1
|
Gizak A, Budziak B, Domaradzka A, Pietras Ł, Rakus D. Fructose 1,6-bisphosphatase as a promising target of anticancer treatment. Adv Biol Regul 2025; 95:101057. [PMID: 39490352 DOI: 10.1016/j.jbior.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Fructose 1,6-bisphosphatase (FBP) is a regulatory enzyme of gluconeogenesis that also influences in a non-catalytic manner - via protein-protein interactions - cell cycle-dependent events, mitochondria biogenesis and polarization, synaptic plasticity and even cancer progression. FBP reduces glycolytic capacity of cells via blocking HIF-1α transcriptional activity and modulating NF-κB action, and influences oxidative metabolism by binding to c-MYC. Because FBP limits the energy-producing potential of cells and because a reduction of FBP amounts is observed in cancer cells, FBP is considered to be an anti-oncogenic protein. This is supported by the observation that cancer cells overexpress aldolase A (ALDOA), a pro-oncogenic protein that can bind to FBP and potentially block its anti-oncogenic activity. Interestingly, only the muscle isozyme of FBP (FBP2) interacts strongly with ALDOA, whereas the binding of the liver isozyme (FBP1) to ALDOA is more than an order of magnitude weaker. Here, we briefly review the most important evidence supporting the anti-oncogenic function of FBP and discuss what structural properties of the two FBP isozymes allow FBP2, rather than FBP1, to exert more flexible anticancer functions.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Bartosz Budziak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Aleksandra Domaradzka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Łukasz Pietras
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland.
| |
Collapse
|
2
|
Hajka D, Budziak B, Rakus D, Gizak A. Neuronal extracellular vesicles influence the expression, degradation and oligomeric state of fructose 1,6-bisphosphatase 2 in astrocytes affecting their glycolytic capacity. Sci Rep 2024; 14:20932. [PMID: 39251668 PMCID: PMC11385182 DOI: 10.1038/s41598-024-71560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Fructose 1,6-bisphosphatase 2 (Fbp2) is a regulatory enzyme of gluco- and glyconeogenesis which, in the course of evolution, acquired non-catalytic functions. Fbp2 promotes cell survival during calcium stress, regulates glycolysis via inhibition of Hif-1α activity, and is indispensable for the formation of long-term potentiation in hippocampus. In hippocampal astrocytes, the amount of Fbp2 protein is reduced by signals delivered in neuronal extracellular vesicles (NEVs) through an unknown mechanism. The physiological role of Fbp2 (determined by its subcellular localization/interactions) depends on its oligomeric state and thus, we asked whether the cargo of NEVs is sufficient to change also the ratio of Fbp2 dimer/tetramer and, consequently, influence astrocyte basal metabolism. We found that the NEVs cargo reduced the Fbp2 mRNA level, stimulated the enzyme degradation and affected the cellular titers of different oligomeric forms of Fbp2. This was accompanied with increased glucose uptake and lactate release by astrocytes. Our results revealed that neuronal signals delivered to astrocytes in NEVs provide the necessary balance between enzymatic and non-enzymatic functions of Fbp2, influencing not only its amount but also subcellular localization. This may allow for the metabolic adjustments and ensure protection of mitochondrial membrane potential during the neuronal activity-related increase in astrocytic [Ca2+].
Collapse
Affiliation(s)
- Daria Hajka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, 54-006, Wrocław, Poland
| | - Bartosz Budziak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland.
| |
Collapse
|
3
|
Wang L, Liu M, Wu Y, Li X, Yin F, Yin L, Liu J. Free fatty acids induce the demethylation of the fructose 1,6-biphosphatase 2 gene promoter and potentiate its expression in hepatocytes. Food Funct 2021; 12:4165-4175. [PMID: 33977939 DOI: 10.1039/d0fo02654a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is a serious health issue as it is a social burden and the main risk factor for other metabolic diseases. Increasing evidence indicates that a high-fat diet (HFD) is the key factor for the development of obesity, but the key genes and their associated molecular mechanisms are still not fully understood. In this study, we performed integrated bioinformatic analysis and identified that fructose-1,6 biphosphatase 2 (FBP2) was involved in free fatty acids (FFAs)-induced lipid droplet accumulation in hepatocytes and HFD-induced obesity in mice. Our data showed that palmitate (PA) and oleic acid (OA) induced the expression of FBP2 in time- and dose-dependent manners, and accelerated the development of lipid droplets in LO2 human normal liver cells. In HFD-fed C57BL/6 mice, accompanied by insulin resistance and lipid droplet accumulation, the mRNA and protein levels of FBP2 in the livers also increased significantly. The results from the methylation sequencing PCR (MSP) and bisulfite specific PCR (BSP) indicated that PA/OA induced the demethylation of the FBP2 gene promoter in LO2 cells. Moreover, betaine, a methyl donor, attenuated the expression of the FBP2 gene, the accumulation of lipid droplets, and the expression of perilipin-2, a biomarker of lipid droplets, in LO2 cells. All these findings revealed that FBP2 might be involved in HFD-induced obesity, and it is of interest to investigate the role of FBP2 in the treatment and prevention of obesity and its associated complications.
Collapse
Affiliation(s)
- Lujing Wang
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Min Liu
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yucui Wu
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xingan Li
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yin
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Li Yin
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jianhui Liu
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China. and College of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
4
|
Duda P, Budziak B, Rakus D. Cobalt Regulates Activation of Camk2α in Neurons by Influencing Fructose 1,6-bisphosphatase 2 Quaternary Structure and Subcellular Localization. Int J Mol Sci 2021; 22:4800. [PMID: 33946543 PMCID: PMC8125063 DOI: 10.3390/ijms22094800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Fructose 1,6-bisphosphatase 2 (Fbp2) is a gluconeogenic enzyme and multifunctional protein modulating mitochondrial function and synaptic plasticity via protein-protein interactions. The ability of Fbp2 to bind to its cellular partners depends on a quaternary arrangement of the protein. NAD+ and AMP stabilize an inactive T-state of Fbp2 and thus, affect these interactions. However, more subtle structural changes evoked by the binding of catalytic cations may also change the affinity of Fbp2 to its cellular partners. In this report, we demonstrate that Fbp2 interacts with Co2+, a cation which in excessive concentrations, causes pathologies of the central nervous system and which has been shown to provoke the octal-like events in hippocampal slices. We describe for the first time the kinetics of Fbp2 in the presence of Co2+, and we provide a line of evidence that Co2+ blocks the AMP-induced transition of Fbp2 to the canonical T-state triggering instead of a new, non-canonical T-state. In such a state, Fbp2 is still partially active and may interact with its binding partners e.g., Ca2+/calmodulin-dependent protein kinase 2α (Camk2α). The Fbp2-Camk2α complex seems to be restricted to mitochondria membrane and it facilitates the Camk2α autoactivation and thus, synaptic plasticity.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland;
| | | | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland;
| |
Collapse
|
5
|
Fructose 1,6-Bisphosphatase 2 Plays a Crucial Role in the Induction and Maintenance of Long-Term Potentiation. Cells 2020; 9:cells9061375. [PMID: 32492972 PMCID: PMC7349836 DOI: 10.3390/cells9061375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Long-term potentiation (LTP) is a molecular basis of memory formation. Here, we demonstrate that LTP critically depends on fructose 1,6-bisphosphatase 2 (Fbp2)—a glyconeogenic enzyme and moonlighting protein protecting mitochondria against stress. We show that LTP induction regulates Fbp2 association with neuronal mitochondria and Camk2 and that the Fbp2–Camk2 interaction correlates with Camk2 autophosphorylation. Silencing of Fbp2 expression or simultaneous inhibition and tetramerization of the enzyme with a synthetic effector mimicking the action of physiological inhibitors (NAD+ and AMP) abolishes Camk2 autoactivation and blocks formation of the early phase of LTP and expression of the late phase LTP markers. Astrocyte-derived lactate reduces NAD+/NADH ratio in neurons and thus diminishes the pool of tetrameric and increases the fraction of dimeric Fbp2. We therefore hypothesize that this NAD+-level-dependent increase of the Fbp2 dimer/tetramer ratio might be a crucial mechanism in which astrocyte–neuron lactate shuttle stimulates LTP formation.
Collapse
|
6
|
Gizak A, Duda P, Wisniewski J, Rakus D. Fructose-1,6-bisphosphatase: From a glucose metabolism enzyme to multifaceted regulator of a cell fate. Adv Biol Regul 2019; 72:41-50. [PMID: 30871972 DOI: 10.1016/j.jbior.2019.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is one of the ancient, evolutionarily conserved enzymes of carbohydrate metabolism. It has been described for a first time in 1943, however, for the next half a century mostly kinetic and structural parameters of animal FBPases have been studied. Discovery of ubiquitous expression of the muscle isozyme of FBPase, thus far considered to merely regulate glycogen synthesis from carbohydrate precursors, and its nuclear localisation in several cell types has risen new interest in the protein, resulting in numerous publications revealing complex functions/properties of FBPase. This review summarises the current knowledge of FBPase in animal cells providing evidence that the enzyme merits the name of moonlighting protein.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Przemyslaw Duda
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Janusz Wisniewski
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland.
| |
Collapse
|
7
|
Liu GM, Zhang YM. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int 2018; 18:36. [PMID: 29556139 PMCID: PMC5845355 DOI: 10.1186/s12935-018-0533-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries. Metabolic reprogramming is an emerging hallmark of cancer. Glucose homeostasis is reciprocally controlled by the catabolic glycolysis and anabolic gluconeogenesis pathways. Previous studies have mainly focused on catabolic glycolysis, but recently, FBPase, a rate-limiting enzyme in gluconeogenesis, was found to play critical roles in tumour initiation and progression in several cancer types. Here, we review recent ideas and discoveries that illustrate the clinical significance of FBPase expression in various cancers, the mechanism through which FBPase influences cancer, and the mechanism of FBPase silencing. Furthermore, we summarize some of the drugs targeting FBPase and discuss their potential use in clinical applications and the problems that remain unsolved.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| | - Yao-Ming Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| |
Collapse
|
8
|
Wiśniewski J, Piróg M, Hołubowicz R, Dobryszycki P, McCubrey JA, Rakus D, Gizak A. Dimeric and tetrameric forms of muscle fructose-1,6-bisphosphatase play different roles in the cell. Oncotarget 2017; 8:115420-115433. [PMID: 29383170 PMCID: PMC5777782 DOI: 10.18632/oncotarget.23271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fructose 1,6-bisphosphatase (FBP2), besides being a regulatory enzyme of glyconeogenesis also protects mitochondria against calcium stress and plays a key role in regulation of the cell cycle, promoting cardiomyocytes survival. However, in cancer cells, FBP2 acts as an anti-oncogenic/anti-proliferative protein. Here, we show that the physiological function of FBP2 depends both on its level of expression in a cell as well as its oligomerization state. Animal fructose-1,6-bisphosphatases are thought to function as tetramers. We present evidence that FBP2 exists in an equilibrium between tetramers and dimers. The dimeric form is fully active and insensitive to AMP, the main allosteric inhibitor of FBP2. Tetramerization induces the sensitivity of the protein to AMP, but it requires the presence of a hydrophobic central region in which leucine 190 plays a crucial role. Only the tetrameric form of FBP2 is retained in cardiomyocyte cell nucleus whereas only the dimeric form associates with mitochondria and protects them against stress stimuli, such as elevated calcium and H2O2 level. Remarkably, in hypoxic conditions, which are typical for many cancers, FBP2 ceases to interact with mitochondria and loses its pro-survival potential. Our results throw new light on the basis of the diverse role of FBP2 in cells.
Collapse
Affiliation(s)
- Janusz Wiśniewski
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-335, Poland
| | - Michał Piróg
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-335, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-335, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-335, Poland
| |
Collapse
|
9
|
Barciszewski J, Wisniewski J, Kolodziejczyk R, Jaskolski M, Rakus D, Dzugaj A. T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure. Acta Crystallogr D Struct Biol 2016; 72:536-50. [PMID: 27050133 PMCID: PMC4822563 DOI: 10.1107/s2059798316001765] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/28/2016] [Indexed: 11/11/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and is a key enzyme of gluconeogenesis and glyconeogenesis and, more generally, of the control of energy metabolism and glucose homeostasis. Vertebrates, and notably Homo sapiens, express two FBPase isoforms. The liver isozyme is expressed mainly in gluconeogenic organs, where it functions as a regulator of glucose synthesis. The muscle isoform is expressed in all cells, and recent studies have demonstrated that its role goes far beyond the enzymatic function, as it can interact with various nuclear and mitochondrial proteins. Even in its enzymatic function, the muscle enzyme is different from the liver isoform, as it is 100-fold more susceptible to allosteric inhibition by AMP and this effect can be abrogated by complex formation with aldolase. All FBPases are homotetramers composed of two intimate dimers: the upper dimer and the lower dimer. They oscillate between two conformational states: the inactive T form when in complex with AMP, and the active R form. Parenthetically, it is noted that bacterial FBPases behave somewhat differently, and in the absence of allosteric activators exist in a tetramer-dimer equilibrium even at relatively high concentrations. [Hines et al. (2007), J. Biol. Chem. 282, 11696-11704]. The T-to-R transition is correlated with the conformation of the key loop L2, which in the T form becomes `disengaged' and unable to participate in the catalytic mechanism. The T states of both isoforms are very similar, with a small twist of the upper dimer relative to the lower dimer. It is shown that at variance with the well studied R form of the liver enzyme, which is flat, the R form of the muscle enzyme is diametrically different, with a perpendicular orientation of the upper and lower dimers. The crystal structure of the muscle-isozyme R form shows that in this arrangement of the tetramer completely new protein surfaces are exposed that are most likely targets for the interactions with various cellular and enzymatic partners. The cruciform R structure is stabilized by a novel `leucine lock', which prevents the key residue, Asp187, from locking loop L2 in the disengaged conformation. In addition, the crystal structures of muscle FBPase in the T conformation with and without AMP strongly suggest that the T-to-R transition is a discrete jump rather than a shift of an equilibrium smooth transition through multiple intermediate states. Finally, using snapshots from three crystal structures of human muscle FBPase, it is conclusively demonstrated that the AMP-binding event is correlated with a β→α transition at the N-terminus of the protein and with the formation of a new helical structure.
Collapse
Affiliation(s)
- Jakub Barciszewski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Janusz Wisniewski
- Department of Animal Molecular Physiology, Wrocław University, Wrocław, Poland
| | - Robert Kolodziejczyk
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wrocław University, Wrocław, Poland
| | - Andrzej Dzugaj
- Department of Genetics, Wrocław University, Wrocław, Poland
| |
Collapse
|
10
|
Changes in quaternary structure of muscle fructose-1,6-bisphosphatase regulate affinity of the enzyme to mitochondria. Int J Biochem Cell Biol 2014; 48:55-9. [PMID: 24412565 DOI: 10.1016/j.biocel.2013.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022]
Abstract
Muscle fructose-1,6-bisphosphatase (FBP2), a regulatory enzyme of glyconeogenesis, binds to mitochondria where it interacts with proteins involved in regulation of energy homeostasis. Here, we show that the quaternary structure of FBP2 plays a crucial role in this interaction, and that the AMP-driven transition of the FBP2 subunit arrangement from active to inactive precludes its association with the mitochondria. Moreover, we demonstrate that truncation of the evolutionarily conserved N-terminal residues of FBP2 results in a loss of its mitochondria-protective functions. This strengthens the recently raised hypothesis that FBP2 evolved as a regulator not only for glycogen storage but also for mitochondrial function in contracting muscle.
Collapse
|
11
|
Rakus D, Gizak A, Kasprzak AA, Zarzycki M, Maciaszczyk-Dziubinska E, Dzugaj A. The mechanism of calcium-induced inhibition of muscle fructose 1,6-bisphosphatase and destabilization of glyconeogenic complex. PLoS One 2013; 8:e76669. [PMID: 24146906 PMCID: PMC3795747 DOI: 10.1371/journal.pone.0076669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which calcium inhibits the activity of muscle fructose 1,6-bisphosphatase (FBPase) and destabilizes its interaction with aldolase, regulating glycogen synthesis from non-carbohydrates in skeletal muscle is poorly understood. In the current paper, we demonstrate evidence that Ca2+ affects conformation of the catalytic loop 52–72 of muscle FBPase and inhibits its activity by competing with activatory divalent cations, e.g. Mg2+ and Zn2+. We also propose the molecular mechanism of Ca2+-induced destabilization of the aldolase–FBPase interaction, showing that aldolase associates with FBPase in its active form, i.e. with loop 52–72 in the engaged conformation, while Ca2+ stabilizes the disengaged-like form of the loop.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Wroclaw, Poland
- * E-mail:
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Wroclaw, Poland
| | - Andrzej A. Kasprzak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marek Zarzycki
- Depatment of Genetics, Wroclaw University, Wroclaw, Poland
| | | | - Andrzej Dzugaj
- Depatment of Genetics, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
12
|
Shi R, Chen ZY, Zhu DW, Li C, Shan Y, Xu G, Lin SX. Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway. PLoS One 2013; 8:e71242. [PMID: 24086250 PMCID: PMC3785478 DOI: 10.1371/journal.pone.0071242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022] Open
Abstract
Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle Fru-1,6-Pase, the AMP-bound (1.6 Å), and product-bound complexes of the Q32R mutant, which was firstly introduced by an error in the cloning. Our high-resolution structure reveals for the first time that the higher sensitivity of the muscle isozyme towards AMP originates from an additional water-mediated, H-bonded network established between AMP and the binding pocket. Also present in our structures are a metaphosphate molecule, alternate conformations of Glu97 coordinating Mg2+, and possible metal migration during catalysis. Although the individual subunit is similar to previously reported Fru-1,6-Pase structures, the tetrameric assembly of all these structures deviates from the canonical R- or T-states, representing novel tetrameric assemblies. Intriguingly, the concentration of AMP required for 50% inhibition of the Q32R mutant is increased 19-fold, and the cooperativity of both AMP and Mg2+ is abolished or decreased. These structures demonstrate the Q32R mutation affects the conformations of both N-terminal residues and the dynamic loop 52–72. Also importantly, structural comparison indicates that this mutation in helix α2 is detrimental to the R-to-T conversion as evidenced by the absence of quaternary structural changes upon AMP binding, providing direct evidence for the critical role of helix α2 in the allosteric signal transduction.
Collapse
Affiliation(s)
- Rong Shi
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Université de Québec Research Center (CHUQ-CHUL), Department of Molecular Medicine and PROTEO, Laval University, Québec City, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec City, Canada
| | - Ze-Yong Chen
- The Laboratory of Structural Biology for Visiting Scientists at Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Dao-Wei Zhu
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec City, Canada
| | - Chunmin Li
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Université de Québec Research Center (CHUQ-CHUL), Department of Molecular Medicine and PROTEO, Laval University, Québec City, Canada
| | - Yufei Shan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Genjun Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Université de Québec Research Center (CHUQ-CHUL), Department of Molecular Medicine and PROTEO, Laval University, Québec City, Canada
- The Laboratory of Structural Biology for Visiting Scientists at Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Determination of enzyme activity inhibition by FTIR spectroscopy on the example of fructose bisphosphatase. Anal Bioanal Chem 2009; 394:2137-44. [PMID: 19609512 DOI: 10.1007/s00216-009-2904-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
A mid-infrared enzymatic assay for label-free monitoring of the enzymatic reaction of fructose-1,6-bisphosphatase with fructose 1,6-bisphosphate has been proposed. The whole procedure was done in an automated way operating in the stopped flow mode by incorporating a temperature-controlled flow cell in a sequential injection manifold. Fourier transform infrared difference spectra were evaluated for kinetic parameters, like the Michaelis-Menten constant (K(M)) of the enzyme and Vmax of the reaction. The obtained K(M) of the reaction was 14 +/- 3 g L(-1) (41 microM). Furthermore, inhibition by adenosine 5'-monophosphate (AMP) was evaluated, and the K(M)(App) value was determined to be 12 +/- 2 g L(-1) (35 microM) for 7.5 and 15 microM AMP, respectively, with Vmax decreasing from 0.1 +/- 0.03 to 0.05 +/- 0.01 g L(-1) min(-1). Therefore, AMP exerted a non-competitive inhibition.
Collapse
|
14
|
Gizak A, Maciaszczyk E, Dzugaj A, Eschrich K, Rakus D. Evolutionary conserved N-terminal region of human muscle fructose 1,6-bisphosphatase regulates its activity and the interaction with aldolase. Proteins 2008; 72:209-16. [PMID: 18214967 DOI: 10.1002/prot.21909] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-terminal residues of muscle fructose 1,6-bisphosphatase (FBPase) are highly conserved among vertebrates. In this article, we present evidence that the conservation is responsible for the unique properties of the muscle FBPase isozyme: high sensitivity to AMP and Ca(2+) inhibition and the high affinity to muscle aldolase, which is a factor desensitizing muscle FBPase toward AMP and Ca(2+). The first N-terminal residue affecting the affinity of muscle FBPase to aldolase is arginine 3. On the other hand, the first residue significantly influencing the kinetics of muscle FBPase is proline 5. Truncation from 5-7 N-terminal residues of the enzyme not only decreases its affinity to aldolase but also reduces its k-(cat) and activation by Mg(2+), and desensitizes FBPase to inhibition by AMP and calcium ions. Deletion of the first 10 amino acids of muscle FBPase abolishes cooperativity of Mg(2+) activation and results in biphasic inhibition of the enzyme by AMP. Moreover, this truncation lowers affinity of muscle FBPase to aldolase about 14 times, making it resemble the liver isozyme. We suggest that the existence of highly AMP-sensitive muscle-like FBPase, activity of which is regulated by metabolite-dependent interaction with aldolase enables the precise regulation of muscle energy expenditures and might contributed to the evolutionary success of vertebrates.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
15
|
Zarzycki M, Maciaszczyk E, Dzugaj A. Glu 69 is essential for the high sensitivity of muscle fructose-1,6-bisphosphatase inhibition by calcium ions. FEBS Lett 2007; 581:1347-50. [PMID: 17350621 DOI: 10.1016/j.febslet.2007.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/15/2007] [Accepted: 02/22/2007] [Indexed: 11/18/2022]
Abstract
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions.
Collapse
Affiliation(s)
- Marek Zarzycki
- Department of Animal Physiology, Zoological Institute, University of Wroclaw, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | |
Collapse
|
16
|
Dzugaj A. Localization and regulation of muscle fructose-1,6-bisphosphatase, the key enzyme of glyconeogenesis. ACTA ACUST UNITED AC 2006; 46:51-71. [PMID: 16857246 DOI: 10.1016/j.advenzreg.2006.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andrzej Dzugaj
- Department of Animal Physiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
17
|
Rakus D, Maciaszczyk E, Wawrzycka D, Ułaszewski S, Eschrich K, Dzugaj A. The origin of the high sensitivity of muscle fructose 1,6-bisphosphatase towards AMP. FEBS Lett 2005; 579:5577-81. [PMID: 16213487 DOI: 10.1016/j.febslet.2005.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/13/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
Adenosine 5'-monophosphate (AMP) inhibits muscle fructose 1,6-bisphosphatase (FBPase) about 44 times stronger than the liver isozyme. The key role in strong AMP binding to muscle isozyme play K20, T177 and Q179. Muscle FBPase which has been mutated towards the liver enzyme (K20E/T177M/Q179C) is inhibited by AMP about 26 times weaker than the wild-type muscle enzyme, but it binds the fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP), similarly to the wild-type liver enzyme. The reverse mutation of liver FBPase towards the muscle isozyme significantly increases the affinity of the mutant to TNP-AMP. High affinity to the inhibitor but low sensitivity to AMP of the liver triple mutant suggest differences between the isozymes in the mechanism of allosteric signal transmission.
Collapse
Affiliation(s)
- D Rakus
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Swinnen JV, Beckers A, Brusselmans K, Organe S, Segers J, Timmermans L, Vanderhoydonc F, Deboel L, Derua R, Waelkens E, De Schrijver E, Van de Sande T, Noël A, Foufelle F, Verhoeven G. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res 2005; 65:2441-8. [PMID: 15781660 DOI: 10.1158/0008-5472.can-04-3025] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aggressive cancer cells typically show a high rate of energy-consuming anabolic processes driving the synthesis of lipids, proteins, and DNA. Here, we took advantage of the ability of the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside to increase the intracellular levels of AICA ribotide, an AMP analogue, mimicking a low energy status of the cell. Treatment of cancer cells with AICA riboside impeded lipogenesis, decreased protein translation, and blocked DNA synthesis. Cells treated with AICA riboside stopped proliferating and lost their invasive properties and their ability to form colonies. When administered in vivo, AICA riboside attenuated the growth of MDA-MB-231 tumors in nude mice. These findings point toward a central tie between energy, anabolism, and cancer and suggest that the cellular energy sensing machinery in cancer cells is an exploitable target for cancer prevention and/or therapy.
Collapse
Affiliation(s)
- Johannes V Swinnen
- Laboratory for Experimental Medicine and Endocrinology, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park B, Oh SH, Seong JK, Paik YK. A strain-specific alteration of proteomic expression in mouse liver fructose 1,6-bisphosphatase isoforms by alcohol. Proteomics 2005; 4:3413-21. [PMID: 15378732 DOI: 10.1002/pmic.200400975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To study alcohol-related metabolism across inbred mouse strains, liver tissues from C57BL/6J (B6, an alcohol-preferring mouse) and DBA/2J (D2, an alcohol-avoiding strain) mice were analyzed for proteomic expression patterns over time after a single-dose of alcohol (1.5 g/kg ingestion). Despite no significant difference in the elimination rate of blood ethanol, two-dimensional electrophoresis gel images of liver proteins showed that proteins in B6 mice exhibited faster response and more quantitative (spot numbers) and qualitative (spot densities) changes than in D2 mice. Among the differentially expressed metabolic enzymes, four variants (alpha, beta, gamma and delta) of fructose 1,6-bisphosphatase (FBPase), a key regulatory gluconeogenic enzyme, showed remarkable changes in expression with time across the strains. The degree of spot alteration in alpha- and gamma-variants of FBPase in B6 mice was much higher than in D2 mice, while the beta- and delta-forms were not changed as much. Mass spectrometry (MS) analysis showed that the 1714.9 +/- 1 mass peak from the alpha- and gamma-variants of FBPase was much stronger than that of the beta- and delta-variants in both strains regardless of spot density. This MS peak contains 2-ANHAPFETDISTLTR-16, located at the N-terminal of FBPase, where the N-terminal alanine was found to be trimethylated. Thus, we propose this N-terminal fragment as a potential site for enzyme modification in response to ethanol, allowing for differences in two-dimensional gel spot intensity of variants of FBPase in the two mouse strains.
Collapse
Affiliation(s)
- Bokyung Park
- Department of Biochemistry, Yonsei Proteome Research Center, and Biomedical Proteome Research Centre, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
20
|
Rakus D, Gizak A, Dzugaj A. The regulation of the interaction between F-actin and muscle fructose 1,6-bisphosphatase. Int J Biol Macromol 2005; 35:33-8. [PMID: 15769513 DOI: 10.1016/j.ijbiomac.2004.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interaction between rabbit muscle fructose 1,6-bisphosphatase (FBPase) and rabbit muscle F-actin results in heterologous complex formation [A. Gizak, D. Rakus, A. Dzugaj, Histol. Histopathol. 18 (2003) 135]. Calculated on the basis of co-sedimentation-binding experiments and ELISA assay-binding constant (Ka) revealed that FBPase binds to F-actin with Ka equal to 7.4 x 10(4) M(-1). The binding is down-regulated by ligands interacting with the FBPase active site (fructose 6-phosphate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate) and with the FBPase allosteric inhibitory site (AMP). The binding and the kinetic data suggests that FBPase may bind F-actin using a bipartite motif which includes the amino acids residues involved in the binding of the substrate as well as of the allosteric inhibitor of the enzyme. The in situ co-localization experiment, in which FBPase was diffused into skinned muscle fibres pre-incubated with phalloidin (polymeric actin-interacting toxin), has shown that FBPase binds predominantly to the region of the Z-line.
Collapse
Affiliation(s)
- Darek Rakus
- Department of Animal Physiology, Zoological Institute, University of Wroclaw, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | |
Collapse
|
21
|
Rakus D, Pasek M, Krotkiewski H, Dzugaj A. Interaction between muscle aldolase and muscle fructose 1,6-bisphosphatase results in the substrate channeling. Biochemistry 2005; 43:14948-57. [PMID: 15554702 DOI: 10.1021/bi048886x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose 1,6-bisphosphatase (FBPase) is known to form a supramolecular complex with alpha-actinin and aldolase on both sides of the Z-line in skeletal muscle cells. It has been proposed that association of aldolase with FBPase not only desensitizes muscle FBPase toward AMP inhibition but it also might enable the channeling of intermediates between the enzymes [Rakus et al. (2003) FEBS Lett. 547, 11-14]. In the present paper, we tested the possibility of fructose 1,6-bisphosphate (F1,6-P(2)) channeling between aldolase and FBPase using the approach in which an inactive form of FBPase competed with active FBPase for binding to aldolase and thus decreased the rate of aldolase-FBPase reaction. The results showed that F1,6-P(2) is transferred directly from aldolase to FBPase without mixing with the bulk phase. Further evidence that F1,6-P(2) is channeled from aldolase to FBPase comes from the experiments investigating the inhibitory effect of a high concentration of magnesium ions on aldolase-FBPase activity. FBPase in a complex with aldolase, contrary to free muscle FBPase, was not inhibited by high Mg(2+) concentrations, which suggests that free F1,6-P(2) was not present in the assay mixture during the reaction. A real-time interaction analysis between aldolase and FBPase revealed a dual role of Mg(2+) in the regulation of the aldolase-FBPase complex stability. A physiological concentration of Mg(2+) increased the affinity of muscle FBPase to muscle aldolase, whereas higher concentrations of the cation decreased the concentration of the complex. We hypothesized that the presence of Mg(2+) stabilizes a positively charged cavity within FBPase and that it might enable an interaction with aldolase. Because magnesium decreased the binding constant (K(a)) between aldolase and FBPase in a manner similar to the decrease of K(a) caused by monovalent cations, it is postulated that electrostatic attraction might be a driving force for the complex formation. It is presumed that the biological relevance of F1,6-P(2) channeling between aldolase and FBPase is protection of this glyconeogenic, as well as glycolytic, intermediate against degradation by cytosolic aldolase, which is one of the most abundant enzyme of glycolysis.
Collapse
Affiliation(s)
- Darek Rakus
- Department of Animal Physiology, Zoological Institute, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | | | |
Collapse
|
22
|
Dziewulska-Szwajkowska D, Zmojdzian M, Dobryszycki P, Kochman M, Dzugaj A. The interaction of FBPase with aldolase: a kinetic and fluorescence investigation on chicken muscle enzymes. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:115-29. [PMID: 14698918 DOI: 10.1016/j.cbpc.2003.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) is strongly inhibited by AMP in vitro and, therefore, at physiological concentrations of substrate and AMP, FBPase should be completely inhibited. Desensitization of rabbit muscle FBPase against AMP inhibition was previously observed in the presence of rabbit muscle aldolase. In this study, we analysed the kinetics of an FBPase catalyzed reaction and interaction between chicken muscle FBPase and chicken muscle aldolase. The initial rate of FBPase reaction vs. substrate concentration shows a maximum activity at a concentration of 20 microM Fru-1,6P2 and then decreases. Assuming rapid equilibrium kinetics, the enzyme-catalyzed reaction was described by the substrate inhibition model, with Ks approximately 5 microM and Ksi approximately 39 microM and factor beta approximately 0.2, describing change in the rate constant (k) of product formation from the ES and ESSi complexes. Based on ultracentrifugation studies, aldolase and FBPase form a hetero-complex with approximately 1:1 stoichiometry with a dissociation constant (Kd) of 3.8 microM. The FBPase-aldolase interaction was confirmed via fluorescence investigation. The aldolase-FBPase interaction results in aldolase fluorescence quenching and its maximum emission spectrum shifting from 344 to 356 nm. The Kd of the FBPase-aldolase complex, determined on the basis of fluorescence changes, is 0.4 microM at 25 degrees C with almost 1:1 stoichiometry. This interaction increases the I(0.5) for the AMP inhibition of FBPase threefold, and slightly affects FBPase affinity to magnesium ions, increasing the Ka and Hill coefficient (n). No effect of aldolase on the FBPase pH optimum was observed. Thus, the decrease in FBPase sensitivity to AMP inhibition enables FBPase to function in vivo thanks to aldolase.
Collapse
Affiliation(s)
- Daria Dziewulska-Szwajkowska
- Department of Animal Physiology, Zoological Institute, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
23
|
Rakus D, Mamczur P, Gizak A, Dus D, Dzugaj A. Colocalization of muscle FBPase and muscle aldolase on both sides of the Z-line. Biochem Biophys Res Commun 2003; 311:294-9. [PMID: 14592412 DOI: 10.1016/j.bbrc.2003.09.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previously we have reported that in vitro muscle aldolase binds to muscle FBPase [Biochem. Biophys. Res. Commun. 275 (2000) 611-616] which results in the changes of regulatory properties of the latter enzyme. In the present paper, the evidence that aldolase binds to FBPase in living cell is presented. The colocalization experiment, in which aldolase was diffused into skinned fibres that had been pre-incubated with FBPase, has shown that aldolase in the presence of FBPase binds predominantly to the Z-line. The existence of a triple aldolase-FBPase-alpha-actinin complex was confirmed through a real-time interaction analysis using the BIAcore biosensor. The colocalization of FBPase and aldolase on alpha-actinin of the Z-line indicates the existence of glyconeogenic metabolon in vertebrates' myocytes.
Collapse
Affiliation(s)
- D Rakus
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
24
|
Rakus D, Pasek M, Krotkiewski H, Dzugaj A. Muscle FBPase in a complex with muscle aldolase is insensitive to AMP inhibition. FEBS Lett 2003; 547:11-4. [PMID: 12860378 DOI: 10.1016/s0014-5793(03)00661-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Real-time interaction analysis, using the BIAcore biosensor, of rabbit muscle FBPase-aldolase complex revealed apparent binding constant [K(Aapp)] values of about 4.4x10(8) M(-1). The stability of the complex was down-regulated by the glycolytic intermediates dihydroxyacetone phosphate and fructose 6-phosphate, and by the regulator of glycolysis and glyconeogenesis--fructose 2,6-bisphosphate. FBPase in a complex with aldolase was entirely insensitive to inhibition by physiological concentrations of AMP (I(0.5) was 1.35 mM) and the cooperativity of the inhibition was not observed. The existence of an FBPase-aldolase complex that is insensitive to AMP inhibition explains the possibility of glycogen synthesis from carbohydrate precursors in vertebrates' myocytes.
Collapse
Affiliation(s)
- D Rakus
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Cybulskiego 30, 50-205, Wroclaw, Poland
| | | | | | | |
Collapse
|