1
|
Yang L, Wang S, Pan H, Zhou X, Wei J, Zhou M, Yang Y, Quan Q. Glycolic acid-induced disruption of epidermal homeostasis in a skin equivalent model: Insights into temporal dynamics and mechanisms. Toxicol Lett 2024; 397:1-10. [PMID: 38710400 DOI: 10.1016/j.toxlet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Glycolic acid (GA) is extensively used in cosmetic formulations and skin peeling treatments but its adverse effects, notably severe disruption of epidermal structure, limit its clinical utility. However, the detailed impact of GA on epidermal homeostasis, including changes in structure and protein expression over time, is not fully understood. This study employed a reconstructed human epidermis (RHE) model to assess the effects of varying GA concentrations on epidermal proliferation, differentiation, and desquamation at different time points. Through histology, immunofluorescence, and immunohistochemistry, we observed that 35% GA concentration adversely caused abnormal epidermal homeostasis by affecting epidermal proliferation, differentiation and desquamation. Our findings reveal time-specific responses of key proteins to GA: Filaggrin, Involucrin, Loricrin, and Ki67 showed very early responses; KLK10 an early response; and AQP3 and K10 late responses. This research provides a detailed characterization of GA's effects in an RHE model, mimicking clinical superficial peeling and identifying optimal times for detecting GA-induced changes. Our results offer insights for designing interventions to mitigate GA's adverse effects on skin, enhancing the safety and efficacy of GA peeling treatments.
Collapse
Affiliation(s)
- Lingli Yang
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Siyi Wang
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Haihao Pan
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jing Wei
- East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Ming Zhou
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Yang Yang
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China.
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China.
| |
Collapse
|
2
|
Bai J, Gong Z, Xu Q, Chen H, Chen Q, Fang R, Zheng Y, Lai W. A Selectable Biomarker in Hair Follicle Cycles - Cathepsins: A Preliminary Study in Murine. Skin Pharmacol Physiol 2021; 34:1-7. [PMID: 33588419 DOI: 10.1159/000509943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVE Hair cycle is regulated by many biological factors. Cathepsins are involved in various physiological processes in human skin. Here, we investigated the cathepsin expression and distribution changes in follicular growth cycles for better understanding the hair cycles and to explore new intervention measures. METHODS The 24 mice (C57BL/6, female, 7-week old) were selected and removed the back hair via rosin/paraffin method. At Day 8, Day 20, and Day 25, biopsy on post-plucking area was done. Immunohistochemical staining, Western blot, and Q-PCR were used to test the cathepsin B/D/L/E. RESULTS In anagen, cathepsins (B, D, L, and E) were distributed in the hair follicle matrix, inner hair root sheath, and hair. In catagen, cathepsins were mainly observed in un-apoptosis inner root sheath and outer root sheath. Expression of cathepsins B-mRNA and L-mRNA was decreased from anagen and catagen to telogen. Cathepsin D-mRNA was increased in catagen and then decreased in telogen. Cathepsin E-mRNA was decreased in catagen and slightly increased in telogen. CONCLUSIONS The distribution and expression of cathepsins B, D, L, and E in hair follicle changed with hair growth process which indicated that cathepsins might act as selectable biomarkers of hair cycle in different stages.
Collapse
Affiliation(s)
- Jingzhu Bai
- Department of Dermato-Venereology, Guangzhou First People's Hospital, Guangzhou, China
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zijian Gong
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haiyan Chen
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiaoping Chen
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihua Fang
- Department of Dermato-Venereology, Guangzhou First People's Hospital, Guangzhou, China
| | - Yue Zheng
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|
3
|
Brás MM, Radmacher M, Sousa SR, Granja PL. Melanoma in the Eyes of Mechanobiology. Front Cell Dev Biol 2020; 8:54. [PMID: 32117980 PMCID: PMC7027391 DOI: 10.3389/fcell.2020.00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body with several important functions that can be impaired by injury, genetic or chronic diseases. Among all skin diseases, melanoma is one of the most severe, which can lead to death, due to metastization. Mechanotransduction has a crucial role for motility, invasion, adhesion and metastization processes, since it deals with the response of cells to physical forces. Signaling pathways are important to understand how physical cues produced or mediated by the Extracellular Matrix (ECM), affect healthy and tumor cells. During these processes, several molecules in the nucleus and cytoplasm are activated. Melanocytes, keratinocytes, fibroblasts and the ECM, play a crucial role in melanoma formation. This manuscript will address the synergy among melanocytes, keratinocytes, fibroblasts cells and the ECM considering their mechanical contribution and relevance in this disease. Mechanical properties of melanoma cells can also be influenced by pigmentation, which can be associated with changes in stiffness. Mechanical changes can be related with the adhesion, migration, or invasiveness potential of melanoma cells promoting a high metastization capacity of this cancer. Mechanosensing, mechanotransduction, and mechanoresponse will be highlighted with respect to the motility, invasion, adhesion and metastization in melanoma cancer.
Collapse
Affiliation(s)
- M. Manuela Brás
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | | | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Sharma V, Hiller M. Losses of human disease-associated genes in placental mammals. NAR Genom Bioinform 2019; 2:lqz012. [PMID: 33575564 PMCID: PMC7671337 DOI: 10.1093/nargab/lqz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
We systematically investigate whether losses of human disease-associated genes occurred in other mammals during evolution. We first show that genes lost in any of 62 non-human mammals generally have a lower degree of pleiotropy, and are highly depleted in essential and disease-associated genes. Despite this under-representation, we discovered multiple genes implicated in human disease that are truly lost in non-human mammals. In most cases, traits resembling human disease symptoms are present but not deleterious in gene-loss species, exemplified by losses of genes causing human eye or teeth disorders in poor-vision or enamel-less mammals. We also found widespread losses of PCSK9 and CETP genes, where loss-of-function mutations in humans protect from atherosclerosis. Unexpectedly, we discovered losses of disease genes (TYMP, TBX22, ABCG5, ABCG8, MEFV, CTSE) where deleterious phenotypes do not manifest in the respective species. A remarkable example is the uric acid-degrading enzyme UOX, which we found to be inactivated in elephants and manatees. While UOX loss in hominoids led to high serum uric acid levels and a predisposition for gout, elephants and manatees exhibit low uric acid levels, suggesting alternative ways of metabolizing uric acid. Together, our results highlight numerous mammals that are 'natural knockouts' of human disease genes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Maternal folic acid depletion during early pregnancy increases sensitivity to squamous tumor formation in the offspring in mice. J Dev Orig Health Dis 2019; 10:683-691. [PMID: 31131784 DOI: 10.1017/s2040174419000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational nutrition is widely recognized to affect an offspring's future risk of lifestyle-related diseases, suggesting the involvement of epigenetic mechanisms. As folic acid (FA) is a nutrient essential for modulating DNA methylation, we sought to determine how maternal FA intake during early pregnancy might influence tumor sensitivity in an offspring. Dams were maintained on a FA-depleted (FA(-)) or normal (2 mg FA/kg; FA(+)) diet from 2 to 3 days before mating to 7 days post-conception, and their offspring were challenged with chemical tumorigenesis using 7,12-dimethylbenz[a)anthracene and phorbol 12-myristate 13-acetate for skin and 4-nitroquinoline N-oxide for tongue. In both squamous tissues, tumorigenesis was more progressive in the offspring from FA(-) than FA(+) dams. Notably, in the skin of FA(-) offspring, the expression and activity of cylindromatosis (Cyld) were decreased due to the altered DNA methylation status in its promoter region, which contributed to increased tumorigenesis coupled with inflammation in the FA(-) offspring. Thus, we conclude that maternal FA insufficiency during early pregnancy is able to promote neoplasm progression in the offspring through modulating DNA methylation, such as Cyld. Moreover, we propose, for the first time, "innate" utero nutrition as the third cause of tumorigenesis besides the known causes-hereditary predisposition and acquired environmental factors.
Collapse
|
6
|
Kawakubo T, Yasukochi A, Toyama T, Takahashi S, Okamoto K, Tsukuba T, Nakamura S, Ozaki Y, Nishigaki K, Yamashita H, Yamamoto K. Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer. Carcinogenesis 2013; 35:714-26. [PMID: 24242330 DOI: 10.1093/carcin/bgt373] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite advances in detection and treatment for breast cancer (BC), recurrence and death rates remain unacceptably high. Therefore, more convenient diagnostic and prognostic methods still required to optimize treatments among the patients. Here, we report the clinical significance of the serum cathepsin E (CatE) activity as a novel prognostic marker for BC. Correlation analysis between the serum levels of CatE expression and clinicopathological parameters revealed that the activity levels, but not the protein levels, were negatively associated with the stages and progression of BC. Univariate and multivariate analyses demonstrated that the serum CatE activity was significantly correlated with favorable prognostic outcomes of the patients. The functional link of CatE expression to BC progression was further corroborated by in vivo and in vitro studies with mice exhibiting different levels of CatE expression. Multiparous CatE (-) (/) (-) mice spontaneously developed mammary tumors concomitant with morphological transformation and altered growth characteristics of the mammary glands. These alterations were associated in part with the induction of epithelial-mesenchymal transition and the activation of β-catenin-dependent pathway in mammary cells. Loss of CatE strongly induced the translocation and accumulation of Wnt5a in the nuclei, thereby leading to the aberrant trafficking, maturation and secretion of Wnt5a and the impaired signaling. The interaction of CatE and Wnt5a was verified by proximity ligation assay and by knockdown or restoration of CatE expression in the mammary cells. Consequently, our data demonstrate that CatE contributes to normal growth and development of mammary glands through proper trafficking and secretion of Wnt5a.
Collapse
Affiliation(s)
- Tomoyo Kawakubo
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Puizdar V, Zajc T, Žerovnik E, Renko M, Pieper U, Eswar N, Šali A, Dolenc I, Turk V. Biochemical characterization and structural modeling of human cathepsin E variant 2 in comparison to the wild-type protein. Biol Chem 2012; 393:177-86. [PMID: 22718633 PMCID: PMC4111641 DOI: 10.1515/hsz-2011-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/19/2011] [Indexed: 11/15/2022]
Abstract
Cathepsin E splice variant 2 appears in a number of gastric carcinomas. Here we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization. Their distribution under a fluorescence microscope showed that they are colocalized. We also expressed variants 1 and 2 of cathepsins E, with propeptide and without it, in Escherichia coli. After refolding from the inclusion bodies, the enzymatic activity and circular dichroism spectra of the splice variant 2 were compared to those of the wild-type mature active cathepsins E. While full-length cathepsin E variant 1 is activated at acid pH, the splice variant remains inactive. In contrast to the active cathepsin E, the splice variant 2 predominantly assumes β-sheet structure, prone to oligomerization, at least under in vitro conditions, as shown by atomic force microscopy as shallow disk-like particles. A comparative structure model of splice variant 2 was computed based on its alignment to the known structure of cathepsin E intermediate (Protein Data Bank code 1TZS) and used to rationalize its conformational properties and loss of activity.
Collapse
Affiliation(s)
- Vida Puizdar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tajana Zajc
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Narayanan Eswar
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Andrej Šali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
9
|
Tsukuba T, Okamoto K, Yamamoto K. Cathepsin E is critical for proper trafficking of cell surface proteins. J Oral Biosci 2012. [DOI: 10.1016/j.job.2011.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Yamamoto K, Kawakubo T, Yasukochi A, Tsukuba T. Emerging roles of cathepsin E in host defense mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:105-12. [PMID: 21664991 DOI: 10.1016/j.bbapap.2011.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 01/07/2023]
Abstract
Cathepsin E is an intracellular aspartic proteinase of the pepsin superfamily, which is predominantly expressed in certain cell types, including the immune system cells and rapidly regenerating gastric mucosal and epidermal keratinocytes. The intracellular localization of this protein varies with different cell types. The endosomal localization is primarily found in antigen-presenting cells and gastric cells. The membrane association is observed with certain cell types such as erythrocytes, osteoclasts, gastric parietal cells and renal proximal tubule cells. This enzyme is also found in the endoplasmic reticulum, Golgi complex and cytosolic compartments in various cell types. In addition to its intracellular localization, cathepsin E occurs in the culture medium of activated phagocytes and cancer cells as the catalytically active enzyme. Its strategic expression and localization thus suggests the association of this enzyme with specific biological functions of the individual cell types. Recent genetic and pharmacological studies have particularly suggested that cathepsin E plays an important role in host defense against cancer cells and invading microorganisms. This review focuses emerging roles of cathepsin E in immune system cells and skin keratinocytes, and in host defense against cancer cells. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Kenji Yamamoto
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|