1
|
McKinnon S, Qiang Z, Keerie A, Wells T, Shaw PJ, Alix JJP, Mead RJ. Maximizing the translational potential of neurophysiology in amyotrophic lateral sclerosis: a study on compound muscle action potentials. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:322-330. [PMID: 39840885 DOI: 10.1080/21678421.2024.2448540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025]
Abstract
Mouse models of amyotrophic lateral sclerosis (ALS) enable testing of novel therapeutic interventions. However, treatments that have extended survival in mice have often failed to translate into human benefit in clinical trials. Compound muscle action potentials (CMAPs) are a simple neurophysiological test that measures the summation of muscle fiber depolarization in response to maximal stimulation of the innervating nerve. CMAPs can be measured in both mice and humans and decline with motor axon loss in ALS, making them a potential translational read-out of disease progression. We assessed the translational potential of CMAPs and ascertained time points when human and mouse data aligned most closely. We extracted data from 18 human studies and compared with results generated from SOD1G93A and control mice at different ages across different muscles. The relative CMAP amplitude difference between SOD1G93A and control mice in tibialis anterior (TA) and gastrocnemius muscles at 70 days of age was most similar to the relative difference between baseline ALS patient CMAP measurements and healthy controls in the abductor pollicis brevis (APB) muscle. We also found that the relative decline in SOD1G93A TA CMAP amplitude between 70 and 140 days was similar to that observed in 12 month human longitudinal studies in APB. Our findings suggest CMAP amplitudes can provide a "translational window", from which to make comparisons between the SOD1G93A model and human ALS patients. CMAPs are easy to perform and can help determine the most clinically relevant starting/end points for preclinical studies and provide a basis for predicting potential clinical effect sizes.
Collapse
Affiliation(s)
- Scott McKinnon
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Zekai Qiang
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Amy Keerie
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Tyler Wells
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK
| | - Richard J Mead
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
2
|
Lan M, Gao M. Association of serum neurofilament light chain and bone mineral density in adults. BMC Musculoskelet Disord 2025; 26:391. [PMID: 40259260 PMCID: PMC12010620 DOI: 10.1186/s12891-025-08639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Serum neurofilament light chain (sNFL) is a blood-based marker of neuroaxonal damage increasingly used in neurological research. Although sNFL has been linked to systemic aging and chronic disease, its relationship with bone mineral density (BMD) remains unclear. METHODS We analyzed data from 1,344 participants aged ≥ 20 years in the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Serum sNFL concentrations were measured using a high-sensitivity immunoassay. Lumbar BMD was assessed by dual-energy X-ray absorptiometry. Multivariable linear regression models were used to evaluate associations between log-transformed sNFL and BMD, adjusting for demographic, lifestyle, metabolic, renal, cognitive, and bone-related covariates. Sensitivity analyses examined osteoporosis, defined as physician diagnosis or T-score ≤ - 2.5, as a binary outcome. RESULTS Higher sNFL levels were significantly associated with lower lumbar BMD (fully adjusted β = - 0.02 g/cm² per 1-unit increase in ln-sNFL; 95% CI: - 0.04, - 0.01; P = 0.0089). Compared with the lowest quartile, participants in the highest quartile had a 0.04 g/cm² lower BMD (P for trend = 0.011). Sensitivity analyses confirmed higher odds of osteoporosis with increasing sNFL levels (Q4 vs. Q1 OR = 2.70, 95% CI: 1.69, 4.31, P < 0.001). CONCLUSION Elevated serum sNFL concentrations are independently associated with lower lumbar spine BMD in U.S. adults. These findings suggest that sNFL may serve as an exploratory marker of systemic vulnerability relevant to bone health, warranting further longitudinal and mechanistic investigation.
Collapse
Affiliation(s)
- Meihong Lan
- Medical Imaging Center, Shandong Public Health Clinical Center, No.2999, Gangxing West Road, Gaoxin District, Jinan, 250000, Shandong Province, People's Republic of China
| | - Mingming Gao
- Medical Imaging Center, Shandong Public Health Clinical Center, No.2999, Gangxing West Road, Gaoxin District, Jinan, 250000, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Elmers J, Mückschel M, Akgün K, Ziemssen T, Beste C. Variations in neuronal cytoskeletal integrity affect directed communication in distributed networks during inhibitory control. Commun Biol 2025; 8:516. [PMID: 40155499 PMCID: PMC11953345 DOI: 10.1038/s42003-025-07974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
To ensure goal-directed behavior in daily life, the use of inhibitory control is of great importance. The aim of this study is to shed light on the underlying neuronal mechanisms of inhibitory control and the relevance of cytoarchitectonic integrity in it. We combine sophisticated EEG analysis techniques assessing directed communication between brain structures with measurements of neurofilaments as an index of cytoarchitectonic integrity. We show that an extensive theta band activity related neural network with fronto-temporal, parietal, and occipital brain regions is active during response inhibition. Importantly, cytoarchitectonic integrity as measured using neurofilaments modulates nonlinear directional connectivity, particularly when complex reconfiguration of perceptual and action mapping is required. The study thus shows an inter-relation between different levels of biological functioning-the level of cytoarchitectonic integrity and neurophysiological directed communication-for inhibitory control and emphasizes the role of nonlinear brain connectivity in cognitive control.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Rossini F, Moser T, Unterhofer M, Khalil M, Demjaha R, Tafrali C, Martinez-Serrat M, Kuhle J, Leppert D, Benkert P, Pfaff JAR, Trinka E, Pikija S. Transient Global Amnesia (TGA): Is It Really Benign? A Pilot Study on Blood Biomarkers. Int J Mol Sci 2025; 26:2629. [PMID: 40141275 PMCID: PMC11941937 DOI: 10.3390/ijms26062629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
We aimed to determine whether transient global amnesia (TGA) is associated with alterations in central nervous system (CNS) injury biomarkers-serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP). In a prospective cohort of TGA patients, blood samples were obtained within 24-48 h of TGA onset (t0) and 6 weeks thereafter (t1). We assessed sNfL and sGFAP levels using the highly sensitive single-molecule array assay and calculated Z-scores adjusted for age, gender, and body mass index (BMI). Demographics, electroencephalography (EEG), and cerebral magnetic resonance imaging (cMRI) findings were also collected. A total of 20 patients were included (median age: 66 years, 70% women). No significant changes in sNfL or sGFAP levels associated with TGA at t0 and t1 were observed. Median sNfL Z-scores were 0.45 (interquartile range [IQR] -0.09, 1.19) at t0 and 0.60 (IQR -0.61, 1.19) at t1. Median sGFAP Z-scores were 0.27 (IQR -0.45, 0.76) at t0 and 0.44 (IQR -0.27, 0.75) at t1. Similarly, in the subgroup of patients with diffusion-weighted imaging (DWI)-positive hippocampal lesions (n = 5/20[25%]), no elevations in blood biomarkers were detected. Our pilot study on neurological blood biomarkers supports the benign nature of TGA, indicating that no CNS tissue damage occurs.
Collapse
Affiliation(s)
- Fabio Rossini
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, European Reference Network EpiCARE, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, European Reference Network EpiCARE, 5020 Salzburg, Austria
| | - Michael Unterhofer
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, European Reference Network EpiCARE, 5020 Salzburg, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Rina Demjaha
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Cansu Tafrali
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Maria Martinez-Serrat
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Johannes A. R. Pfaff
- Department of Neuroradiology, Christian Doppler University Hospital, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, European Reference Network EpiCARE, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Slaven Pikija
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, European Reference Network EpiCARE, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Thrysøe M, Parkner T, Tankisi H, Nyengaard JR, Vestergaard ET, Kristensen K, Terkelsen AJ, Rasmussen VF. Biochemical use of neurofilament light polypeptide and vitamin B 12 in relation to diabetic polyneuropathy in Danish adolescents with type 1 diabetes: a cross-sectional study. BMJ Open 2025; 15:e085749. [PMID: 40032364 PMCID: PMC11883878 DOI: 10.1136/bmjopen-2024-085749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION The aim of this study was to investigate serum Neurofilament Light polypeptide (NfL) as a biomarker for diabetic polyneuropathy (DPN) in adolescents with type 1 diabetes (T1D). Secondarily, to investigate vitamin B12 (B12) deficiency as a cause for DPN in adolescents with T1D. RESEARCH DESIGN AND METHODS Cross-sectional study. Sixty Danish adolescents with T1D (age 15-18 years, diabetes duration >5 years) and 23 age-matched control subjects were included. Based on nerve conduction studies (NCS), intraepidermal nerve fibre density (IENFD) and neurological examination, patients were divided into three groups: (1) T1D without DPN, (2) T1D with subclinical DPN and (3) T1D with confirmed DPN. Blood levels of NfL, B12, B12-binding protein holotranscobalamin (HoloTC) and methylmalonic acid (MMA) were determined. RESULTS Twenty-four of the adolescents were without DPN, twenty-one had subclinical DPN and eight had confirmed DPN. NCS was not conducted in three participants and four patients did not have blood samples taken. There were no significant differences in NfL levels or any of the B12 parameters between any of the groups. CONCLUSIONS NfL used in a cross-sectional manner was not found useful to distinguish between the adolescents with DPN and those without. Vitamin B12 deficiency did not contribute to neuropathy in Danish adolescents with T1D.
Collapse
Affiliation(s)
- Mathilde Thrysøe
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Medical Diagnostic Center, Viborg Regional Hospital, Viborg, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Hatice Tankisi
- Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Thyssen Vestergaard
- Department of Pediatric and Adolescents Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Kurt Kristensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Astrid Juhl Terkelsen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Vinni Faber Rasmussen
- Department of Pediatrics and Adolescents, Randers Regional Hospital, Randers, Denmark
| |
Collapse
|
6
|
Clemmensen FK, Gramkow MH, Simonsen AH, Ashton NJ, Huber H, Blennow K, Zetterberg H, Waldemar G, Hasselbalch SG, Frederiksen KS. Short-term variability of Alzheimer's disease plasma biomarkers in a mixed memory clinic cohort. Alzheimers Res Ther 2025; 17:26. [PMID: 39838483 PMCID: PMC11748847 DOI: 10.1186/s13195-024-01658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND For clinical implementation of Alzheimer's disease (AD) blood-based biomarkers (BBMs), knowledge of short-term variability, is crucial to ensure safe and correct biomarker interpretation, i.e., to capture changes or treatment effects that lie beyond that of expected short-term variability and considered clinically relevant. In this study we investigated short-term intra- and inter-individual variability of AD biomarkers in the intended use population, memory clinic patients. METHODS In a consecutive sample of memory clinic patients (AD n = 27, non-AD n = 20), blood samples were collected on three separate days within a period of 36 days and analysed for plasma Aβ40, Aβ42, p-tau181, p-tau217, p-tau231, T-tau, neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). We measured intra- and inter-individual variability and explored if the variability could be affected by confounding factors. Secondly, we established the minimum change required to detect a difference between two given blood samples that exceeds intra-individual variability and analytical variation (reference change value, RCV). Finally, we tested if classification accuracy varied across the three visits. RESULTS Intra-individual variability ranged from ~ 3% (Aβ42/40) to ~ 12% (T-tau). Inter-individual variability ranged from ~ 7% (Aβ40) to ~ 39% (NfL). Adjusting the models for time, eGFR, Hba1c, and BMI did not affect the variation. RCV was lowest for Aβ42/Aβ40 (- ~ 15%/ + ~ 17%) and highest in p-tau181 (- ~ 30/ + ~ 42%). No variation in classification accuracies was found across visits. CONCLUSION We found low intra-individual variability, robust to various factors, appropriate to capture individual changes in AD BBMs, while moderate inter-individual variability may give rise to caution in diagnostic contexts. High RCVs may pose challenges for AD BBMs with low fold changes and consequently, short-term variability is important to take into consideration when, e.g., estimating intervention effect and longitudinal changes of AD BBM levels. TRIAL REGISTRATION Clinicaltrials.gov (NCT05175664), date of registration 2021-12-01.
Collapse
Affiliation(s)
- Frederikke Kragh Clemmensen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark.
| | - Mathias Holsey Gramkow
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Lab Hus V3, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, 5 Cutcombe Rd, Brixton, London, SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Postboks 8100, Stavanger, 4068, Norway
| | - Hanna Huber
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Lab Hus V3, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Lab Hus V3, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 91-105, Bd de L'Hôpital, Paris, 75013, France
- Division of Life Sciences and Medicine, and, Department of Neurology, Institute On Aging and Brain Disorders, Neurodegenerative Disorder Research Center, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, 230026, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Lab Hus V3, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Dementia Research Institute at University College London, Tottenham Ct Rd, London, W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Science Park, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin- Madison, 600 Highland Avenue, Madison, WI, 2420, USA
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Kristian Steen Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| |
Collapse
|
7
|
Musso G, Gabelli C, Puthenparampil M, Cosma C, Cagnin A, Gallo P, Sorarù G, Pegoraro E, Zaninotto M, Antonini A, Moz S, Zambon CF, Plebani M, Corbetta M, Basso D. Blood biomarkers for Alzheimer's disease with the Lumipulse automated platform: Age-effect and clinical value interpretation. Clin Chim Acta 2025; 565:120014. [PMID: 39442787 DOI: 10.1016/j.cca.2024.120014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Advances in analytical methods have recently paved the way to Alzheimer's disease (AD) biomarkers testing in blood along with the more established CSF testing. To ensure a forthcoming application of this low-invasive diagnostic that might allow to recognize early onset of dementia, appropriate pathological cut-points need to be defined. METHODS In this cross-sectional study we measured blood and CSF neurofilament light chain (NFL), phosphorylated tau (pTau 181), Amyloid-β1-42 (AB 1-42) and Amyloid-β1-40 (AB 1-40) on a fully automated chemiluminescent platform (Lumipulse, Fujirebio) in 80 cognitively impaired patients and 55 cognitively unimpaired subjects. Clinical cut points were calculated with receiver-operator characteristic (ROC) curve analysis and a head-to-head comparison of blood and CSF testing was performed. RESULTS Blood NFL best discriminant thresholds to distinguish neurodegenerative diseases from controls varied age-dependently, being 19 and 33 pg/mL in subjects 50-65 years and > 65 years respectively. AD was best framed by AB 1-42/1-40 ratio < 0.079 and ptau181 > 1 pg/mL. Though a strong correlation for all biomarkers, only blood AB ratio was equal to CSF testing for AD diagnosis. CONCLUSIONS The specific context of use might be considered to define the cut-offs of blood biomarkers of neurodegenerative diseases. Future efforts towards reference materials for each AD blood biomarker will improve clinical cut-offs.
Collapse
Affiliation(s)
- Giulia Musso
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy.
| | - Carlo Gabelli
- Regional Brain Aging Center, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| | - Marco Puthenparampil
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Chiara Cosma
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy
| | - Annachiara Cagnin
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Paolo Gallo
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Martina Zaninotto
- QI.LAB.MED, Spin-off of the University of Padova, via Antoniana, 220/E, 35011 Campodarsego, Italy
| | - Angelo Antonini
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Stefania Moz
- Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| | - Carlo Federico Zambon
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| | - Mario Plebani
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; QI.LAB.MED, Spin-off of the University of Padova, via Antoniana, 220/E, 35011 Campodarsego, Italy
| | - Maurizio Corbetta
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| |
Collapse
|
8
|
Britze J, Larsen MH, Pedersen AG, Rosthøj S, Bach Søndergaard H, Magyari M, Pedersen OB, Jensen BA, Ostrowski SR, Erikstrup C, Ullum H, Battistini JLF, Sellebjerg F, Modvig S. Temporal Dynamics of Plasma Neurofilament Light in Blood Donors With Preclinical Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200335. [PMID: 39602675 PMCID: PMC11616971 DOI: 10.1212/nxi.0000000000200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a CNS disease, characterized by demyelination, inflammation, and neurodegeneration. Recent advances in technology allow measurement of the axonal damage marker neurofilament light chain in peripheral blood. Two studies have shown that patients with MS have elevated neurofilament light levels before their first symptom, but longitudinal studies are lacking. We aimed to investigate the intraindividual neurofilament light dynamics during the presymptomatic phase of MS. METHODS The Danish Blood Donor Study (DBDS) has stored plasma samples from blood donors for more than 10 years. We identified DBDS participants, who had subsequently been diagnosed with MS, and included all samples donated before their first demyelinating symptom (median 5.00 samples per case). As controls, we included 2 healthy donors per case. Plasma levels of neurofilament light were measured and compared with quality-of-life data. We used a Bayesian approach to derive estimates for the percentage of cases with presymptomatic increased neurofilament light levels. RESULTS We observed that 12 (17%, 95% CI 9%-28%) of 69 presymptomatic MS donors had intermittently increased neurofilament light levels preclinically. Increased levels were present up to 9 years before clinical onset, also in primary progressive MS. Healthy donors and presymptomatic MS donors with and without increased neurofilament light levels reported equally high physical and mental well-being. Model-based estimates suggested that 55% of cases (95% credible interval [28%-87%]) had experienced increased presymptomatic neurofilament light levels. DISCUSSION Patients with MS periodically sustain axonal injury up to 9 years before clinical onset, even in primary progressive disease. This most likely represents asymptomatic disease activity. Some or even all patients are affected by this intermittent axonal injury, prompting the need for further studies of the presymptomatic phase in relation to prognosis and as a therapeutic window of opportunity.
Collapse
Affiliation(s)
- Josefine Britze
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Margit Hørup Larsen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Anders Gorm Pedersen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Susanne Rosthøj
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Helle Bach Søndergaard
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Melinda Magyari
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Ole Birger Pedersen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Bitten Aagaard Jensen
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Christian Erikstrup
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Henrik Ullum
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Jette Lautrup Frederiksen Battistini
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Finn Sellebjerg
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| | - Signe Modvig
- From the The Danish Multiple Sclerosis Centre (J.B., H.B.S., M.M., J.L.F.B., F.S.), Department of Neurology, Copenhagen University Hospital, Rigshospitalet; Department of Clinical Immunology (J.B., M.H.L., S.R.O., S.M.), Copenhagen University Hospital Rigshospitalet; Department of Clinical Medicine (J.B., M.M., O.B.P., S.R.O., J.L.F.B., F.S., S.M.), Faculty of Health and Medical Sciences, University of Copenhagen; Department of Health Technology (A.G.P.), Section for Bioinformatics, Technical University of Denmark; The Danish Cancer Institute (S.R.), Statistics and Data Analysis; The Danish Multiple Sclerosis Registry (M.M.); Department of Clinical Immunology (O.B.P.), Zealand University Hospital; Department of Clinical Immunology (B.A.J.), Aalborg University Teaching Hospital; Department of Clinical Immunology (C.E.), Aarhus University Teaching Hospital and Statens Serum Institut (H.U.), Copenhagen, Denmark
| |
Collapse
|
9
|
Liu J, Zhang Y. Serum neurofilament light chain: a novel biomarker for cardiovascular diseases in individuals without hypertension. Sci Rep 2024; 14:26117. [PMID: 39478121 PMCID: PMC11526128 DOI: 10.1038/s41598-024-77446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Serum neurofilament light chain (sNFL) is a biomarker for axonal injury. Previous studies have linked sNFL levels to cardiovascular risk factors such as diabetes and hypertension, but its association with cardiovascular diseases (CVD) remains unclear. This study aims to explore the association between sNFL and CVD and evaluates its predictive value. Utilizing NHANES 2013-2014 data, this study included 2,035 participants aged ≥ 20 years with measured sNFL quantified using a Siemens immunoassay. CVD was self-reported and included myocardial infarction, stroke, heart failure, coronary heart disease, or angina. Logistic regression models assessed the association between sNFL levels and CVD. The predictive value of sNFL for CVD was evaluated using area under the curve (AUC) and DeLong test. Participants with higher sNFL levels were typically older, male, non-Hispanic white, smokers, and had lower socioeconomic status, higher CVD, hypertension, and diabetes prevalence. Higher sNFL levels were significantly associated with increased odds of CVD (adjusted OR = 1.41, 95% CI: 1.05-1.88). The association was significant in non-hypertensive individuals (OR = 2.72, 95% CI: 1.61-4.62) but not in hypertensive individuals (OR = 1.13, 95% CI: 0.81-1.56). sNFL addition to traditional risk models improved predictive accuracy, especially in non-hypertensive individuals (AUC from 0.827 to 0.856). sNFL levels are significantly associated with CVD in the general population, with a strong predictive value in non-hypertensive individuals. Future longitudinal studies should validate sNFL's efficacy in various populations and explore the underlying mechanisms of its relationship with hypertension and CVD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Emergency Medicine, The Affiliated Second Hospital, Hengyang Medical school, University of South China, Hengyang, 421009, China
- , No. 35 Jiefang Avenue, Zhengxiang District, Hengyang City, 421001, Hunan Province, PR China
| | - Ya Zhang
- Department of Gland Surgery, The Affiliated Nanhua Hospital, Hengyang Medical school, University of South China, Hengyang, 421002, China.
| |
Collapse
|
10
|
Yang W, Huang S, Xiao H, Tao P, Cai S. Association of frailty and serum neurofilament light chain levels: the mediating role of estimated glomerular filtration rate. Front Aging Neurosci 2024; 16:1475505. [PMID: 39463817 PMCID: PMC11502322 DOI: 10.3389/fnagi.2024.1475505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Background Both frailty and elevated serum neurofilament light chain (sNfL) levels are linked to cognitive impairment. However, evidence of their relationship is lacking, and whether it was mediated by renal function was unknown. This study aimed to investigate the association between frailty and sNfL levels in a representative U.S. population, and to explore the potential mediating role of estimated glomerular filtration rate (eGFR) in this relationship. Methods Data from 1,782 participants aged 20-75 years in the 2013-2014 National Health and Nutrition Examination Survey (NHANES) were analyzed. Frailty was assessed using a 49-item frailty index, and participants were categorized as non-frail, pre-frail, or frail. sNfL levels were measured using acoustic emission technology. Multivariable linear regression models and restricted cubic spline analyses were employed to examine the associations between frailty, eGFR, and sNfL levels. Mediation analysis was conducted to evaluate the role of eGFR in the frailty-sNfL relationship. Results The prevalence of pre-frailty and frailty was 45.39 and 11.60%, respectively. A significant positive association was observed between frailty score and sNfL levels (adjusted β: 39.97, SE: 11.07, p = 0.003), with a linear relationship confirmed by restricted cubic spline analysis. Frail individuals had significantly higher sNfL levels compared to non-frail participants (adjusted β: 11.86, SE: 5.42, p = 0.04). eGFR was negatively associated with sNfL levels (adjusted β: -0.23, SE: 0.05, p < 0.001). Mediation analysis revealed that eGFR accounted for 12.52% of the total effect of frailty on sNfL levels (p < 0.0001). Conclusion This study demonstrates a significant association between frailty and elevated sNfL levels in a representative U.S. population, with eGFR partially mediating this relationship. These findings suggest that sNfL may serve as a potential biomarker for frailty-related neuronal damage and highlight the importance of kidney function in this association. Further research is warranted to explore the clinical implications of these findings in frailty assessment and management strategies.
Collapse
Affiliation(s)
- Wei Yang
- Department of Internal Medicine, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shan Huang
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Huanshun Xiao
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Pei Tao
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuangming Cai
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
11
|
Chung AN, Huang MC, Liu TH, Chang HM, Chen PY, Liu YL, Bavato F. Ketamine-dependent patients with persistent psychosis have higher neurofilament light chain levels than patients with schizophrenia. Asian J Psychiatr 2024; 100:104167. [PMID: 39111088 DOI: 10.1016/j.ajp.2024.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES Ketamine can induce persisting psychosis in a subset of individuals who use it chronically and heavily. Previously, we found that the psychopathology and cognitive impairments in patients with ketamine dependence (KD) exhibiting persistent psychosis (KPP) bear resemblances with schizophrenia, albeit with less severity in those with no persistent psychosis (KNP). Furthermore, we also showed that patients with KD had higher blood levels of neurofilament light chain (NFL), a biomarker for neuroaxonal injury, compared to healthy controls. In this study, we aimed to investigate the differences in NFL levels between patients with KPP and KNP while comparing the levels of individuals with schizophrenia and healthy controls. METHODS We enrolled 64 treatment-seeking ketamine-dependent patients (53 with KNP and 11 with KPP), 37 medication-free patients with schizophrenia, and 80 healthy controls. Blood NFL levels were measured by single molecule array immunoassay. RESULTS NFL levels were highest in the KPP subgroup, followed by the KNP subgroup, and then the schizophrenia and control groups (mean ± SD: 24.5 ± 24.7, 12.9 ± 10.9, 9.2 ± 12.2, and 6.2 ± 2.2 pg/mL, respectively), with no significant difference observed between the schizophrenia and control groups. CONCLUSIONS We found that KD is associated with higher NFL levels compared to schizophrenia, with the KPP subgroup showing the most consistent alterations. The observation of accentuated neuroaxonal pathology in individuals with KPP implies that this clinical manifestation is associated with a specific neurobiological phenotype, despite prior evidence suggesting syndromal similarity between schizophrenia and KPP.
Collapse
Affiliation(s)
- An-Nie Chung
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital., 250 Wuxing St, Taipei, Taiwan; Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hu-Ming Chang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan.
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Røikjer J, Borbjerg MK, Andresen T, Giordano R, Hviid CVB, Mørch CD, Karlsson P, Klonoff DC, Arendt-Nielsen L, Ejskjaer N. Diabetic Peripheral Neuropathy: Emerging Treatments of Neuropathic Pain and Novel Diagnostic Methods. J Diabetes Sci Technol 2024:19322968241279553. [PMID: 39282925 PMCID: PMC11571639 DOI: 10.1177/19322968241279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. METHODS In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. RESULTS Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. CONCLUSION Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Krabsmark Borbjerg
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Trine Andresen
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Arendt-Nielsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
13
|
Wu AHB, Peacock WF. On-Field Rule Out of Mild Traumatic Brain Injury: Can Blood-Based Biomarker Testing Change Outcome of Major Sporting Events? J Appl Lab Med 2024; 9:1057-1063. [PMID: 38973027 DOI: 10.1093/jalm/jfae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is defined as a Glascow Coma Score of between 13 and 15. The diagnosis and rule out of individuals suffering from mTBI on an acute basis is imperfect and involves subjective measures. Serum biomarkers that exhibit narrow within-individual biological variation can be used for the early rule-out of mTBI, when baseline levels are compared during health. METHODS This is a descriptive study that applies published biological variation data of serum mTBI biomarkers for early rule out of sports-related injury. RESULTS Laboratory tests such as glial fibrillary acidic protein, fatty acid binding protein 7, and phosphorylated protein enriched in astrocytes have low within-individual variances and are potential candidates. Aldolase C also rises early in blood but the biological variation is of this marker is currently unknown. CONCLUSIONS The use of blood-based biomarkers, measured in real time using point-of-care testing devices when compared to a pre-competition baseline instead of a population-based reference interval, can provide early rule out of mTBI, and possibly enable on-field evaluations and a medical decision for a return to competition.
Collapse
Affiliation(s)
- Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States
| | - W Franklin Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Bird JD, Sekhon MS. Biomarker guided prognostication during veno-arterial extracorporeal membrane oxygenation: A potentially valuable tool. Resuscitation 2024; 200:110245. [PMID: 38886042 DOI: 10.1016/j.resuscitation.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Jordan D Bird
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Jacobsen AB, Bostock H, Howells J, Cengiz B, Samusyte G, Koltzenburg M, Pia H, Fuglsang‐Frederiksen A, Blicher J, Obál I, Andersen H, Tankisi H. Threshold tracking transcranial magnetic stimulation and neurofilament light chain as diagnostic aids in ALS. Ann Clin Transl Neurol 2024; 11:1887-1896. [PMID: 38894662 PMCID: PMC11251469 DOI: 10.1002/acn3.52095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE There is a need for sensitive biomarkers in amyotrophic lateral sclerosis (ALS), to enable earlier diagnosis and to help assess potential treatments. The main objective of this study was to compare two potential biomarkers, threshold-tracking short-interval cortical inhibition (T-SICI), which has shown promise as a diagnostic aid, and neurofilament light chains (NfL). METHODS Ninety-seven patients with ALS (mean age 67.1 ± 11.5 years) and 53 ALS mimics (aged 62.4 ± 12.9) were included. Mean disease duration was 14 months ±14.1. Patients were evaluated with revised ALS functional rating score (ALSFRS-R), Penn upper motor neuron score (UMNS), muscle strength using the Medical Research Council (MRC) score and examined with T-SICI, quantitative electromyography (EMG), and NfL measured in spinal fluid. RESULTS NfL increased with increasing UMNS (rho = 0.45, p = 8.2 × 10-6) whereas T-SICI at 2.5 ms paradoxically increased toward normal values (rho = 0.53, p = 1.9 × 10-7). However, these two measures were uncorrelated. Discrimination between ALS patients and mimics was best for NfL (area under ROC curve 0.842, sensitivity 84.9%, specificity 83.5%), compared with T-SICI (0.675, 39.6%, 91.8%). For the patients with no UMN signs, NfL also discriminated best (0.884, 89.3%, 82.6%), compared with T-SICI (0.811, 71.4%, 82.6%). However, when combining NfL and T-SICI, higher AUCs of 0.854 and 0.922 and specificities of 93.8 and 100 were found when considering all patients and patients with no UMN signs, respectively. INTERPRETATION Both T-SICI and NfL correlated with UMN involvement and combined, they provided a strong discrimination between ALS patients and ALS mimics.
Collapse
Affiliation(s)
- Anna B. Jacobsen
- Department of Clinical NeurophysiologyAarhus University HospitalAarhus N8200Denmark
| | - Hugh Bostock
- UCL Queen SquareInstitute of NeurologyQueen SquareLondonWC1N 3BGUK
| | - James Howells
- Central Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSW2006Australia
| | - Bülent Cengiz
- Department of NeurologyGazi University Faculty of MedicineBeşevler06570AnkaraTurkey
| | - Gintaute Samusyte
- Department of Neurology, Medical AcademyLithuanian University of Health SciencesKaunas44307Lithuania
- Department of NeurologyLithuanian University of Health Sciences Hospital Kauno KlinikosKaunas50161Lithuania
| | - Martin Koltzenburg
- UCL Queen SquareInstitute of NeurologyQueen SquareLondonWC1N 3BGUK
- Department of Clinical NeurophysiologyNational Hospital for Neurology and NeurosurgeryQueen SquareLondonWC1N 3BGUK
| | - Hossein Pia
- Department of Clinical NeurophysiologyAarhus University HospitalAarhus N8200Denmark
| | | | - Jakob Blicher
- Department of NeurologyAalborg University HospitalAalborg9000Denmark
| | - Izabella Obál
- Department of NeurologyAalborg University HospitalAalborg9000Denmark
| | - Henning Andersen
- Department of NeurologyAarhus University HospitalAarhus N8200Denmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus University HospitalAarhus N8200Denmark
| |
Collapse
|
17
|
Liang N, Li H, Zhang K, Wang Y, Xiang L, Xiao L, Luo G. Association of Dietary Retinol Intake and Serum Neurofilament Light Chain Levels: Results from NHANES 2013-2014. Nutrients 2024; 16:1763. [PMID: 38892696 PMCID: PMC11175068 DOI: 10.3390/nu16111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND There is increasing evidence suggesting that serum neurofilament light chain (sNfL) levels can be used as biomarkers for axonal injury. Retinol is recognized for its significant involvement in nervous system function, but the precise connection between dietary retinol and sNfL levels remains uncertain. OBJECTIVE Our objective was to investigate the relationship between dietary retinol intake and sNfL, and to find an optimal retinol intake level for neurological health. METHODS In the National Health and Nutrition Examination Survey (NHANES), conducted from 2013 to 2014, a cohort of 1684 participants who met the criteria were selected for the study. sNfL levels were measured from stored serum samples using a novel high-throughput immunoassay platform from Siemens Healthineers. Assessment of dietary retinol intake was performed by a uniformly trained interviewer through a 24 h dietary recall method. A generalized linear model was evaluated to assess the correlation between dietary retinol intake and sNfL concentrations. Furthermore, the nonlinear association between the two is further explored using restricted cubic spline (RCS) analysis. RESULTS Upon adjusting for potential confounders, a 10% increase in dietary retinol intake was associated with a 3.47% increase in sNfL levels (95% CI: 0.54%, 6.49%) across all participants. This relationship was more pronounced in specific subgroups, including those under 60 years of age, non-obese, impaired estimated glomerular filtration rate (eGFR), and non-diabetic. In subgroup analysis, among those younger than 60 years of age (percent change: 3.80%; 95% CI: 0.43%, 7.28%), changes were found in non-obese participants (percent change: 6.28%; 95% CI: 2.66%, 10.02%), those with impaired eGFR (percent change: 6.90%; 95% CI: 1.44%, 12.65%), and non-diabetic patients (percentage change: 4.17%; 95% CI: 1.08%, 7.36%). RCS analysis showed a linear relationship between dietary retinol intake and sNfL levels. Furthermore, the positive correlation between the two was more significant after the inflection point, according to piecewise linear analysis. CONCLUSION This current investigation uncovered a J-shaped relationship between dietary retinol and sNfL levels, suggesting that axonal damage can occur when dietary retinol intake increases more than a specific threshold. These findings need to be further confirmed in future prospective studies to determine the precise intake level that may trigger axonal injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (H.L.); (K.Z.); (Y.W.); (L.X.); (L.X.)
| |
Collapse
|
18
|
Cooley SA, Petersen KJ, Tice C, Langford D, Burdo TH, Roman J, Ances BM. Relationships between plasma neurofilament light chain protein, cognition, and brain aging in people with HIV. AIDS 2024; 38:955-962. [PMID: 38329137 PMCID: PMC11062811 DOI: 10.1097/qad.0000000000003861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Neurofilament light chain protein (NfL) is a marker of neuronal injury and neurodegeneration. Typically assessed in cerebrospinal fluid, recent advances have allowed this biomarker to be more easily measured in plasma. This study assesses plasma NfL in people with HIV (PWH) compared with people without HIV (PWoH), and its relationship with cognitive impairment, cardiovascular risk, and a neuroimaging metric of brain aging [brain-age gap (BAG)]. DESIGN One hundred and four PWH (HIV RNA <50 copies/ml) and 42 PWoH provided blood samples and completed a cardiovascular risk score calculator, neuroimaging, and cognitive testing. METHOD Plasma NfL was compared between PWoH and PWH and assessed for relationships with age, HIV clinical markers, cardiovascular disease risk, cognition, and BAG (difference between a brain-predicted age and chronological age). RESULTS Plasma NfL was not significantly different between PWoH and PWH. Higher NfL related to increasing age in both groups. Plasma NfL was not associated with typical HIV disease variables. Within PWH, NfL was higher with higher cardiovascular risk, cognitive impairment and a greater BAG. CONCLUSION Virally suppressed PWH who are cognitively normal likely do not have significant ongoing neurodegeneration, as evidenced by similar plasma NfL compared with PWoH. However, NfL may represent a biomarker of cognitive impairment and brain aging in PWH. Further research examining NfL with longitudinal cognitive decline is needed to understand this relationship more fully.
Collapse
Affiliation(s)
- Sarah A Cooley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Kalen J Petersen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | | | | | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - June Roman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
19
|
Määttä LL, Andersen ST, Parkner T, Hviid CVB, Bjerg L, Kural MA, Charles M, Søndergaard E, Kuhle J, Tankisi H, Witte DR, Jensen TS. Longitudinal Change in Serum Neurofilament Light Chain in Type 2 Diabetes and Early Diabetic Polyneuropathy: ADDITION-Denmark. Diabetes Care 2024; 47:986-994. [PMID: 38502878 DOI: 10.2337/dc23-2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To investigate the longitudinal development of neurofilament light chain (NfL) levels in type 2 diabetes with and without diabetic polyneuropathy (+/-DPN) and to explore the predictive potential of NfL as a biomarker for DPN. RESEARCH DESIGN AND METHODS We performed retrospective longitudinal case-control analysis of data from 178 participants of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care-Denmark (ADDITION-Denmark) cohort of people with screen-detected type 2 diabetes. Biobank samples acquired at the ADDITION-Denmark 5- and 10-year follow-ups were analyzed for serum NfL (s-NfL) using single-molecule array, and the results were compared with established reference material to obtain NfL z-scores. DPN was diagnosed according to Toronto criteria for confirmed DPN at the 10-year follow-up. RESULTS s-NfL increased over time in +DPN (N = 39) and -DPN participants (N = 139) at levels above normal age-induced s-NfL increase. Longitudinal s-NfL change was greater in +DPN than in -DPN participants (17.4% [95% CI 4.3; 32.2] or 0.31 SD [95% CI 0.03; 0.60] higher s-NfL or NfL z-score increase in +DPN compared with -DPN). s-NfL at the 5-year follow-up was positively associated with nerve conduction studies at the 10-year follow-up (P = 0.02 to <0.001), but not with DPN risk. Areas under the curve (AUCs) for s-NfL were not inferior to AUCs for the Michigan Neuropathy Screening Instrument questionnaire score or vibration detection thresholds. Higher yearly s-NfL increase was associated with higher DPN risk (odds ratio 1.36 [95% CI 1.08; 1.71] per 1 ng/L/year). CONCLUSIONS Our findings suggest that preceding s-NfL trajectories differ slightly between those with and without DPN and imply a possible biomarker value of s-NfL trajectories in DPN.
Collapse
Affiliation(s)
- Laura L Määttä
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Signe T Andersen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Lasse Bjerg
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mustafa A Kural
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Charles
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kuhle
- Department of Neurology, University of Basel, Basel, Switzerland
- Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, Basel, Switzerland
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel R Witte
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Troels S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Chitnis T, Qureshi F, Gehman VM, Becich M, Bove R, Cree BAC, Gomez R, Hauser SL, Henry RG, Katrib A, Lokhande H, Paul A, Caillier SJ, Santaniello A, Sattarnezhad N, Saxena S, Weiner H, Yano H, Baranzini SE. Inflammatory and neurodegenerative serum protein biomarkers increase sensitivity to detect clinical and radiographic disease activity in multiple sclerosis. Nat Commun 2024; 15:4297. [PMID: 38769309 PMCID: PMC11106245 DOI: 10.1038/s41467-024-48602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The multifaceted nature of multiple sclerosis requires quantitative biomarkers that can provide insights related to diverse physiological pathways. To this end, proteomic analysis of deeply-phenotyped serum samples, biological pathway modeling, and network analysis were performed to elucidate inflammatory and neurodegenerative processes, identifying sensitive biomarkers of multiple sclerosis disease activity. Here, we evaluated the concentrations of > 1400 serum proteins in 630 samples from three multiple sclerosis cohorts for association with clinical and radiographic new disease activity. Twenty proteins were associated with increased clinical and radiographic multiple sclerosis disease activity for inclusion in a custom assay panel. Serum neurofilament light chain showed the strongest univariate correlation with gadolinium lesion activity, clinical relapse status, and annualized relapse rate. Multivariate modeling outperformed univariate for all endpoints. A comprehensive biomarker panel including the twenty proteins identified in this study could serve to characterize disease activity for a patient with multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Riley Bove
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Refujia Gomez
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Roland G Henry
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | | | | | - Anu Paul
- Brigham and Women's Hospital, Boston, MA, USA
| | - Stacy J Caillier
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Adam Santaniello
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Hajime Yano
- Brigham and Women's Hospital, Boston, MA, USA
| | - Sergio E Baranzini
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Madsen AT, Kristiansen HP, Winther-Larsen A. Short-term biological variation of serum tryptase. Clin Chem Lab Med 2024; 62:713-719. [PMID: 37882699 DOI: 10.1515/cclm-2023-0606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVES Serum tryptase is a biomarker of mast cell activation. Among others, it is used in the diagnosis of anaphylaxis where a significant increase during the acute phase supports the diagnosis. When evaluating changes in biomarker levels, it is of utmost importance to consider the biological variation of the marker. Therefore, the aim of this study was to evaluate the short-term biological variation of serum tryptase. METHODS Blood samples were drawn at 9 AM three days in a row from apparently healthy subjects. On day two, additional blood samples were drawn every third hour for 12 h. The tryptase concentration was measured in serum using a fluoroenzyme immunoassay (ImmunoCAP™, Thermo Fisher Scientific). Linear mixed-effects models were used to calculate components of biological variation. RESULTS In 32 subjects, the overall mean concentration of tryptase was 4.0 ng/mL (range, 1.3-8.0 ng/mL). The within-subject variation was 3.7 % (95 % confidence interval (CI) 3.0-4.4 %), the between-subject variation was 31.5 % (95 % CI 23.1-39.8 %), and the analytical variation was 3.4 % (95 % CI 2.9-4.1 %). The reference change value was 13.3 % for an increase in tryptase at a 95 % level of significance. No significant day-to-day variation was observed (p=0.77), while a minute decrease in the serum concentration was observed during the day (p<0.0001). CONCLUSIONS Serum tryptase is a tightly regulated biomarker with very low within-subject variation, no significant day-to-day variation, and only minor semidiurnal variation. In contrast, a considerable between-subject variation exists. This establishes serum tryptase as a well-suited biomarker for monitoring.
Collapse
Affiliation(s)
- Anne Tranberg Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Anne Winther-Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Freedman MS, Gnanapavan S, Booth RA, Calabresi PA, Khalil M, Kuhle J, Lycke J, Olsson T. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024; 101:104970. [PMID: 38354532 PMCID: PMC10875256 DOI: 10.1016/j.ebiom.2024.104970] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Neurofilament light chain (NfL) is a long-awaited blood biomarker that can provide clinically useful information about prognosis and therapeutic efficacy in multiple sclerosis (MS). There is now substantial evidence for this biomarker to be used alongside magnetic resonance imaging (MRI) and clinical measures of disease progression as a decision-making tool for the management of patients with MS. Serum NfL (sNfL) has certain advantages over traditional measures of MS disease progression such as MRI because it is relatively noninvasive, inexpensive, and can be repeated frequently to monitor activity and treatment efficacy. sNfL levels can be monitored regularly in patients with MS to determine change from baseline and predict subclinical disease activity, relapse risk, and the development of gadolinium-enhancing (Gd+) lesions. sNfL does not replace MRI, which provides information related to spatial localisation and lesion stage. Laboratory platforms are starting to be made available for clinical application of sNfL in several countries. Further work is needed to resolve issues around comparisons across testing platforms (absolute values) and normalisation (reference ranges) in order to guide interpretation of the results.
Collapse
Affiliation(s)
- Mark S Freedman
- Department of Medicine (Neurology), University of Ottawa, and the Ottawa Hospital Research Institute, Ontario, Canada.
| | | | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital & Eastern Ontario Regional Laboratory Association, Ontario, Canada
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, Switzerland
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| |
Collapse
|
23
|
Wilson D, Chan D, Chang L, Mathis R, Verberk I, Montalban X, Comabella M, Fissolo N, Bielekova B, Masvekar R, Chitnis T, Ziemssen T, Akgün K, Blennow K, Zetterberg H, Brück W, Giovannoni G, Gnanapavan S, Bittner S, Zipp F, Comi G, Furlan R, Lehmann S, Thebault S, Freedman M, Bar-Or A, Kramer M, Otto M, Halbgebauer S, Hrusovsky K, Plavina T, Khalil M, Piehl F, Wiendl H, Kappos L, Maceski A, Willemse E, Leppert D, Teunissen C, Kuhle J. Development and multi-center validation of a fully automated digital immunoassay for neurofilament light chain: toward a clinical blood test for neuronal injury. Clin Chem Lab Med 2024; 62:322-331. [PMID: 37702323 DOI: 10.1515/cclm-2023-0518] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES Neurofilament light chain (NfL) has emerged as a promising biomarker for detecting and monitoring axonal injury. Until recently, NfL could only be reliably measured in cerebrospinal fluid, but digital single molecule array (Simoa) technology has enabled its precise measurement in blood samples where it is typically 50-100 times less abundant. We report development and multi-center validation of a novel fully automated digital immunoassay for NfL in serum for informing axonal injury status. METHODS A 45-min immunoassay for serum NfL was developed for use on an automated digital analyzer based on Simoa technology. The analytical performance (sensitivity, precision, reproducibility, linearity, sample type) was characterized and then cross validated across 17 laboratories in 10 countries. Analytical performance for clinical NfL measurement was examined in individual patients with relapsing remitting multiple sclerosis (RRMS) after 3 months of disease modifying treatment (DMT) with fingolimod. RESULTS The assay exhibited a lower limit of detection (LLoD) of 0.05 ng/L, a lower limit of quantification (LLoQ) of 0.8 ng/L, and between-laboratory imprecision <10 % across 17 validation sites. All tested samples had measurable NfL concentrations well above the LLoQ. In matched pre-post treatment samples, decreases in NfL were observed in 26/29 RRMS patients three months after DMT start, with significant decreases detected in a majority of patients. CONCLUSIONS The sensitivity characteristics and reproducible performance across laboratories combined with full automation make this assay suitable for clinical use for NfL assessment, monitoring in individual patients, and cross-comparisons of results across multiple sites.
Collapse
Affiliation(s)
| | | | | | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam, University Medical Centers, Amsterdam, The Netherlands
| | - Xavier Montalban
- Laboratori de Neuroinmunologia Clinica Centre d'Esclerosi Múltiple de Catalunya (Cemcat) Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Manuel Comabella
- Laboratori de Neuroinmunologia Clinica Centre d'Esclerosi Múltiple de Catalunya (Cemcat) Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Nicolas Fissolo
- Laboratori de Neuroinmunologia Clinica Centre d'Esclerosi Múltiple de Catalunya (Cemcat) Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Bibi Bielekova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tjalf Ziemssen
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Wolfgang Brück
- Institute for Neuropathology at the University Medical Center, Göttingen, Germany
| | - Gavin Giovannoni
- Department of Neurology, Barts Health NHS Trust, The Royal London Hospital, E1 1FR, London, UK
| | - Sharmilee Gnanapavan
- Department of Neurology, Barts Health NHS Trust, The Royal London Hospital, E1 1FR, London, UK
| | - Stefan Bittner
- University Medical Center Mainz, Department of Neurology, Mainz, Germany
| | - Frauke Zipp
- University Medical Center Mainz, Department of Neurology, Mainz, Germany
| | - Giancarlo Comi
- Institute of Experimental Neurology, Division of Neuroscience, University Vita e Salute San Raffaele and IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, University Vita e Salute San Raffaele and IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Simon Thebault
- University of Ottawa, Department of Medicine, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Mark Freedman
- University of Ottawa, Department of Medicine, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Amit Bar-Or
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Steffen Halbgebauer
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | | | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aleksandra Maceski
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Eline Willemse
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam, University Medical Centers, Amsterdam, The Netherlands
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Beltran TA. Normative Values for Serum Neurofilament Light Chain in US Adults. J Clin Neurol 2024; 20:46-49. [PMID: 38179631 PMCID: PMC10782095 DOI: 10.3988/jcn.2022.0340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurofilament light chain (NfL) levels serve as a marker of neuroaxonal injury and can be measured in both cerebrospinal fluid and serum. Although serum NfL (sNfL) levels have been shown to increase with the progression of various neurological conditions, normative values for healthy individuals have not yet been established. This study was undertaken to determine age-specific normative values for sNfL and evaluate the associations between sNfL and sociodemographic characteristics. METHODS A retrospective analysis was conducted using population-based data collected by the National Health and Nutrition Examination Survey between 2013 and 2014. The sera of 2071 adult participants were collected. General linear models were used to examine the associations between sNfL levels and sample characteristics. RESULTS The data analysis revealed a significant positive association between age and sNfL levels (p<0.001). Sex was also associated with sNfL levels (p=0.04) after controlling for age. The mean sNfL levels for males and females were 17.99 pg/mL (95% confidence interval [CI]=15.43-20.17) and 15.78 pg/mL (95% CI=13.00-18.55) respectively, after controlling for age. CONCLUSIONS These results suggest that sNfL levels increase with age and are affected by sex. The findings of this study provide a useful baseline for comparing sNfL levels in clinical practice and future research.
Collapse
Affiliation(s)
- Thomas A Beltran
- Department of Research, Womack Army Medical Center, Fort Liberty, NC, USA.
| |
Collapse
|
25
|
Sotirchos ES, Hu C, Smith MD, Lord HN, DuVal AL, Arrambide G, Montalban X, Akgün K, Ziemssen T, Naismith RT, Hersh CM, Hyland M, Krupp LB, Nicholas JA, Bermel RA, Mowry EM, Calabresi PA, Fitzgerald KC. Agreement Between Published Reference Resources for Neurofilament Light Chain Levels in People With Multiple Sclerosis. Neurology 2023; 101:e2448-e2453. [PMID: 37816633 PMCID: PMC10752633 DOI: 10.1212/wnl.0000000000207957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES To examine the agreement between published reference resources for neurofilament light chain (NfL) applied to a large population of people with multiple sclerosis (MS). METHODS Six published reference resources were used to classify NfL in participants in the Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) network as elevated or normal and to derive age-specific NfL Z-scores. NfL values were classified as elevated if they exceeded the >95th percentile (i.e., Z-score >1.645) of the age-specific reference range. Furthermore, age-specific NfL Z-scores could be derived for 4 of 6 reference resources. RESULTS NfL measurements were assessed from 12,855 visits of 6,687 people with MS (median 2 samples per individual [range 1-7]). The mean ± SD age was 47.1 ± 11.7 years, 72.1% of participants were female, disease duration was 15.0 ± 10.6 years, body mass index was 28.6 ± 6.9 kg/m2, and serum NfL was 12.87 ± 12.86 pg/mL. Depending on the selection of the reference resource, the proportion of NfL measurements classified as elevated varied from 3.7% to 30.9%. The kappa coefficient across the 6 reference resources used was 0.576 (95% CI 0.571-0.580) indicating moderate agreement. Spearman correlations between Z-scores derived from the various reference resources exceeded 0.90; however, concordance coefficients were lower, ranging from 0.72 to 0.89. DISCUSSION Interpretation of blood NfL values may vary markedly depending on the selection of the reference resource. Borderline elevated values should be interpreted with caution, and future studies should focus on standardizing NfL measurement and reporting across laboratories/platforms, better characterizing the effects of confounding/influencing factors, and defining the performance of NfL (including as part of multimodal predictive algorithms) for prediction of disease-specific outcomes.
Collapse
Affiliation(s)
- Elias S Sotirchos
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH.
| | - Chen Hu
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Matthew D Smith
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Hannah-Noelle Lord
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Anna L DuVal
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Georgina Arrambide
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Xavier Montalban
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Katja Akgün
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Tjalf Ziemssen
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Robert T Naismith
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Carrie M Hersh
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Megan Hyland
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Lauren B Krupp
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Jacqueline A Nicholas
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Robert A Bermel
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Ellen M Mowry
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Peter A Calabresi
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Kathryn C Fitzgerald
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH.
| |
Collapse
|
26
|
Määttä LL, Andersen ST, Parkner T, Hviid CVB, Bjerg L, Kural MA, Charles M, Søndergaard E, Sandbæk A, Tankisi H, Witte DR, Jensen TS. Serum neurofilament light chain - A potential biomarker for polyneuropathy in type 2 diabetes? Diabetes Res Clin Pract 2023; 205:110988. [PMID: 38349953 DOI: 10.1016/j.diabres.2023.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 02/15/2024]
Abstract
AIMS To investigate the relationship between neurofilament light chain (NfL) and the presence and severity of diabetic polyneuropathy (DPN). METHODS We performed cross-sectional analysis of data from 178 participants of the ADDITION-Denmark cohort of people with screen-detected type 2 diabetes and 32 healthy controls. Biobank serum samples were analyzed for NfL using single-molecule array. DPN was defined by Toronto criteria for confirmed DPN. Original and axonal nerve conduction study (NCS) sum z-scores were used as indicators of the severity of DPN and peripheral nerve damage. RESULTS 39 (21.9%) participants had DPN. Serum NfL (s-NfL) was significantly higher in participants with DPN (18.8 ng/L [IQR 14.4; 27.9]) than in participants without DPN (15.4 ng/L [IQR 11.7; 20.1]). There were no unadjusted s-NfL differences between controls (17.6 ng/L [IQR 12.7; 19.8]) and participants with or without DPN. Higher original and axonal NCS sum z-scores were associated with 10% higher s-NfL (10.2 and 12.1% [95% CI's 4.0; 16.8 and 6.6; 17.9] per 1 SD). The AUC of s-NfL for DPN was 0.63 (95% CI 0.52; 0.73). CONCLUSIONS S-NfL is unlikely to be a reliable biomarker for the presence of DPN. S-NfL is however associated tothe severity of the nerve damage underlying DPN.
Collapse
Affiliation(s)
- Laura L Määttä
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 165, J109, 8200 Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark.
| | - Signe T Andersen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 165, J109, 8200 Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark.
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 99, 8200 Aarhus, Denmark Aarhus, Denmark.
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 99, 8200 Aarhus, Denmark Aarhus, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark.
| | - Lasse Bjerg
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Mustafa A Kural
- Department of Clinical Neurophysiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 165, J209, 8200 Aarhus, Denmark.
| | - Morten Charles
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark.
| | - Annelli Sandbæk
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 165, J209, 8200 Aarhus, Denmark.
| | - Daniel R Witte
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Troels S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 165, J109, 8200 Aarhus, Denmark.
| |
Collapse
|
27
|
Carobene A, Maiese K, Abou-Diwan C, Locatelli M, Serteser M, Coskun A, Unsal I. Biological variation estimates for serum neurofilament light chain in healthy subjects. Clin Chim Acta 2023; 551:117608. [PMID: 37844678 DOI: 10.1016/j.cca.2023.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES Neurofilament light chain (NfL) is an emerging biomarker of neurodegeneration disorders. Knowledge of the biological variation (BV) can facilitate proper interpretation between serial measurements. Here BV estimates for serum NfL (sNfL) are provided. METHODS Serum samples were collected weekly from 24 apparently healthy subjects for 10 consecutive weeks and analyzed in duplicate using the Siemens Healthineers sNfL assay on the Atellica® IM Analyzer. Outlier detection, variance homogeneity analyses, and trend analysis were performed followed by CV-ANOVA to determine BV and analytical variation (CVA) estimates with 95%CI and the associated reference change values (RCV) and analytical performance specifications (APS). RESULTS Despite observed differences in sNfL concentrations between males and females, BV estimates remained consistent across genders. Both within-subject BV (CVI) for males (10.7%, 95%CI; 9.2-12.6) and females (9.1%, 95%CI; 7.8-10.9) and between-subject BV (CVG) for males (26.1%, 95%CI; 18.0-45.6) and females (30.2%, 95%CI; 20.9-53.5) were comparable. An index of individuality value of 0.33 highlights significant individuality, indicating the potential efficacy of personalized reference intervals in patient monitoring. CONCLUSIONS The established BV estimates for sNfL underscore its potential as a valuable biomarker for monitoring neurodegenerative diseases, offering a foundation for improved decision-making in clinical settings.
Collapse
Affiliation(s)
- Anna Carobene
- Laboratory Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | | | | - Massimo Locatelli
- Laboratory Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mustafa Serteser
- Acibadem Mehmet Ali Aydınlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Abdurrahman Coskun
- Acibadem Mehmet Ali Aydınlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Ibrahim Unsal
- Acibadem Mehmet Ali Aydınlar University, School of Medicine, Atasehir, Istanbul, Turkey
| |
Collapse
|
28
|
Schjørring ME, Parkner T, Knudsen CS, Tybirk L, Hviid CVB. Neurofilament light chain: serum reference intervals in Danish children aged 0-17 years. Scand J Clin Lab Invest 2023; 83:403-407. [PMID: 37632388 DOI: 10.1080/00365513.2023.2251003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Elevated levels of neurofilament light chain (NfL) in the blood is an unspecific biomarker for damage to neuronal axons. The measurement of NfL levels in the blood can provide useful information for monitoring and prognostication of various neurological disorders in children, but a reference interval (RI) is needed before the clinical implementation of the biomarker. We aimed to establish a RI for children aged 0-17 years. Serum samples from 292 healthy reference subjects aged 0.4-17.9 years were analysed by a single-molecule array (Simoa®) established for routine clinical use. Non-parametric quantile regression was used to model a continuous RI, and a traditional age-partitioned non-parametric RI was established according to Clinical and Laboratory Standard Institute (CLSI) guideline C28-A3. Furthermore, we investigated the effect of hemolysis on assay performance. The traditional age-partitioned non-parametric RI for the age group <3 years was 3.5-16.6 ng/L and 2.1-13.9 ng/L in the age group ≥3 years, respectively. The continuous RI showed an age-dependent decrease in median NfL levels in the first three years of life which was also evident in the age-partitioning of the traditional RI. We found no difference between sexes and no impact of hemolysis on the NfL test results. This study establishes a pediatric RI for serum NfL and lays the groundwork for its future use in clinical practice.
Collapse
Affiliation(s)
- Mia Elbek Schjørring
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
29
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
30
|
Arslan B, Zetterberg H. Neurofilament light chain as neuronal injury marker - what is needed to facilitate implementation in clinical laboratory practice? Clin Chem Lab Med 2023; 61:1140-1149. [PMID: 36880940 DOI: 10.1515/cclm-2023-0036] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neurobiomarkers have attracted significant attention over the last ten years. One promising biomarker is the neurofilament light chain protein (NfL). Since the introduction of ultrasensitive assays, NfL has been developed into a widely used axonal damage marker of relevance to the diagnosis, prognostication, follow-up, and treatment monitoring of a range of neurological disorders, including multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. The marker is increasingly used clinically, as well as in clinical trials. Even if we have validated precise, sensitive, and specific assays for NfL quantification in both cerebrospinal fluid and blood, there are analytical, as well as pre- and post-analytical aspects of the total NfL testing process, including biomarker interpretation, to consider. Although the biomarker is already in use in specialised clinical laboratory settings, a more general use requires some further work. In this review, we provide brief basic information and opinions on NfL as a biomarker of axonal injury in neurological diseases and pinpoint additional work needed to facilitate biomarker implementation in clinical practice.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
31
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
32
|
Glascock J, Darras BT, Crawford TO, Sumner CJ, Kolb SJ, DiDonato C, Elsheikh B, Howell K, Farwell W, Valente M, Petrillo M, Tingey J, Jarecki J. Identifying Biomarkers of Spinal Muscular Atrophy for Further Development. J Neuromuscul Dis 2023; 10:937-954. [PMID: 37458045 PMCID: PMC10578234 DOI: 10.3233/jnd-230054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by bi-allelic, recessive mutations of the survival motor neuron 1 (SMN1) gene and reduced expression levels of the survival motor neuron (SMN) protein. Degeneration of alpha motor neurons in the spinal cord causes progressive skeletal muscle weakness. The wide range of disease severities, variable rates of decline, and heterogenous clinical responses to approved disease-modifying treatment remain poorly understood and limit the ability to optimize treatment for patients. Validation of a reliable biomarker(s) with the potential to support early diagnosis, inform disease prognosis and therapeutic suitability, and/or confirm response to treatment(s) represents a significant unmet need in SMA. OBJECTIVES The SMA Multidisciplinary Biomarkers Working Group, comprising 11 experts in a variety of relevant fields, sought to determine the most promising candidate biomarker currently available, determine key knowledge gaps, and recommend next steps toward validating that biomarker for SMA. METHODS The Working Group engaged in a modified Delphi process to answer questions about candidate SMA biomarkers. Members participated in six rounds of reiterative surveys that were designed to build upon previous discussions. RESULTS The Working Group reached a consensus that neurofilament (NF) is the candidate biomarker best poised for further development. Several important knowledge gaps were identified, and the next steps toward filling these gaps were proposed. CONCLUSIONS NF is a promising SMA biomarker with the potential for prognostic, predictive, and pharmacodynamic capabilities. The Working Group has identified needed information to continue efforts toward the validation of NF as a biomarker for SMA.
Collapse
Affiliation(s)
| | - Basil T. Darras
- Boston Children’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Thomas O. Crawford
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Charlotte J. Sumner
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Bakri Elsheikh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelly Howell
- Spinal Muscular Atrophy Foundation, Jackson, WY, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Alzheimer's disease (AD) characterization has progressed from being indexed using clinical symptomatology followed by neuropathological examination at autopsy to in vivo signatures using cerebrospinal fluid (CSF) biomarkers and positron emission tomography. The core AD biomarkers reflect amyloid-β plaques (A), tau pathology (T) and neurodegeneration (N), following the ATN schedule, and are now being introduced into clinical routine practice. This is an important development, as disease-modifying treatments are now emerging. Further, there are now reproducible data on CSF biomarkers which reflect synaptic pathology, neuroinflammation and common co-pathologies. In addition, the development of ultrasensitive techniques has enabled the core CSF biomarkers of AD pathophysiology to be translated to blood (e.g., phosphorylated tau, amyloid-β and neurofilament light). In this chapter, we review where we stand with both core and novel CSF biomarkers, as well as the explosion of data on blood biomarkers. Also, we discuss potential applications in research aiming to better understand the disease, as well as possible use in routine clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anders Elmgren
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
34
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
35
|
Christensen SH, Hviid CVB, Madsen AT, Parkner T, Winther-Larsen A. Short-term biological variation of serum glial fibrillary acidic protein. Clin Chem Lab Med 2022; 60:1813-1819. [PMID: 35962632 DOI: 10.1515/cclm-2022-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/29/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker for intracerebral diseases and is approved for clinical use in traumatic brain injury. GFAP is also being investigated for several other applications, where the GFAP changes are not always outstanding. It is thus essential for the interpretation of GFAP to distinguish clinical relevant changes from natural occurring biological variation. This study aimed at estimating the biological variation of serum GFAP. METHODS Apparently healthy subjects (n=33) had blood sampled for three consecutive days. On the second day, blood was also drawn every third hour from 9 AM to 9 PM. Serum GFAP was measured by Single Molecule Array (Simoa™). Components of biological variation were estimated in a linear mixed-effects model. RESULTS The overall median GFAP value was 92.5 pg/mL (range 34.4-260.3 pg/mL). The overall within- (CVI) and between-subject variations (CVG) were 9.7 and 39.5%. The reference change value was 36.9% for an increase. No day-to-day variation was observed, however semidiurnal variation was observed with increasing GFAP values between 9 AM and 12 PM (p<0.00001) and decreasing from 12 to 9 PM (p<0.001). CONCLUSIONS Serum GFAP exhibits a relatively low CVI but a considerable CVG and a marked semidiurnal variation. This implies caution on the timing of blood sampling and when interpreting GFAP in relation to reference intervals, especially in conditions where only small GFAP differences are observed.
Collapse
Affiliation(s)
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Tranberg Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Winther-Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Sandberg S, Carobene A, Aarsand AK. Biological variation - eight years after the 1st Strategic Conference of EFLM. Clin Chem Lab Med 2022; 60:465-468. [PMID: 35138052 DOI: 10.1515/cclm-2022-0086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sverre Sandberg
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Medical Biochemistry and Pharmacology, Norwegian Porphyria Centre, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Anna Carobene
- Laboratory Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aasne K Aarsand
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Medical Biochemistry and Pharmacology, Norwegian Porphyria Centre, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|