1
|
Jolley EA, Bormes KM, Bevilacqua PC. Upstream Flanking Sequence Assists Folding of an RNA Thermometer. J Mol Biol 2022; 434:167786. [PMID: 35952804 PMCID: PMC9554833 DOI: 10.1016/j.jmb.2022.167786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Many heat shock genes in bacteria are regulated through a class of temperature-sensitive stem-loop (SL) RNAs called RNA thermometers (RNATs). One of the most widely studied RNATs is the Repression Of heat Shock Expression (ROSE) element associated with expression of heat shock proteins. Located in the 5'UTR, the RNAT contains one to three auxiliary hairpins upstream of it. Herein, we address roles of these upstream SLs in the folding and function of an RNAT. Bradyrhizobium japonicum is a nitrogen-fixing bacterium that experiences a wide range of temperatures in the soil and contains ROSE elements, each having multiple upstream SLs. The 5'UTR of the messenger (mRNA) for heat shock protein A (hspA) in B. japonicum has an intricate secondary structure containing three SLs upstream of the RNAT SL. While structure-function studies of the hspA RNAT itself have been reported, it has been unclear if these auxiliary SLs contribute to the temperature-sensing function of the ROSE elements. Herein, we show that the full length (FL) sequence has several melting transitions indicating that the ROSE element unfolds in a non-two-state manner. The upstream SLs are more stable than the RNAT itself, and a variant with disrupted base pairing in the SL immediately upstream of the RNAT has little influence on the melting of the RNAT. On the basis of these results and modeling of the co-transcriptional folding of the ROSE element, we propose that the upstream SLs function to stabilize the transcript and aid proper folding and dynamics of the RNAT.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Kathryn M Bormes
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
2
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network. The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
3
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
4
|
Miwa T, Taguchi H. Novel self-regulation strategy of a small heat shock protein for prodigious and rapid expression on demand. Curr Genet 2021; 67:723-727. [PMID: 33839884 DOI: 10.1007/s00294-021-01185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
In this mini-review, we summarize the known and novel regulation mechanisms of small heat shock proteins (sHsps). sHsps belong to a well-conserved family of ATP-independent oligomeric chaperones that protect denatured proteins from forming irreversible aggregates by co-aggregation. The functions of sHsps as a first line of defense against acute stresses require the high abundance of sHsps on demand. The heat stress-induced expression of IbpA, one of the sHsps in Escherichia coli, is regulated by σ32, an RNA polymerase subunit, and the thermoresponsive mRNA structures in the 5' untranslated region, called RNA thermometers. In addition to the known mechanisms, a recent study has revealed unexpected processes by which the oligomeric IbpA self-represses the ibpA translation via the direct binding of IbpA to its own mRNA, and mediates the mRNA degradation. In summary, the role of IbpA as an aggregation-sensor, combined with other mechanisms, tightly regulates the expression level of IbpA, thus enabling the sHsp to function as a "sequestrase" upon acute aggregation stress, and provides new insights into the mechanisms of other sHsps in both bacteria and eukaryotes.
Collapse
Affiliation(s)
- Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8503, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
5
|
Fröhlich KS, Velasco Gomariz M. RNA-controlled regulation in Caulobacter crescentus. Curr Opin Microbiol 2021; 60:1-7. [PMID: 33529919 DOI: 10.1016/j.mib.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
In the past decades, Caulobacter crescentus has been extensively studied, mostly regarding its dimorphic, asymmetric life cycle. Its distinct mode of reproduction and the need to optimally adapt to ever-changing environmental conditions require tight coordination of gene regulation. Post-transcriptional regulation through non-coding RNAs and RNA-binding proteins constitutes an important layer of expression control in bacteria, but its principles and mechanisms in Caulobacter have only recently been explored. RNA-binding proteins including the RNA chaperone Hfq and ribonuclease RNase E contribute to the activity of regulatory RNAs. Riboswitches and RNA thermometers govern expression of downstream open reading frames, while the small regulatory RNAs CrfA, ChvR and GsrN instead control targets encoded in trans by direct base-pairing interactions.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Microverse Cluster, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
6
|
Zhang H, Hall I, Nissley AJ, Abdallah K, Keane SC. A Tale of Two Transitions: The Unfolding Mechanism of the prfA RNA Thermosensor. Biochemistry 2020; 59:4533-4545. [PMID: 33231432 DOI: 10.1021/acs.biochem.0c00588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA thermosensors (RNATs), found in the 5' untranslated region (UTR) of some bacterial messenger RNAs (mRNAs), control the translation of the downstream gene in a temperature-dependent manner. In Listeria monocytogenes, the expression of a key transcription factor, PrfA, is mediated by an RNAT in its 5' UTR. PrfA functions as a master regulator of virulence in L. monocytogenes, controlling the expression of many virulence factors. The temperature-regulated expression of PrfA by its RNAT element serves as a signal of successful host invasion for the bacteria. Structurally, the prfA RNAT bears little resemblance to known families of RNATs, and prior studies demonstrated that the prfA RNAT is highly responsive over a narrow temperature range. Herein, we have undertaken a comprehensive mutational and thermodynamic analysis to ascertain the molecular determinants of temperature sensitivity. We provide evidence to support the idea that the prfA RNAT unfolding is different from that of cssA, a well-characterized RNAT, suggesting that these RNATs function via distinct mechanisms. Our data show that the unfolding of the prfA RNAT occurs in two distinct events and that the internal loops play an important role in mediating the cooperativity of RNAT unfolding. We further demonstrated that regions distal to the ribosome binding site (RBS) not only contribute to RNAT structural stability but also impact translation of the downstream message. Our collective results provide insight connecting the thermal stability of the prfA RNAT structure, unfolding energetics, and translational control.
Collapse
Affiliation(s)
- Huaqun Zhang
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amos J Nissley
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kyrillos Abdallah
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Regulation of OmpA Translation and Shigella dysenteriae Virulence by an RNA Thermometer. Infect Immun 2020; 88:IAI.00871-19. [PMID: 31792074 DOI: 10.1128/iai.00871-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
RNA thermometers are cis-acting riboregulators that mediate the posttranscriptional regulation of gene expression in response to environmental temperature. Such regulation is conferred by temperature-responsive structural changes within the RNA thermometer that directly result in differential ribosomal binding to the regulated transcript. The significance of RNA thermometers in controlling bacterial physiology and pathogenesis is becoming increasingly clear. This study combines in silico, molecular genetics, and biochemical analyses to characterize both the structure and function of a newly identified RNA thermometer within the ompA transcript of Shigella dysenteriae First identified by in silico structural predictions, genetic analyses have demonstrated that the ompA RNA thermometer is a functional riboregulator sufficient to confer posttranscriptional temperature-dependent regulation, with optimal expression observed at the host-associated temperature of 37°C. Structural studies and ribosomal binding analyses have revealed both increased exposure of the ribosomal binding site and increased ribosomal binding to the ompA transcript at permissive temperatures. The introduction of site-specific mutations predicted to alter the temperature responsiveness of the ompA RNA thermometer has predictable consequences for both the structure and function of the regulatory element. Finally, in vitro tissue culture-based analyses implicate the ompA RNA thermometer as a bona fide S. dysenteriae virulence factor in this bacterial pathogen. Given that ompA is highly conserved among Gram-negative pathogens, these studies not only provide insight into the significance of riboregulation in controlling Shigella virulence, but they also have the potential to facilitate further understanding of the physiology and/or pathogenesis of a wide range of bacterial species.
Collapse
|
8
|
Twittenhoff C, Heroven AK, Mühlen S, Dersch P, Narberhaus F. An RNA thermometer dictates production of a secreted bacterial toxin. PLoS Pathog 2020; 16:e1008184. [PMID: 31951643 PMCID: PMC6992388 DOI: 10.1371/journal.ppat.1008184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/30/2020] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host’s innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5’-untranslated region (5’-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5’-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens. Bacterial pathogens closely survey the ambient conditions and induce virulence genes only at appropriate conditions. Upon host contact, many pathogens secrete toxins in order to subvert host defense systems. We find that such a secreted toxin in enteropathogenic Yersinia pseudotuberculosis is produced only at host body temperature. This regulation depends on a temperature-responsive RNA structure, an RNA thermometer, in the 5’-untranslated region of the toxin mRNA, which prevents translation at low temperatures when the bacterium is outside the host. Preventing melting of the RNA structure at 37°C by nucleotide substitutions that stabilize base pairing resulted in avirulent Yersinia strains unable to infect mice. Given that similar RNA thermometer-like structures exist upstream of related toxin genes in various bacterial pathogens, we propose that RNA thermometer-mediated toxin production is an evolutionary conserved mechanism. Interfering with opening of such regulatory structures might thus be a promising strategy targeting a broad spectrum of bacterial pathogens.
Collapse
Affiliation(s)
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
9
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|
10
|
Kusmierek M, Hoßmann J, Witte R, Opitz W, Vollmer I, Volk M, Heroven AK, Wolf-Watz H, Dersch P. A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact. PLoS Pathog 2019; 15:e1007813. [PMID: 31173606 PMCID: PMC6583979 DOI: 10.1371/journal.ppat.1007813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/19/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators. Secretion of the YopD translocator upon host cell contact increases the ratio of post-transcriptional regulator CsrA to its antagonistic small RNAs CsrB and CsrC and reduces the degradosome components PNPase and RNase E levels. This substantially elevates the amount of the common transcriptional activator (LcrF) of T3SS/Yop effector genes and triggers the synthesis of associated virulence-relevant traits. The observed hijacking of global riboregulators allows the pathogen to coordinate virulence factor expression and also readjusts its physiological response upon host cell contact.
Collapse
Affiliation(s)
- Maria Kusmierek
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörn Hoßmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rebekka Witte
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wiebke Opitz
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, University of Münster, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hans Wolf-Watz
- Department of Molecular Biology, Umea University, Sweden
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, University of Münster, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene.IMPORTANCE The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere.
Collapse
|
12
|
Abduljalil JM. Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis. Noncoding RNA Res 2018; 3:54-63. [PMID: 30159440 PMCID: PMC6096418 DOI: 10.1016/j.ncrna.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are always challenged by fluctuations of chemical and physical parameters that pose serious threats to cellular integrity and metabolic status. Sudden deprivation of nutrients or key metabolites, changes in surrounding pH, and temperature shifts are the most important examples of such parameters. To elicit a proper response to such fluctuations, bacterial cells coordinate the expression of parameter-relevant genes. Although protein-mediated control of gene expression is well appreciated since many decades, RNA-based regulation has been discovered in early 2000s as a parallel level of regulation. Small regulatory RNAs have emerged as one of the most widespread and important gene regulatory systems in bacteria with rare representatives found in Archaea and Eukarya. Riboswitches and thermosensors are cis-encoded RNA regulatory elements that employ different mechanisms to regulate the expression of related genes controlling key metabolic pathways and genes of temperature relevant proteins including virulence factors. The extent of RNA contributions to gene regulation is not completely known even in well-studied models such E. coli and B. subtilis. In depth understanding of riboswitches is promising for opportunity to discover a narrow spectrum antibacterial drugs that target riboswitches of essential metabolic pathways.
Collapse
Key Words
- 5ʹ-UTRs, 5ʹ-untranslated region
- AdoCbl, adenosylcobalamine
- Aptamer
- Bacterial pathogenicity
- CSPs, Cold Shock Proteins
- FMN, Flavin mononucleotide
- Gene expression
- ORFs, open reading frames
- RBS, Ribosomal Binding Site
- RNA thermometer
- RNAP, RNA polymerase
- RNAT, RNA thermometer
- Riboswitches
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SD, Shine-Dalgarno
- TPP, Thiamine pyrophosphate
- Transcription termination
- Virulence
Collapse
|
13
|
Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. RNA Thermometers in Bacterial Pathogens. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0012-2017. [PMID: 29623874 PMCID: PMC11633587 DOI: 10.1128/microbiolspec.rwr-0012-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Temperature variation is one of the multiple parameters a microbial pathogen encounters when it invades a warm-blooded host. To survive and thrive at host body temperature, human pathogens have developed various strategies to sense and respond to their ambient temperature. An instantaneous response is mounted by RNA thermometers (RNATs), which are integral sensory structures in mRNAs that modulate translation efficiency. At low temperatures outside the host, the folded RNA blocks access of the ribosome to the translation initiation region. The temperature shift upon entering the host destabilizes the RNA structure and thus permits ribosome binding. This reversible zipper-like mechanism of RNATs is ideally suited to fine-tune virulence gene expression when the pathogen enters or exits the body of its host. This review summarizes our present knowledge on virulence-related RNATs and discusses recent developments in the field.
Collapse
Affiliation(s)
- Edmund Loh
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- SCELSE, Nanyang Technological University, 639798, Singapore
| | - Francesco Righetti
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hannes Eichner
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Meyer S, Carlson PD, Lucks JB. Characterizing the Structure-Function Relationship of a Naturally Occurring RNA Thermometer. Biochemistry 2017; 56:6629-6638. [PMID: 29172455 PMCID: PMC5807002 DOI: 10.1021/acs.biochem.7b01170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large number of bacteria have been found to govern virulence and heat shock responses using temperature-sensing RNAs known as RNA thermometers. A prime example is the agsA thermometer known to regulate the production of the AgsA heat shock protein in Salmonella enterica using a "fourU" structural motif. Using the SHAPE-Seq RNA structure-probing method in vivo and in vitro, we found that the regulator functions by a subtle shift in equilibrium RNA structure populations that leads to a partial melting of the helix containing the ribosome binding site. We also demonstrate that binding of the ribosome to the agsA mRNA causes changes to the thermometer structure that appear to facilitate thermometer helix unwinding. These results demonstrate how subtle RNA structural changes can govern gene expression and illuminate the function of an important bacterial regulatory motif.
Collapse
Affiliation(s)
- Sarai Meyer
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University; 120 Olin Hall; Ithaca, NY 14853; USA
| | - Paul D. Carlson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University; 120 Olin Hall; Ithaca, NY 14853; USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University; 2145 Sheridan Rd.; Evanston, IL 60208; USA
| |
Collapse
|
15
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Roßmanith J, Narberhaus F. Exploring the modular nature of riboswitches and RNA thermometers. Nucleic Acids Res 2016; 44:5410-23. [PMID: 27060146 PMCID: PMC4914106 DOI: 10.1093/nar/gkw232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 01/20/2023] Open
Abstract
Natural regulatory RNAs like riboswitches and RNA thermometers (RNAT) have considerable potential in synthetic biology. They are located in the 5′ untranslated region (UTR) of bacterial mRNAs and sense small molecules or changes in temperature, respectively. While riboswitches act on the level of transcription, translation or mRNA stability, all currently known RNATs regulate translation initiation. In this study, we explored the modularity of riboswitches and RNATs and obtained regulatory devices with novel functionalities. In a first approach, we established three riboswitch-RNAT systems conferring dual regulation of transcription and translation depending on the two triggers ligand binding and temperature sensing. These consecutive fusions control gene expression in vivo and can even orchestrate complex cellular behavior. In another approach, we designed two temperature-controlled riboswitches by the integration of an RNAT into a riboswitch aptamer domain. These ‘thermoswitches’ respond to the cognate ligand at low temperatures and are turned into a continuous on-state by a temperature upshift. They represent the first RNATs taking control of transcription. Overall, this study demonstrates that riboswitches and RNATs are ideal for engineering synthetic RNA regulators due to their modular behavior.
Collapse
Affiliation(s)
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
18
|
Grosso-Becera MV, Servín-González L, Soberón-Chávez G. RNA structures are involved in the thermoregulation of bacterial virulence-associated traits. Trends Microbiol 2015; 23:509-18. [PMID: 25999019 DOI: 10.1016/j.tim.2015.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022]
Abstract
Pathogenic bacteria are exposed to temperature changes during colonization of the human body and during exposure to environmental conditions. Virulence-associated traits are mainly expressed by pathogenic bacteria at 37°C. We review different cases of post-transcriptional regulation of virulence-associated proteins through RNA structures (called RNA thermometers or RNATs) that modulate the translation of mRNAs. The analysis of RNATs in pathogenic bacteria has started to produce a comprehensive picture of the structures involved, and of the genes regulated by this mechanism. However, we are still not able to predict the functionality of putative RNATs predicted by bioinformatics methods, and there is not a global approach to measure the effect of these RNA structures in gene regulation during bacterial infections.
Collapse
Affiliation(s)
- María Victoria Grosso-Becera
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones, Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Escolar, Apartado Postal 70228, DF, México
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones, Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Escolar, Apartado Postal 70228, DF, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones, Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Escolar, Apartado Postal 70228, DF, México.
| |
Collapse
|
19
|
Bai Y, Dai X, Harrison A, Johnston C, Chen M. Toward a next-generation atlas of RNA secondary structure. Brief Bioinform 2015; 17:63-77. [PMID: 25922372 DOI: 10.1093/bib/bbv026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/23/2022] Open
Abstract
RNA structure plays a crucial role in gene maturation, regulation and function. Determining the form and frequency of RNA folds is essential for a better understanding of how RNA exerts its functions. Low-throughput studies have focused on RNA primary sequences and expression levels, but with an emphasis on relatively small numbers of transcripts. However, with the recent advent of high-throughput technologies, it is realistic to begin analyzing RNA secondary structures on a genome-wide scale. Here, we review genome-wide RNA secondary structure profiles as well as advances in computational structure predictions. We further discuss the novel characteristics of RNA secondary structure across messenger RNAs. Probing RNA secondary structure by high-throughput sequencing will enable us to build atlases of RNA secondary structures, an important step in helping us to understand the versatility of RNA functions in diverse cellular processes.
Collapse
|
20
|
Delvillani F, Sciandrone B, Peano C, Petiti L, Berens C, Georgi C, Ferrara S, Bertoni G, Pasini ME, Dehò G, Briani F. Tet-Trap, a genetic approach to the identification of bacterial RNA thermometers: application to Pseudomonas aeruginosa. RNA (NEW YORK, N.Y.) 2014; 20:1963-1976. [PMID: 25336583 PMCID: PMC4238360 DOI: 10.1261/rna.044354.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in cis-acting riboregulators is widespread in bacteria and controls relevant phenotypic traits. Unfortunately, global identification of post-transcriptionally regulated genes is complicated by poor structural and functional conservation of regulatory elements and by the limitations of proteomic approaches in protein quantification. We devised a genetic system for the identification of post-transcriptionally regulated genes and we applied this system to search for Pseudomonas aeruginosa RNA thermometers, a class of regulatory RNA that modulates gene translation in response to temperature changes. As P. aeruginosa is able to thrive in a broad range of environmental conditions, genes differentially expressed at 37 °C versus lower temperatures may be involved in infection and survival in the human host. We prepared a plasmid vector library with translational fusions of P. aeruginosa DNA fragments (PaDNA) inserted upstream of TIP2, a short peptide able to inactivate the Tet repressor (TetR) upon expression. The library was assayed in a streptomycin-resistant merodiploid rpsL(+)/rpsL31 Escherichia coli strain in which the dominant rpsL(+) allele, which confers streptomycin sensitivity, was repressed by TetR. PaDNA fragments conferring thermosensitive streptomycin resistance (i.e., expressing PaDNA-TIP2 fusions at 37°C, but not at 28°C) were sequenced. We identified four new putative thermosensors. Two of them were validated with conventional reporter systems in E. coli and P. aeruginosa. Interestingly, one regulates the expression of ptxS, a gene implicated in P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Francesco Delvillani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Barbara Sciandrone
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Clelia Peano
- Istituto di Tecnologie Biomediche, CNR, 20090 Segrate, Italy
| | - Luca Petiti
- Istituto di Tecnologie Biomediche, CNR, 20090 Segrate, Italy Doctoral Program of Molecular and Translational Medicine, Università degli Studi di Milano, 20133 Milano, Italy
| | - Christian Berens
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christiane Georgi
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Silvia Ferrara
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Giovanni Bertoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Enrica Pasini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
21
|
Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Proc Natl Acad Sci U S A 2014; 111:15562-7. [PMID: 25313031 DOI: 10.1073/pnas.1402536111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a number of bacterial pathogens, the production of virulence factors is induced at 37 °C; this effect is often regulated by mRNA structures formed in the 5' untranslated region (UTR) that block translation initiation of genes at environmental temperatures. At 37 °C, the RNA structures become unstable and ribosomes gain access to their binding sites in the mRNAs. Pseudomonas aeruginosa is an important opportunistic pathogen and the expression of many of its virulence-associated traits is regulated by the quorum-sensing (QS) response, but the effect of temperature on virulence-factor expression is not well-understood. The aim of this work is the characterization of the molecular mechanism involved in thermoregulation of QS-dependent virulence-factor production. We demonstrate that traits that are dependent on the QS transcriptional regulator RhlR have a higher expression at 37 °C, correlating with a higher RhlR concentration as measured by Western blot. We also determined, using gene fusions and point mutations, that RhlR thermoregulation is a posttranscriptional effect dependent on an RNA thermometer of the ROSE (Repression Of heat-Shock gene Expression) family. This RNA element regulates the expression of the rhlAB operon, involved in rhamnolipid production, and of the downstream rhlR gene. We also identified a second functional thermometer in the 5' UTR of the lasI gene. We confirmed that these RNA thermometers are the main mechanism of thermoregulation of QS-dependent gene expression in P. aeruginosa using quantitative real-time PCR. This is the first description, to our knowledge, of a ROSE element regulating the expression of virulence traits and of an RNA thermometer controlling multiple genes in an operon through a polar effect.
Collapse
|
22
|
Righetti F, Narberhaus F. How to find RNA thermometers. Front Cell Infect Microbiol 2014; 4:132. [PMID: 25279353 PMCID: PMC4166951 DOI: 10.3389/fcimb.2014.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/02/2014] [Indexed: 11/27/2022] Open
Abstract
Temperature is one of the decisive signals that a mammalian pathogen has entered its warm-blooded host. Among the many ways to register temperature changes, bacteria often use temperature-modulated structures in the untranslated region of mRNAs. In this article, we describe how such RNA thermometers (RNATs) have been discovered one by one upstream of heat shock and virulence genes in the past, and how next-generation sequencing approaches are able to reveal novel temperature-responsive RNA structures on a global scale.
Collapse
|
23
|
Cimdins A, Klinkert B, Aschke-Sonnenborn U, Kaiser FM, Kortmann J, Narberhaus F. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers. RNA Biol 2014; 11:594-608. [PMID: 24755616 PMCID: PMC4152365 DOI: 10.4161/rna.28648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5′-untranslated region (5′-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.
To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5′-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes.
Collapse
Affiliation(s)
- Annika Cimdins
- Microbial Biology; Ruhr University Bochum; Bochum, Germany
| | | | | | | | - Jens Kortmann
- Microbial Biology; Ruhr University Bochum; Bochum, Germany
| | | |
Collapse
|
24
|
Krajewski SS, Joswig M, Nagel M, Narberhaus F. A tricistronic heat shock operon is important for stress tolerance of Pseudomonas putida and conserved in many environmental bacteria. Environ Microbiol 2014; 16:1835-53. [PMID: 24612349 DOI: 10.1111/1462-2920.12432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Small heat shock proteins (sHsps) including the well-studied IbpA protein from Escherichia coli are molecular chaperones that bind to non-native proteins and prevent them from aggregation. We discovered an entirely unexplored tricistronic small heat shock gene cluster in Pseudomonas putida. The genes pp3314, pp3313 and pp3312 (renamed to hspX, hspY and hspZ respectively) are transcribed in a single transcript. In addition to σ(32) -dependent transcriptional control, translation of the first and second gene of the operon is controlled by RNA thermometers with novel architectures. Biochemical analysis of HspY, HspZ and P. putida IbpA demonstrated that they assemble into homo-oligomers of different sizes whose quaternary structures alter in a temperature-dependent manner. IbpA and HspY are able to prevent the model substrate citrate synthase from thermal aggregation in vitro. Increased stress sensitivity of a P. putida strain lacking HspX, HspY and HspZ revealed an important role of these sHsps in stress adaptation. The hspXYZ operon is conserved among metabolically related bacteria that live in hostile environments including polluted soils. This heat shock operon might act as a protective system to promote survival in such ecological niches.
Collapse
|
25
|
Krajewski SS, Narberhaus F. Temperature-driven differential gene expression by RNA thermosensors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:978-988. [PMID: 24657524 DOI: 10.1016/j.bbagrm.2014.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Many prokaryotic genes are organized in operons. Genes organized in such transcription units are co-transcribed into a polycistronic mRNA. Despite being clustered in a single mRNA, individual genes can be subjected to differential regulation, which is mainly achieved at the level of translation depending on initiation and elongation. Efficiency of translation initiation is primarily determined by the structural accessibility of the ribosome binding site (RBS). Structured cis-regulatory elements like RNA thermometers (RNATs) can contribute to differential regulation of individual genes within a polycistronic mRNA. RNATs are riboregulators that mediate temperature-responsive regulation of a downstream gene by modulating the accessibility of its RBS. At low temperature, the RBS is trapped by intra-molecular base pairing prohibiting translation initiation. The secondary structure melts with increasing temperature thus liberating the RBS. Here, we present an overview of different RNAT types and specifically highlight recently discovered RNATs. The main focus of this review is on RNAT-based differential control of polycistronic operons. Finally, we discuss the influence of temperature on other riboregulators and the potential of RNATs in synthetic RNA biology. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
26
|
Limanskaya OY, Murtazaeva LA, Limanskii AP. Potential thermosensitive riboswitches in the genome of Salmonella. CYTOL GENET+ 2013; 47:268-275. [PMID: 32214543 PMCID: PMC7089174 DOI: 10.3103/s009545271305006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Indexed: 11/30/2022]
Abstract
Currently, a number of structurally and functionally different thermosensitive elements, such as structurally and functionally different RNA thermometers, for controlling a variety of biological processes in bacteria, including virulence are known. These well-known RNA thermometers are structures, whether matched or mismatched, which are represented by either a single stretched hairpin structure or a few hairpins. Based on computer and thermodynamic analyses of 25 isolates of Salmonella enterica with complete genome, we have developed an algorithm and criteria to search for potential RNA thermometers, which will enable us to undertake a future search for potential riboswitches in the genomes of other socially significant pathogens. In addition to the well-known 4U RNA thermometer, another four hairpin-loop structures have been identified in S. enterica as new potential RNA thermometers and two of them are localized in 5'-UTR of virulence regulators gltB and yaeQ. They are highly conserved noncanonical structures and correspond to the necessary and sufficient conditions for forming RNA thermometers, since they are found in each of the 25 S. enterica genome isolates. We analyzed the thermosensitive motif in the pXO1 plasmid of Bacillus anthracis-an anthrax-causative pathogen-and visualized matched hairpins that form a cruciform structure in pUC8 supercoiled plasmid by atomic force microscopy.
Collapse
Affiliation(s)
- O. Yu. Limanskaya
- Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, Kharkov, Ukraine
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, National Academy of Medical Sciences of Ukraine, Kharkov, Ukraine
| | | | - A. P. Limanskii
- Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, Kharkov, Ukraine
| |
Collapse
|
27
|
|
28
|
Cimdins A, Roßmanith J, Langklotz S, Bandow JE, Narberhaus F. Differential control of Salmonella heat shock operons by structured mRNAs. Mol Microbiol 2013; 89:715-31. [PMID: 23802546 DOI: 10.1111/mmi.12308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/29/2022]
Abstract
DnaK-DnaJ-GrpE and GroES-GroEL are the major chaperone machineries in bacteria. In many species, dnaKJ and groESL are encoded in bicistronic operons. Quantitative proteomics revealed that DnaK and GroEL amounts in Salmonella dominate over DnaJ and GroES respectively. An imperfect transcriptional terminator in the intergenic region of dnaKJ is known to result in higher transcript levels of the first gene. Here, we examined the groESL operon and asked how the second gene in a heat shock operon can be preferentially expressed and found that an RNA structure in the 5'untranslated region of groES is responsible. The secondary structure masks the Shine-Dalgarno (SD) sequence and AUG start codon and thereby modulates translation of groES mRNA. Reporter gene assays combined with structure probing and toeprinting analysis revealed a dynamic temperature-sensitive RNA structure. Following an increase in temperature, only the second of two RNA hairpins melts and partially liberates the SD sequence, thus facilitating translation. Translation of groEL is not temperature-regulated leading to an excess of the chaperonin in the cell at low temperature. Discussion in a broader context shows how structured RNA segments can differentially control expression of temperature-affected operons in various ways.
Collapse
Affiliation(s)
- Annika Cimdins
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
29
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
30
|
Krajewski SS, Nagel M, Narberhaus F. Short ROSE-like RNA thermometers control IbpA synthesis in Pseudomonas species. PLoS One 2013; 8:e65168. [PMID: 23741480 PMCID: PMC3669281 DOI: 10.1371/journal.pone.0065168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial small heat shock protein IbpA protects client proteins from aggregation. Due to redundancy in the cellular chaperone network, deletion of the ibpA gene often leads to only a mild or no phenotypic defect. In this study, we show that a Pseudomonas putida ibpA deletion mutant has a severe growth defect under heat stress conditions and reduced survival during recovery revealing a critical role of IbpA in heat tolerance. Transcription of the ibpA gene depends on the alternative heat shock sigma factor σ32. Production of IbpA protein only at heat shock temperatures suggested additional translational control. We conducted a comprehensive structural and functional analysis of the 5′ untranslated regions of the ibpA genes from P. putida and Pseudomonas aeruginosa. Both contain a ROSE-type RNA thermometer that is substantially shorter and simpler than previously reported ROSE elements. Comprised of two hairpin structures only, they inhibit translation at low temperature and permit translation initiation after a temperature upshift. Both elements regulate reporter gene expression in Escherichia coli and ribosome binding in vitro in a temperature-dependent manner. Structure probing revealed local melting of the second hairpin whereas the first hairpin remained unaffected. High sequence and structure conservation of pseudomonal ibpA untranslated regions and their ability to confer thermoregulation in vivo suggest that short ROSE-like thermometers are commonly used to control IbpA synthesis in Pseudomonas species.
Collapse
Affiliation(s)
| | - Miriam Nagel
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
31
|
RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 2013; 8:e63781. [PMID: 23704938 PMCID: PMC3660397 DOI: 10.1371/journal.pone.0063781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
The initiation, progression and transmission of most bacterial infections is dependent upon the ability of the invading pathogen to acquire iron from each of the varied environments encountered during the course of a natural infection. In total, 95% of iron within the human body is complexed within heme, making heme a potentially rich source of host-associated nutrient iron for invading bacteria. As heme is encountered only within the host, pathogenic bacteria often regulate synthesis of heme utilization factors such that production is maximal under host-associated environmental conditions. This study examines the regulated production of ShuA, an outer-membrane receptor required for the utilization of heme as a source of nutrient iron by Shigella dysenteriae, a pathogenic bacterium that causes severe diarrheal diseases in humans. Specifically, the impact of the distinct environmental temperatures encountered during infection within a host (37°C) and transmission between hosts (25°C) on shuA expression is investigated. We show that shuA expression is subject to temperature-dependent post-transcriptional regulation resulting in increased ShuA production at 37°C. The observed thermoregulation is mediated by nucleic acid sequences within the 5' untranslated region. In addition, we have identified similar nucleotide sequences within the 5' untranslated region of the orthologous chuA transcript of enteropathogenic E. coli and have demonstrated that it also functions to confer temperature-dependent post-transcriptional regulation. In both function and predicted structure, the regulatory element within the shuA and chuA 5' untranslated regions closely resembles a FourU RNA thermometer, a zipper-like RNA structure that occludes the Shine-Dalgarno sequence at low temperatures. Increased production of ShuA and ChuA in response to the host body temperature allows for maximal production of these heme acquisition factors within the environment where S. dysenteriae and pathogenic E. coli strains would encounter heme, a host-specific iron source.
Collapse
|
32
|
Structural requirement in Clostridium perfringens collagenase mRNA 5' leader sequence for translational induction through small RNA-mRNA base pairing. J Bacteriol 2013; 195:2937-46. [PMID: 23585542 DOI: 10.1128/jb.00148-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Gram-positive anaerobic bacterium Clostridium perfringens is pathogenic to humans and animals, and the production of its toxins is strictly regulated during the exponential phase. We recently found that the 5' leader sequence of the colA transcript encoding collagenase, which is a major toxin of this organism, is processed and stabilized in the presence of the small RNA VR-RNA. The primary colA 5'-untranslated region (5'UTR) forms a long stem-loop structure containing an internal bulge and masks its own ribosomal binding site. Here we found that VR-RNA directly regulates colA expression through base pairing with colA mRNA in vivo. However, when the internal bulge structure was closed by point mutations in colA mRNA, translation ceased despite the presence of VR-RNA. In addition, a mutation disrupting the colA stem-loop structure induced mRNA processing and ColA-FLAG translational activation in the absence of VR-RNA, indicating that the stem-loop and internal bulge structure of the colA 5' leader sequence is important for regulation by VR-RNA. On the other hand, processing was required for maximal ColA expression but was not essential for VR-RNA-dependent colA regulation. Finally, colA processing and translational activation were induced at a high temperature without VR-RNA. These results suggest that inhibition of the colA 5' leader structure through base pairing is the primary role of VR-RNA in colA regulation and that the colA 5' leader structure is a possible thermosensor.
Collapse
|
33
|
Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 2013; 303:217-29. [PMID: 23660175 DOI: 10.1016/j.ijmm.2013.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/26/2013] [Accepted: 04/07/2013] [Indexed: 11/28/2022] Open
Abstract
Bacteria are often exposed to a hostile environment and have developed a plethora of cellular processes in order to survive. A burgeoning list of small non-coding RNAs (sRNAs) has been identified and reported to orchestrate crucial stress responses in bacteria. Among them, cis-encoded sRNA, trans-encoded sRNA, and 5'-untranslated regions (UTRs) of the protein coding sequence are influential in the bacterial response to environmental cues, such as fluctuation of temperature and pH as well as other stress conditions. This review summarizes the role of bacterial sRNAs in modulating selected stress conditions and highlights the alliance between stress response and clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial defense.
Collapse
Affiliation(s)
- Chee-Hock Hoe
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, 13200 Penang, Malaysia.
| | | | | | | |
Collapse
|
34
|
Saragliadis A, Krajewski SS, Rehm C, Narberhaus F, Hartig JS. Thermozymes: Synthetic RNA thermometers based on ribozyme activity. RNA Biol 2013; 10:1010-6. [PMID: 23595083 DOI: 10.4161/rna.24482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Synthetic biology approaches often combine natural building blocks to generate new cellular activities. Here, we make use of two RNA elements to design a regulatory device with novel functionality. The system is based on a hammerhead ribozyme (HHR) that cleaves itself to generate a liberated ribosome-binding site and, thus, permits expression of a downstream gene. We connected a temperature-responsive RNA hairpin to the HHR and, thus, generated a temperature-controlled ribozyme that we call thermozyme. Specifically, a Salmonella RNA thermometer (RNAT) known to modulate small heat shock gene expression by temperature-controlled base-pairing and melting was fused to the ribozyme. Following an in vivo screening approach, we isolated two functional thermozymes. In vivo expression studies and in vitro structure probing experiments support a mechanism in which rising temperatures melt the thermometer structure impairing the self-cleavage reaction of the ribozyme. Since RNA cleavage is necessary to liberate the RBS, these engineered thermozymes shut off gene expression in response to a temperature increase and, thus, act in a reverse manner as the natural RNAT. Our results clearly emphasize the highly modular nature and biotechnological potential of ribozyme-based RNA thermometers.
Collapse
Affiliation(s)
- Athanasios Saragliadis
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
35
|
Limanskaya OY, Murtazaeva LA, Limanskii AP. Search for the new potential RNA thermometers in the genome of Salmonella enterica. Microbiology (Reading) 2013; 82:68-76. [PMID: 32214462 PMCID: PMC7089039 DOI: 10.1134/s0026261713010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Indexed: 11/22/2022] Open
Abstract
Currently, a number of structurally and functionally different temperature-sensitive elements such as RNA thermometers which control a variety of biological processes in bacteria, including virulence, are known. Based on computer and thermodynamic analysis of completely sequenced genomes of 25 Salmonella enterica isolates, the algorithm and criteria for the search of potential RNA thermometers were developed. It will make it possible to carry out the search for potential riboswitches in the genome of other socially important pathogens. For S. enterica, apart from the known 4U RNA thermometer, four hairpin-loop structures were identified which may probably act as additional RNA thermometers. They satisfy the necessary and sufficient conditions for formation of RNA thermometers and are highly conservative uncanonical structures, since these highly conservative structures were found in the genome of all 25 isolates of S. enterica. The hairpins forming a cruciform structure in the supercoiled pUC8 DNA were visualized by atomic force microscopy.
Collapse
Affiliation(s)
- O. Yu. Limanskaya
- Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, Kharkov, Ukraine
- Institute of Experimental and Clinical Veterinary Medicine, National Academy of Agricultural Sciences of Ukraine, Kharkov, Ukraine
| | | | - A. P. Limanskii
- Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, Kharkov, Ukraine
| |
Collapse
|
36
|
Shapiro RS, Cowen LE. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. mBio 2012; 3:e00238-12. [PMID: 23033469 PMCID: PMC3518907 DOI: 10.1128/mbio.00238-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Temperature is a critical and ubiquitous environmental signal that governs the development and virulence of diverse microbial species, including viruses, archaea, bacteria, fungi, and parasites. Microbial survival is contingent upon initiating appropriate responses to the cellular stress induced by severe environmental temperature change. In the case of microbial pathogens, development and virulence are often coupled to sensing host physiological temperatures. As such, microbes have developed diverse molecular strategies to sense fluctuations in temperature, and nearly all cellular molecules, including proteins, lipids, RNA, and DNA, can act as thermosensors that detect changes in environmental temperature and initiate relevant cellular responses. The myriad of molecular mechanisms by which microbes sense and respond to temperature reveals an elegant repertoire of strategies to orchestrate cellular signaling, developmental programs, and virulence with spatial and temporal environmental cues.
Collapse
Affiliation(s)
- Rebecca S Shapiro
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
|
38
|
Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. J Bacteriol 2012; 194:4983-94. [PMID: 22773790 DOI: 10.1128/jb.00449-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sinorhizobium meliloti can live as a soil saprophyte and can engage in a nitrogen-fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma (σ) factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative σ factors, including two putative RpoH ("heat shock") σ factors. We used custom Affymetrix symbiosis chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2, and rpoH1 rpoH2 mutants during heat shock and stationary-phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2. We mapped transcript start sites of 69 rpoH-dependent genes using 5' RACE (5' rapid amplification of cDNA ends), which allowed us to determine putative RpoH1-dependent, RpoH2-dependent, and dual-promoter (RpoH1- and RpoH2-dependent) consensus sequences that were each used to search the genome for other potential direct targets of RpoH. The inferred S. meliloti RpoH promoter consensus sequences share features of Escherichia coli RpoH promoters but lack extended -10 motifs.
Collapse
|
39
|
|
40
|
Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 2012; 8:e1002518. [PMID: 22359501 PMCID: PMC3280987 DOI: 10.1371/journal.ppat.1002518] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
Expression of all Yersinia pathogenicity factors encoded on the virulence plasmid, including the yop effector and the ysc type III secretion genes, is controlled by the transcriptional activator LcrF in response to temperature. Here, we show that a protein- and RNA-dependent hierarchy of thermosensors induce LcrF synthesis at body temperature. Thermally regulated transcription of lcrF is modest and mediated by the thermo-sensitive modulator YmoA, which represses transcription from a single promoter located far upstream of the yscW-lcrF operon at moderate temperatures. The transcriptional response is complemented by a second layer of temperature-control induced by a unique cis-acting RNA element located within the intergenic region of the yscW-lcrF transcript. Structure probing demonstrated that this region forms a secondary structure composed of two stemloops at 25°C. The second hairpin sequesters the lcrF ribosomal binding site by a stretch of four uracils. Opening of this structure was favored at 37°C and permitted ribosome binding at host body temperature. Our study further provides experimental evidence for the biological relevance of an RNA thermometer in an animal model. Following oral infections in mice, we found that two different Y. pseudotuberculosis patient isolates expressing a stabilized thermometer variant were strongly reduced in their ability to disseminate into the Peyer's patches, liver and spleen and have fully lost their lethality. Intriguingly, Yersinia strains with a destabilized version of the thermosensor were attenuated or exhibited a similar, but not a higher mortality. This illustrates that the RNA thermometer is the decisive control element providing just the appropriate amounts of LcrF protein for optimal infection efficiency.
Collapse
|
41
|
Klinkert B, Cimdins A, Gaubig LC, Roßmanith J, Aschke-Sonnenborn U, Narberhaus F. Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. J Biotechnol 2012; 160:55-63. [PMID: 22285954 DOI: 10.1016/j.jbiotec.2012.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/29/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Free-living bacteria constantly monitor their ambient temperature. Drastic deviations elicit immediate protective responses known as cold shock or heat shock response. Many mammalian pathogens use temperature surveillance systems to recognize the successful invasion of a host by its body temperature, usually 37°C. Translation of temperature-responsive genes can be modulated by RNA thermometers (RNATs). RNATs form complex structures primarily in the 5'-untranslated region of their transcripts. Most RNATs block the ribosome binding site at low temperatures. Translation is induced at increasing temperature by melting of the RNA structure. The analysis of such temperature-dependent RNA elements calls for adequate test systems that function in the appropriate temperature range. Here, we summarize previously established reporter gene systems based on the classical β-galactosidase LacZ, the heat-stable β-galactosidase BgaB and the green fluorescent protein GFP. We validate these systems by testing known RNATs and describe the construction and application of an optimized bgaB system. Finally, two novel RNA thermometer candidates from Escherichia coli and Salmonella will be presented.
Collapse
Affiliation(s)
- Birgit Klinkert
- Microbial Biology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Qiao J, Qi L, Shen Y, Zhao L, Qi C, Shangguan D, Mao L, Chen Y. Thermal responsive fluorescent block copolymer for intracellular temperature sensing. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31093g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Lackmann JW, Schneider S, Narberhaus F, Benedikt J, Bandow JE. Characterization of Damage to Bacteria and Bio-macromolecules Caused by (V)UV Radiation and Particles Generated by a Microscale Atmospheric Pressure Plasma Jet. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-2852-3_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
44
|
Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 2011; 6:e27387. [PMID: 22162749 PMCID: PMC3230580 DOI: 10.1371/journal.pone.0027387] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/15/2011] [Indexed: 01/17/2023] Open
Abstract
Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca J. Case
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sharon R. Longford
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter D. Steinberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
45
|
Mogk A, Huber D, Bukau B. Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004366. [PMID: 21441580 DOI: 10.1101/cshperspect.a004366] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial cells are frequently exposed to dramatic fluctuations in their environment, which cause perturbation in protein homeostasis and lead to protein misfolding. Bacteria have therefore evolved powerful quality control networks consisting of chaperones and proteases that cooperate to monitor the folding states of proteins and to remove misfolded conformers through either refolding or degradation. The levels of the quality control components are adjusted to the folding state of the cellular proteome through the induction of compartment specific stress responses. In addition, the activities of several quality control components are directly controlled by these stresses, allowing for fast activation. Severe stress can, however, overcome the protective function of the proteostasis network leading to the formation of protein aggregates, which are sequestered at the cell poles. Protein aggregates are either solubilized by AAA+ chaperones or eliminated through cell division, allowing for the generation of damage-free daughter cells.
Collapse
Affiliation(s)
- Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
46
|
LacI(Ts)-regulated expression as an in situ intracellular biomolecular thermometer. Appl Environ Microbiol 2011; 77:2863-8. [PMID: 21378059 DOI: 10.1128/aem.01915-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to needs for in situ thermometry, a temperature-sensitive vector was adapted to report changes in the intracellular heat content of Escherichia coli in near-real time. This model system utilized vectors expressing increasing quantities of β-galactosidase in response to stepwise temperature increases through a biologically relevant range (22 to 45°C). As judged by calibrated fluorometric and colorimetric reporters, both whole E. coli cells and lysates expressed significant repeatable changes in β-galactosidase activity that were sensitive to temperature changes of less than 1°C (35 to 45°C). This model system suggests that changes in cellular heat content can be detected independently of the medium in which cells are maintained, a feature of particular importance where the medium is heterogeneous or nonaqueous, or otherwise has a low heat transfer capacity. We report here that the intracellular temperature can be reliably obtained in near-real time using reliable fluorescent reporting systems from cellular scales, with a 20°C range of detection and at least 0.7°C sensitivity between 35 and 45°C.
Collapse
|
47
|
Wilms I, Voss B, Hess WR, Leichert LI, Narberhaus F. Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 2011; 80:492-506. [PMID: 21320185 DOI: 10.1111/j.1365-2958.2011.07589.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wounded plants activate a complex defence programme in response to Agrobacterium tumefaciens. They synthesize the non-proteinogenic amino acid γ-aminobutyric acid (GABA), which stimulates degradation of the quorum sensing signal N-(3-oxo-octanoyl) homoserine lactone. GABA is transported into A. tumefaciens via an ABC transporter dependent on the periplasmic binding protein Atu2422. We demonstrate that expression of atu2422 and two other ABC transporter genes is downregulated by the conserved small RNA (sRNA) AbcR1 (for ABC regulator). AbcR1 is encoded in tandem with another sRNA, which is similar in sequence and structure. Both sRNAs accumulate during stationary phase but only the absence of AbcR1 resulted in significant accumulation of Atu2422 and increased GABA import. AbcR1 inhibits initiation of atu2422 translation by masking its Shine-Dalgarno sequence and thereby reduces stability of the atu2422 transcript. It is the first described bacterial sRNA that controls uptake of a plant-generated signalling molecule. Given that similar sRNAs and ABC transporter genes are present in various Rhizobiaceae and in Brucella, it is likely that such sRNA-mediated control impacts a number of host-microbe interactions.
Collapse
Affiliation(s)
- Ina Wilms
- Lehrstuhl für Biologie der Mikroorganismen Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
48
|
Gaubig LC, Waldminghaus T, Narberhaus F. Multiple layers of control govern expression of the Escherichia
coli
ibpAB heat-shock operon. Microbiology (Reading) 2011; 157:66-76. [DOI: 10.1099/mic.0.043802-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli ibpAB operon encodes two small heat-shock proteins, the inclusion-body-binding proteins IbpA and IbpB. Here, we report that expression of ibpAB is a complex process involving at least four different layers of control, namely transcriptional control, RNA processing, translation control and protein stability. As a typical member of the heat-shock regulon, transcription of the ibpAB operon is controlled by the alternative sigma factor σ
32 (RpoH). Heat-induced transcription of the bicistronic operon is followed by RNase E-mediated processing events, resulting in monocistronic ibpA and ibpB transcripts and short 3′-terminal ibpB fragments. Translation of ibpA is controlled by an RNA thermometer in its 5′ untranslated region, forming a secondary structure that blocks entry of the ribosome at low temperatures. A similar structure upstream of ibpB is functional in vitro but not in vivo, suggesting downregulation of ibpB expression in the presence of IbpA. The recently reported degradation of IbpA and IbpB by the Lon protease and differential regulation of IbpA and IbpB levels in E. coli are discussed.
Collapse
|
49
|
Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 2010; 39:2855-68. [PMID: 21131278 PMCID: PMC3074152 DOI: 10.1093/nar/gkq1252] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Structured RNA regions are important gene control elements in prokaryotes and eukaryotes. Here, we show that the mRNA of a cyanobacterial heat shock gene contains a built-in thermosensor critical for photosynthetic activity under stress conditions. The exceptionally short 5′-untranslated region is comprised of a single hairpin with an internal asymmetric loop. It inhibits translation of the Synechocystis hsp17 transcript at normal growth conditions, permits translation initiation under stress conditions and shuts down Hsp17 production in the recovery phase. Point mutations that stabilized or destabilized the RNA structure deregulated reporter gene expression in vivo and ribosome binding in vitro. Introduction of such point mutations into the Synechocystis genome produced severe phenotypic defects. Reversible formation of the open and closed structure was beneficial for viability, integrity of the photosystem and oxygen evolution. Continuous production of Hsp17 was detrimental when the stress declined indicating that shutting-off heat shock protein production is an important, previously unrecognized function of RNA thermometers. We discovered a simple biosensor that strictly adjusts the cellular level of a molecular chaperone to the physiological need.
Collapse
Affiliation(s)
- Jens Kortmann
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
RNA-based pathways that regulate protein expression are much more widespread than previously thought. Regulatory RNAs, including 5' and 3' untranslated regions next to the coding sequence, cis-acting antisense RNAs and trans-acting small non-coding RNAs, are effective regulatory molecules that can influence protein expression and function in response to external cues such as temperature, pH and levels of metabolites. This Review discusses the mechanisms by which these regulatory RNAs, together with accessory proteins such as RNases, control the fate of mRNAs and proteins and how this regulation influences virulence in pathogenic bacteria.
Collapse
|