) binding activity of calprotectin, whose overexpression can cause strong dysregulation of zinc homeostasis with severe clinical symptoms.
Collapse
Affiliation(s)
- Ingo P Korndörfer
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
21
|
Benedyk M, Sopalla C, Nacken W, Bode G, Melkonyan H, Banfi B, Kerkhoff C. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities. J Invest Dermatol 2007; 127:2001-11. [PMID: 17429438 DOI: 10.1038/sj.jid.5700820] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The calcium- and arachidonic acid (AA)-binding proteins S100A8 and S100A9 are involved in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in phagocytes. They are specifically expressed in myeloid cells, and are also found in epithelial cells in various (patho)physiological conditions. We have investigated the consequences of S100A8/A9 overexpression in epithelial cell lines on reactive oxygen species (ROS) generation and downstream signaling. Epithelial carcinoma HeLa cells, which exclusively express Nox2, showed dramatically increased activation of NADPH oxidase by phorbol 12-myristate 13-acetate after S100A8/A9 gene transfection. HaCaT keratinocytes overexpressing S100A8/A9 showed enhanced, transient ROS generation in response to the calcium ionophore A23187 compared to mock-transfected cells. Polymerase chain reaction analysis revealed mRNA transcripts for Nox1, Nox2, and Nox5 in HaCaT keratinocytes. Detailed transfection studies confirmed that NADPH oxidase activities in Nox1- and Nox5-transfected HeLa cells were enhanced after S100A8/A9 gene complementation. Furthermore, mutational analysis revealed that AA binding and Thr113 phosphorylation are important for S100A8/A9-enhanced activation of NADPH oxidase. Nuclear factor-kappaB (NF-kappaB) activation and interleukin-8 mRNA levels were increased in S100A8/A9-HaCaT keratinocytes, consistent with the view that NF-kappaB is a redox-sensitive transcription factor. Because they are expressed in epithelia under specific conditions, S100A8 and S100A9 might be involved in skin pathogenesis by modulating aspects of downstream signaling.
Collapse
Affiliation(s)
- Malgorzata Benedyk
- Institute of Experimental Dermatology, University of Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Dale CS, Pagano RDL, Paccola CC, Pinotti-Guirao T, Juliano MA, Juliano L, Giorgi R. Effect of the C-terminus of murine S100A9 protein on experimental nociception. Peptides 2006; 27:2794-802. [PMID: 16920226 DOI: 10.1016/j.peptides.2006.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/04/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Calcium-binding protein S100A9 induces antinociception in mice evaluated by the writhing test. Similarly, a peptide identical to the C-terminus of murine S100A9 (mS100A9p) inhibits the hyperalgesia induced by jararhagin, a metalloprotease. Thus, we investigated the effect of mS100A9p on different models used to evaluate nociception. mS100A9p induced a dose-dependent inhibitory effect on the writhing test, and on mechanical hyperalgesia induced by carrageenan. mS100A9p inhibited thermal hyperalgesia induced by carrageenan. mS100A9p did not modify the nociceptive response in hot plate or tail-flick tests. These data demonstrate that the C-terminus of S100A9 protein interferes with control mechanisms of inflammatory pain.
Collapse
Affiliation(s)
- Camila Squarzoni Dale
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil 1500, São Paulo, SP 05503-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Leach ST, Day AS. S100 proteins in the pathogenesis and diagnosis of inflammatory bowel disease. Expert Rev Clin Immunol 2006; 2:471-480. [DOI: 10.1586/1744666x.2.3.471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Merkel D, Rist W, Seither P, Weith A, Lenter MC. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics 2005; 5:2972-80. [PMID: 16075419 DOI: 10.1002/pmic.200401180] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bronchoalveolar lavage fluid (BALF) is an important diagnostic source to investigate cellular and molecular changes in the course of lung disorders. The pattern of soluble proteins in BALF obtained from patients at different stages of respiratory disorders may provide deeper insights in the molecular mechanisms of the disease. We used surface-enhanced laser desorption/ionization mass spectrometry (MS) for differential protein display combined with reversed-phase chromatography and subsequent matrix-assisted laser desorption/ionization-MS or nanoliquid chromatography MS/MS analysis for protein identification to compare the protein pattern of BALF samples obtained from ten smokers suffering from chronic obstructive pulmonary disease (COPD), eight clinically asymptomatic smokers, and eight nonsmokers without pulmonary disease. In this context, we were able to identify small proteins and peptides, either differentially expressed or secreted in the course of COPD or in a direct response to cigarette smoke. The concentrations of neutrophil defensins 1 and 2, S100A8 (calgranulin A), and S100A9 (calgranulin B) were elevated in BALFs of smokers with COPD when compared to asymptomatic smokers. Increased concentrations in S100A8 (Calgranulin A), salivary proline-rich peptide P-C, and lysozyme C were detected in BALFs of asymptomatic smokers when compared to nonsmokers, whereas salivary proline-rich peptide P-D and Clara cell phospholipid-binding protein (CC10) were reduced in their concentration. The identified proteins and peptides might be useful in the future as diagnostic markers for smoke-induced lung irritations and COPD.
Collapse
Affiliation(s)
- Dietrich Merkel
- Department of Pulmonary Research, Genomics Group, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | | | |
Collapse
|
25
|
Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J 2005; 19:467-9. [PMID: 15642721 DOI: 10.1096/fj.04-2377fje] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear neutrophils from S100A9-/- mice. The impaired oxidase activation could also be mimicked in a cell-free system by pretreatment of neutrophil cytosol with an S100A9-specific antibody. Further analyses gave insights into the molecular mechanisms by which S100A8/A9 promoted NADPH oxidase activation. In vitro analysis of oxidase activation as well as protein-protein interaction studies revealed that S100A8 is the privileged interaction partner for the NADPH oxidase complex since it bound to p67phox and Rac, whereas S100A9 did interact with neither p67phox nor p47phox. Moreover, S100A8/A9 transferred the cofactor arachidonic acid to NADPH oxidase as shown by the impotence of a mutant S100A8/A9 complex unable to bind arachidonic acid to enhance NADPH oxidase activity. It is concluded that S100A8/A9 plays an important role in phagocyte NADPH oxidase activation.
Collapse
Affiliation(s)
- Claus Kerkhoff
- Institute of Experimental Dermatology, University of Münster, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Ghavami S, Kerkhoff C, Los M, Hashemi M, Sorg C, Karami-Tehrani F. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. J Leukoc Biol 2004; 76:169-75. [PMID: 15075348 DOI: 10.1189/jlb.0903435] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein complex S100A8/A9, abundant in the cytosol of neutrophils, is secreted from the cells upon cellular activation and induces apoptosis in tumor cell lines and normal fibroblasts in a zinc-reversible manner. In the present study, we present evidence that the S100A8/A9 also exerts its apoptotic effect by a zinc-independent mechanism. Treatment of the colon carcinoma cells with different concentrations of human S100A8/A9 or the metal ion chelator diethylenetriaminepentacetic acid (DTPA) resulted in a significant increase of cell death. Annexin V/phosphatidylinositol and Hoechst 33258 staining revealed that cell death was mainly of the apoptotic type. A significant increase in the activity of caspase-3 and -9 was observed in both cell lines after treatment. Caspase-8 activation was negligible in both cell lines. The cytotoxicity/apoptotic effect of human S100A8/A9 and DTPA was inhibited significantly (P<0.05) by Zn(+2) and Cu(+2), more effectively than by Ca(2+) and Mg(2+). The antioxidant N-acetyl-L-cysteine inhibited the cytotoxicity/apoptotic effect of S100A8/A9 and DTPA. However, as a result of the different time-courses of both agents and that the S100A8/A9-induced apoptosis was not completely reversed, we conclude that S100A8/A9 exerts its apoptotic effect on two colon carcinoma cell lines through a dual mechanism: one via zinc exclusion from the target cells and the other through a yet-undefined mechanism, probably relaying on the cell-surface receptor(s).
Collapse
Affiliation(s)
- Saeid Ghavami
- Clinical Biochemistry Department, Faculty of Medical Sciences, Tarbiat Modaress University, P.O. Box 14115-111, Tehran, I.R., Iran
| | | | | | | | | | | |
Collapse
|