1
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Rotundo S, Tassone MT, Lionello R, Fusco P, Serapide F, Russo A. Emerging Prognostic and Predictive Biomarkers for Human Cytomegalovirus Infection During Pregnancy: Unmet Needs and Future Perspectives. Viruses 2025; 17:705. [PMID: 40431716 PMCID: PMC12115395 DOI: 10.3390/v17050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Human cytomegalovirus (HCMV) infection during pregnancy is a leading cause of congenital infections worldwide, posing significant risks to fetal health. Despite advances in prenatal care, managing HCMV infection remains challenging. Early detection, accurate risk assessment, and timely intervention are critical to mitigating the adverse outcomes associated with congenital HCMV (cHCMV), such as neurodevelopmental delays and hearing loss. However, the current landscape of biomarkers for HCMV infection in pregnancy is marked by several unmet needs. These gaps in biomarker development and application limit our ability to predict fetal transmission, assess the risk of fetal damage, and prognosticate long-term outcomes. Addressing these challenges through the identification and validation of novel biomarkers could revolutionize the management of HCMV in pregnancy, leading to improved outcomes for both mothers and their children. This review examines the critical unmet needs regarding HCMV biomarkers during pregnancy, emphasizing the priority areas for further research and innovation.
Collapse
Affiliation(s)
- Salvatore Rotundo
- Infectious Disease Unit, “San Giovanni di Dio” Hospital, 88900 Crotone, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.T.T.); (F.S.); (A.R.)
| | - Maria Teresa Tassone
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.T.T.); (F.S.); (A.R.)
| | - Rosaria Lionello
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (R.L.); (P.F.)
| | - Paolo Fusco
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (R.L.); (P.F.)
| | - Francesca Serapide
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.T.T.); (F.S.); (A.R.)
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (R.L.); (P.F.)
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.T.T.); (F.S.); (A.R.)
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (R.L.); (P.F.)
| |
Collapse
|
3
|
Mimmi S, Parrotta EI, Tolomeo AM, Maisano D, Crapella V, Pingitore E, Fatima K, Zimbo AM, Talarico M, Cristiani CM, Scaramuzzino L, Valente D, Zannino C, Cuda G, Quattrone A, Iaccino E, Quattrone A. Neuronally-Derived Extracellular Vesicles Transforming Growth Factor Beta-1 Levels in Progressive Supranuclear Palsy. Mov Disord 2025. [PMID: 40317792 DOI: 10.1002/mds.30222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Differentiating progressive supranuclear palsy (PSP) from other parkinsonian disorders may be challenging. OBJECTIVES To investigate the role of transforming growth factor beta-1 (TGFβ1) in PSP. METHODS A total of 33 PSP, 39 Parkinson's disease (PD), 8 multiple system atrophy (MSA) patients, and 50 healthy controls (HC) were enrolled. TGFβ1 levels, including both active and inactive forms (latency-associated peptide [LAP]-TGFβ1), were measured in serum, total extracellular vesicles (EVs), and neuronally-derived EVs (NDEVs) using microfluidic assays and ELISA. RESULTS PSP patients exhibited a marked increase in TGFβ1 and LAP-TGFβ1 levels in NDEVs, while no differences were observed across groups in serum or total EVs. Receiver operating characteristic (ROC) analysis demonstrated outstanding performance in differentiating PSP from non-PSP patients (TGFβ1, area under the curve [AUC]: 0.97; LAP-TGFβ1, AUC: 1.00), HC, AUC: 1.00). CONCLUSIONS This study highlights TGFβ1 and LAP-TGFβ1 in NDEVs as promising blood-based non-invasive biomarkers for PSP diagnosis, paving the way for further research on these proteins in PSP. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Selena Mimmi
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Padua, Italy
- Institute of Pediatric Research 'Città della Speranza', Padua, Italy
| | | | - Valentina Crapella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elisabetta Pingitore
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Khushboo Fatima
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gianni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Plebani M, Scott S, Simundic AM, Cornes M, Padoan A, Cadamuro J, Vermeersch P, Çubukçu HC, González Á, Nybo M, Salvagno GL, Costelloe SJ, Falbo R, von Meyer A, Iaccino E, Botrè F, Banfi G, Lippi G. New insights in preanalytical quality. Clin Chem Lab Med 2025:cclm-2025-0478. [PMID: 40266896 DOI: 10.1515/cclm-2025-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
The negative impact of preanalytical errors on the quality of laboratory testing is now universally recognized. Nonetheless, recent technological advancements and organizational transformations in healthcare - catalyzed by the still ongoing coronavirus disease 2019 (COVID-19 pandemic) - have introduced new challenges and promising opportunities for improvement. The integration of value-based scoring systems for clinical laboratories and growing evidence linking preanalytical errors to patient outcomes and healthcare costs underscore the critical importance of this phase. Emerging topics in the preanalytical phase include the pursuit of a "greener" and more sustainable environment, innovations in self-sampling and automated blood collection, and strategies to minimize patient blood loss. Additionally, efforts to reduce costs and enhance sustainability through patient blood management have gained momentum. Digitalization and artificial intelligence (AI) offer transformative potential, with applications in sample labeling, recording collection events, and monitoring sample conditions during transportation. AI-driven tools can also streamline the preanalytical workflow and mitigate errors. Specific challenges include managing hemolysis and developing strategies to minimize its impact, addressing issues related to urine collection, and designing robust protocols for sample stability studies. The rise of decentralized laboratory testing presents unique preanalytical hurdles, while emerging areas such as liquid biopsy and anti-doping testing introduce novel complexities. Altogether, these advancements and challenges highlight the dynamic evolution of the preanalytical phase and the critical need for continuous innovation and standardization. This collective opinion paper, which summarizes the abstracts of lectures delivered at the two-day European Federation of Laboratory Medicine (EFLM) Preanalytical Conference entitled "New Insight in Preanalytical Quality" (Padova, Italy; December 12-13, 2025), provides a comprehensive overview of preanalytical errors, offers some important insights into less obvious sources of preanalytical vulnerability and proposes efficient opportunities of improvement.
Collapse
Affiliation(s)
- Mario Plebani
- Department of Medicine (DIMED), University of Padova, Padova, Italy
- Laboratory Medicine Unit, University-Hospital of Padova, Padova, Italy
| | | | - Ana-Maria Simundic
- Department of Global Medical & Clinical Affairs, Greiner Bio-One, Kremsmünster, Austria
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mike Cornes
- Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Andrea Padoan
- Department of Medicine (DIMED), University of Padova, Padova, Italy
- Laboratory Medicine Unit, University-Hospital of Padova, Padova, Italy
| | - Janne Cadamuro
- Department of Laboratory Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Hikmet Can Çubukçu
- Department of Medical Biochemistry, Sincan Training and Research Hospital, Ankara, Türkiye
| | - Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mads Nybo
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | | | - Seán J Costelloe
- Department of Clinical Biochemistry, Cork University Hospital, Cork, Republic of Ireland
| | - Rosanna Falbo
- Ultraspecialized Laboratory of Clinical Pathology and Substance Abuse, ASST Brianza-Hospital PioXI, Desio, Italy
| | - Alexander von Meyer
- Institute for Laboratory Medicine, Barmherzige Brüder Hospital, Munich, Germany
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy
- REDs - Research and Expertise on Anti-Doping Sciences, Institute of Sport Science, University of Lausanne, Lausanne, Switzerland
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Cristiani CM, Mimmi S, Parrotta EI, Talarico M, Tolomeo AM, Pingitore E, Fatima K, Vescio B, Scaramuzzino L, Crapella V, Zimbo AM, Iaccino E, Cuda G, Quattrone A, Quattrone A. Neuronally Derived Extracellular Vesicles' Oligomeric and p129-α-Synuclein Levels for Differentiation of Parkinson's Disease from Essential Tremor. Int J Mol Sci 2025; 26:3819. [PMID: 40332541 PMCID: PMC12028296 DOI: 10.3390/ijms26083819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Clinical differentiation between Parkinson's disease (PD) and essential tremor (ET) may be challenging, highlighting the need for easily assessable diagnostic biomarkers. Neuronally derived extracellular vesicles (NDEVs) have been proposed as a peripheral matrix that can well recapitulate the cellular composition of neurons. We investigated the clinical usefulness of NDEV oligomeric and p129-α-synuclein levels in discriminating between patients with PD and those with ET. NDEV oligomeric and p129-α-synuclein species were assessed using an ELISA in 43 patients with PD, 21 patients with ET, and 45 healthy controls (HCs). NDEV oligomeric α-synuclein levels were significantly higher in PD in comparison with ET and HCs, while p129-α-synuclein values were significantly lower in HCs compared to other groups. By using a receiver operator characteristic (ROC) analysis, oligomeric-α-synuclein achieved an excellent classification performance in distinguishing PD from both ET and HCs (AUC: 0.976 and 0.997, respectively), while lower performance was obtained in differentiating ET from HCs (AUC: 0.85). On the other hand, p129-α-synuclein accurately discriminated both PD and ET from HCs (AUC: 0.997 and 0.952, respectively) but had very low performance in differentiating PD from ET (AUC: 0.47). Our study suggests that NDEV oligomeric α-synuclein is an accurate blood-derived biomarker to differentiate PD from ET, while p129-α-synuclein may be useful in distinguishing ET from HCs.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Selena Mimmi
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Laboratory of Stem Cells, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mariagrazia Talarico
- Laboratory of Stem Cells, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Anna Maria Tolomeo
- Institute of Pediatric Research Città della Speranza, 35128 Padua, Italy
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128 Padua, Italy
| | - Elisabetta Pingitore
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Khushboo Fatima
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Basilio Vescio
- Biotecnomed S.c.ar.l., 88100 Catanzaro, Italy
- IBSBC-CNR, Via T. Campanella, 115, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Valentina Crapella
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Allela OQB, Ali NAM, Sanghvi G, Roopashree R, Kashyap A, Krithiga T, Panigrahi R, Kubaev A, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M. The Role of Viral Infections in Acute Kidney Injury and Mesenchymal Stem Cell-Based Therapy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10873-0. [PMID: 40198477 DOI: 10.1007/s12015-025-10873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Viruses may cause a wide range of renal problems. Furthermore, many kidney diseases may be brought on by viral infections. Both the primary cause and a contributing factor of acute kidney injury (AKI) may be viral infections. As an example, it is recommended that patients with dengue virus (DENV) infections undergo careful monitoring of their AKI levels. Also, researchers' data so far lend credence to the several hypothesized pathophysiological mechanisms via which AKI can develop in SARS-CoV- 2 infection. Thus, it is critical to comprehend how viral infections cause AKI. Finding an effective method of treating AKI caused by viruses is also vital. Thus, a potential cell-free method for treating AKI that uses regenerative and anti-inflammatory processes is mesenchymal stem cells (MSCs) and their exosomes (MSC-EXOs). MSCs alleviate tissue damage and enhance protective effects on damaged kidneys in AKI. Furthermore, MSC-EXOs have exhibited substantial regulatory impact on a range of immune cells and exhibit robust immune regulation in the therapy of AKI. Thus, in models of AKI caused by ischemia-reperfusion damage, nephrotoxins, or sepsis, MSCs and MSC-EXOs improved renal function, decreased inflammation, and improved healing. Therefore, MSCs and MSC-EXOs may help treat AKI caused by different viruses. Consequently, we have explored several innovative and significant processes in this work that pertain to the role of viruses in AKI and the significance of viral illness in the onset of AKI. After that, we assessed the key aspects of MSCs and MSC-EXOs for AKI therapy. We have concluded by outlining the current state of and plans for future research into MSC- and EXO-based therapeutic approaches for the treatment of AKI brought on by viruses.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
7
|
Dong X, Lin Y, Li K, Liang G, Huang X, Pan J, Wang L, Zhang D, Liu T, Wang T, Yan X, Zhang L, Li X, Qu X, Jia D, Li Y, Zhang H. Consensus statement on extracellular vesicles in liquid biopsy for advancing laboratory medicine. Clin Chem Lab Med 2025; 63:465-482. [PMID: 38896030 DOI: 10.1515/cclm-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.
Collapse
Affiliation(s)
- Xingli Dong
- 558113 Central Laboratory, Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen Clinical Research Center for hematologic disease, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Thoracic Surgery, 47885 The First Affiliated Hospital of Jinan University , Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Gaofeng Liang
- 74623 School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology , Luoyang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Tong Wang
- 47885 MOE Key Laboratory of Tumor Molecular Biology, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xiaomei Yan
- Department of Chemical Biology, 534787 MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China
| | - Long Zhang
- 12377 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University , Hangzhou, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, 558113 Shenzhen Key Laboratory, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Xiujuan Qu
- Department of Medical Oncology, 159407 The First Hospital of China Medical University , Shenyang, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
8
|
Eldien HMS, Almaeen AH, El Fath AA, Taha AE, Ahmed R, Elfadil H, Hetta HF. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Diagnostics (Basel) 2025; 15:229. [PMID: 39857114 PMCID: PMC11763845 DOI: 10.3390/diagnostics15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has caused widespread morbidity and mortality, with its effects extending to multiple organ systems. Despite known risk factors for severe disease, including advanced age and underlying comorbidities, patient outcomes can vary significantly. This variability complicates efforts to predict disease progression and tailor treatment strategies. While diagnostic and therapeutic approaches are still under debate, RNA sequencing (RNAseq) has emerged as a promising tool to provide deeper insights into the pathophysiology of COVID-19 and guide personalized treatment. A comprehensive literature review was conducted using PubMed, Scopus, Web of Science, and Google Scholar. We employed Medical Subject Headings (MeSH) terms and relevant keywords to identify studies that explored the role of RNAseq in COVID-19 diagnostics, prognostics, and therapeutics. RNAseq has proven instrumental in identifying molecular biomarkers associated with disease severity in patients with COVID-19. It allows for the differentiation between asymptomatic and symptomatic individuals and sheds light on the immune response mechanisms that contribute to disease progression. In critically ill patients, RNAseq has been crucial for identifying key genes that may predict patient outcomes, guiding therapeutic decisions, and assessing the long-term effects of the virus. Additionally, RNAseq has helped in understanding the persistence of viral RNA after recovery, offering new insights into the management of post-acute sequelae, including long COVID. RNA sequencing significantly improves COVID-19 management, particularly for critically ill patients, by enhancing diagnostic accuracy, personalizing treatment, and predicting therapeutic responses. It refines patient stratification, improving outcomes, and holds promise for targeted interventions in both acute and long COVID.
Collapse
Affiliation(s)
- Heba M. Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ahmed Abo El Fath
- Tropical Medicine and Gastroenterology Department, Assiut University Hospital, Assiut 71515, Egypt;
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| |
Collapse
|
9
|
Zhang J, Luo C, Long H, Zhang B, Shan H, Hou B. Circulating exosomal miRNA-451 as an effective diagnostic biomarker and prognostic indicator for multiple myeloma. Int J Biol Markers 2024; 39:301-309. [PMID: 39311052 DOI: 10.1177/03936155241283747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
OBJECTIVE Multiple myeloma (MM) is a plasma cell malignancy characterized by abnormal plasma cell proliferation in the bone marrow. Circulating exosomal miRNA-451 is associated with the progression of many tumors, but the relationship between its expression and MM has not been reported. In this study, we aimed to investigate the clinical value of miRNA-451 as a biomarker for diagnosis and prognosis of multiple myeloma. METHODS A total of 120 patients with multiple myeloma and 120 healthy control people were recruited in this study. The miRNA-451 expression in serum exosomes of participants was measured by quantitative real-time polymerase chain reaction, and the diagnostic value of miRNA-451 for multiple myeloma was assessed by receiver operating characteristic (ROC) curve. The correlation between miRNA-451 expression and plasma cells ratio and M protein content was analyzed by Pearson correlation coefficient. The prognosis of different miRNA-451 expression was evaluated by survival curves. RESULTS Results suggested that serum exosomal miRNA-451 expression was significantly decreased in patients with multiple myeloma rather than in the healthy controls. The ROC curve showed that area under the curve value of miRNA-451 was 0.888, suggesting that miRNA-451 had diagnostic value to multiple myeloma. Moreover, there was a negative correlation between miRNA-451 expression and plasma cells ratio or M protein content. Survival curves showed that patients with high miRNA-451 expression had a longer survival time, suggesting the value of miRNA-451 as a prognostic indicator of multiple myeloma. CONCLUSION We demonstrated the relationship between miRNA-451 expression and multiple myeloma, indicating that miRNA-451 in circulating exosomes may be an effective diagnostic biomarker and prognostic indicator for multiple myeloma.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Cheng Luo
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Haiying Long
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Bin Zhang
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Hongtao Shan
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Benli Hou
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| |
Collapse
|
10
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
11
|
Joudaki N, Khodadadi A, Shamshiri M, Dehnavi S, Asadirad A. Alterations in the expression of serum-derived exosome-enclosed inflammatory microRNAs in Covid-19 patients. Heliyon 2024; 10:e39303. [PMID: 39640730 PMCID: PMC11620257 DOI: 10.1016/j.heliyon.2024.e39303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction MicroRNAs in exosomes play a role in biological processes such as inflammation and Epithelial-mesenchymal transition (EMT). In EMT, epithelial cells undergo phenotypic changes and become similar to mesenchymal cells. EMT increases the invasion and metastasis of cancer cells. We aimed to evaluate the expression levels of miRNA-21, miRNA-218, miRNA-155, and miRNA-10b, which are effective in the pathway of inflammation and EMT in serum-derived exosome of COVID-19 patients. Method Blood samples were taken from 30 patients with COVID-19 and five healthy individuals as a control group. After separating the serum from the collected blood, the exosomes were purified from the serum. Relative expression of microRNAs was measured by real-time PCR method. Results The relative expression of miRNA-21, miRNA-218, and miRNA-155 in serum-derived exosomes of patients with COVID-19 had a significant increase (p < 0.0001). Also, the relative expression of miRNA-10b was significantly increased in the patient group (p < 0.01), but the changes in the expression level of miRNA-10b were not as significant as the changes in the expression level of other microRNAs. Conclusion miRNA-21, miRNA-218, miRNA-155, and miRNA-10b are involved in the pathogenesis of COVID-19 disease, and their transmission by exosomes leads to pathogenic lesions and problems in other parts of the body.
Collapse
Affiliation(s)
- Nazanin Joudaki
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Cione E, Michelini S, Abrego-Guandique DM, Vaia N, Michelini S, Puleo V, Bertelli M, Caroleo MC, Cannataro R. Identification of Specific microRNAs in Adipose Tissue Affected by Lipedema. Curr Issues Mol Biol 2024; 46:11957-11974. [PMID: 39590304 PMCID: PMC11592672 DOI: 10.3390/cimb46110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Lipedema is a chronic disorder affecting women with a 10% incidence worldwide. It is often confused with obesity. This study was undertaken to study microRNAs in lipedema tissue assessed by direct hybridization using the robust n-counter flex DX CE-IVD platform. The mean age of the subjects participating in the study was 40.29 (±12.17). The mean body weight and BMI were 67.37 (±10.02) and 25.75 (±4.10), respectively. The lipedema stages included were I and II. The differential expressed human (hsa)-miRNAs were determined according to a log2 fold-change (LFC) of 0.5 and p value < 0.05. To these, increased expression of hsa-let-7g-5p was evident, as well as reduced levels of hsa-miR-371a-5p, -4454+7975, -365a+b-3p, -205-5p, -196a-5p, -4488, -2116-5p, -141-3p, -208a-3p, -302b-3p, 374a-5p, and -1297. Then, several bioinformatics tools were used to analyze microarray data focusing on validated target genes in silico. KEGG and Gene Ontology (GO) pathway enrichment analysis was conducted. Furthermore, the protein-protein interaction and co-expression network were analyzed using STRING and Cytoscape, respectively. The most upregulated miRNA mainly affected genes related to cell cycle, oocyte meiosis, and inflammatory bowel disease. The downregulated microRNAs were related to endocrine resistance, insulin resistance, hypersensitivity to AGE-RAGEs, and focal adhesion. Finally, we validated by RT-PCR the upregulated hsa-let-7g-5p and two down-regulated ones, hsa-miR-205-5p and hsa-miR-302b-3p, confirming microarray results. In addition, three mRNA target miRNAs were monitored, SMAD2, the target of the hsa-let-7g-5p, and ESR1 and VEGFA, the target of hsa-miR-205-5p and hsa-miR-302b-3p, respectively. Our results open a new direction for comprehending biochemical mechanisms related with the pathogenesis of lipedema, shedding light on this intricate pathophysiological condition that could bring to light possible biomarkers in the future.
Collapse
Affiliation(s)
- Erika Cione
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Sandro Michelini
- Servizio di Diagnostica e Riabilitazione Vascolare Ospedale di Marino, 00047 Rome, Italy;
| | | | - Nicola Vaia
- Chirurgia Plastica, Ricostruttiva ed Estetica, European Hospital, 00149 Rome, Italy;
| | - Serena Michelini
- Medicina Fisica e Riabilitazione, Università La Sapienza, Ospedale S. Andrea, 00185 Rome, Italy;
| | - Valeria Puleo
- Dipartimento di Scienze e Sanità Pubblica, Università Cattolica Policlinico Gemelli, 00168 Rome, Italy;
| | | | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
| | - Roberto Cannataro
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business and Science Society—DBSS International SAS, Bogotá 110311, Colombia
| |
Collapse
|
13
|
Wagner N, Karere G. Micro-RNA 7975 directly regulates MDTH expression and mediates endothelial cell proliferation and migration in the development of early atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618502. [PMID: 39464092 PMCID: PMC11507736 DOI: 10.1101/2024.10.15.618502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease (CVD) is commonly due to the development of atherosclerosis. Endothelial integrity is critical in the prevention of pathogenesis of atherosclerosis. The key to prevention of CVD is understanding the molecular mechanisms responsible for initiation of early atherosclerosis. MiRNAs are mediators of endothelial homeostasis, and their dysregulation could lead to early atherosclerotic disorder. We previously revealed the expression of miR-7975 in early atherosclerotic lesions. The aim of this study was to investigate the novel roles of miR-7975 on endothelial cell proliferation and migration, and in the regulation of metadherin (MTDH) expression. We performed proliferation and migration assays coupled with luciferase assay. We show that miR-7975 promotes proliferation and migration of endothelial cells and that miR-7976 directly regulates (MTDH), previously associated with cancer pathogenesis. In conclusion our results show miR-7975 could be a potential mediator of endothelial homeostasis and that MTDH is a novel target of miR-7975.
Collapse
|
14
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
15
|
Wang Y, Chen J, Yang Z, Wang X, Zhang Y, Chen M, Ming Z, Zhang K, Zhang D, Zheng L. Advances in Nucleic Acid Assays for Infectious Disease: The Role of Microfluidic Technology. Molecules 2024; 29:2417. [PMID: 38893293 PMCID: PMC11173870 DOI: 10.3390/molecules29112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Within the fields of infectious disease diagnostics, microfluidic-based integrated technology systems have become a vital technology in enhancing the rapidity, accuracy, and portability of pathogen detection. These systems synergize microfluidic techniques with advanced molecular biology methods, including reverse transcription polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR), have been successfully used to identify a diverse array of pathogens, including COVID-19, Ebola, Zika, and dengue fever. This review outlines the advances in pathogen detection, attributing them to the integration of microfluidic technology with traditional molecular biology methods and smartphone- and paper-based diagnostic assays. The cutting-edge diagnostic technologies are of critical importance for disease prevention and epidemic surveillance. Looking ahead, research is expected to focus on increasing detection sensitivity, streamlining testing processes, reducing costs, and enhancing the capability for remote data sharing. These improvements aim to achieve broader coverage and quicker response mechanisms, thereby constructing a more robust defense for global public health security.
Collapse
Affiliation(s)
- Yiran Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingwei Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuanyu Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
16
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
17
|
Gorgzadeh A, Nazari A, Ali Ehsan Ismaeel A, Safarzadeh D, Hassan JAK, Mohammadzadehsaliani S, Kheradjoo H, Yasamineh P, Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol J 2024; 21:34. [PMID: 38291452 PMCID: PMC10829349 DOI: 10.1186/s12985-024-02301-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins, RNA, DNA, lipids, and carbohydrates are only some of the molecular components found in exosomes released by tumor cells. They play an essential role in healthy and diseased cells as messengers of short- and long-distance intercellular communication. However, since exosomes are released by every kind of cell and may be found in blood and other bodily fluids, they may one day serve as biomarkers for a wide range of disorders. In many pathological conditions, including cancer, inflammation, and infection, they play a role. It has been shown that the biogenesis of exosomes is analogous to that of viruses and that the exosomal cargo plays an essential role in the propagation, dissemination, and infection of several viruses. Bidirectional modulation of the immune response is achieved by the ability of exosomes associated with viruses to facilitate immunological escape and stimulate the body's antiviral immune response. Recently, exosomes have received a lot of interest due to their potential therapeutic use as biomarkers for viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), and SARS-CoV-2. This article discusses the purification procedures and detection techniques for exosomes and examines the research on exosomes as a biomarker of viral infection.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Jawad A K Hassan
- National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
18
|
Ma X, Chen Z, Chen W, Chen Z, Meng X. Exosome subpopulations: The isolation and the functions in diseases. Gene 2024; 893:147905. [PMID: 37844851 DOI: 10.1016/j.gene.2023.147905] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells. Exosomes mediate intercellular communication by releasing their bioactive contents (e.g., DNAs, RNAs, lipids, proteins, and metabolites). The components of exosomes are regulated by the producing cells of exosomes. Due to their diverse origins, exosomes are highly heterogeneous in size, content, and function. Depending on these characteristics, exosomes can be divided into multiple subpopulations which have different functions. Efficient enrichment of specific subpopulations of exosomes helps to investigate their biological functions. Accordingly, numerous techniques have been developed to isolate specific subpopulations of exosomes. This review systematically introduces emerging new technologies for the isolation of different exosome subpopulations and summarizes the critical role of specific exosome subpopulations in diseases, especially in tumor occurrence and progression.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China.
| |
Collapse
|
19
|
Vychytilova-Faltejskova P, Vilmanova S, Pifkova L, Catela Ivković T, Mᶏdrzyk M, Jugas R, Machackova T, Kotoucek J, Sachlova M, Bohovicova L, Stanek T, Halamkova J, Kiss I, Slaby O. Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples. Clin Chem Lab Med 2024; 62:157-167. [PMID: 37505924 DOI: 10.1515/cclm-2023-0610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) contain various signaling molecules, thus playing a crucial role in cell-to-cell communication and emerging as a promising source of biomarkers. However, the lack of standardized procedures impedes their translation to clinical practice. Thus, we compared different approaches for high-throughput analysis of small EVs transcriptome. METHODS Small EVs were isolated from 150 μL of serum. Quality and quantity were assessed by dynamic light scattering, transmission electron microscopy, and Western blot. Comparison of RNA extraction efficiency was performed, and expression of selected genes was analyzed by RT-qPCR. Whole transcriptome analysis was done using microarrays. RESULTS Obtained data confirmed the suitability of size exclusion chromatography for isolation of small EVs. Analyses of gene expression showed the best results in case of samples isolated by Monarch Total RNA Miniprep Kit. Totally, 7,182 transcripts were identified to be deregulated between colorectal cancer patients and healthy controls. The majority of them were non-coding RNAs with more than 70 % being lncRNAs, while protein-coding genes represented the second most common gene biotype. CONCLUSIONS We have optimized the protocol for isolation of small EVs and their RNA from low volume of sera and confirmed the suitability of Clariom D Pico Assays for transcriptome profiling.
Collapse
Affiliation(s)
| | - Sara Vilmanova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lucie Pifkova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tina Catela Ivković
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Mᶏdrzyk
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Milana Sachlova
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Teodor Stanek
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Trecarichi EM, Olivadese V, Davoli C, Rotundo S, Serapide F, Lionello R, Tassone B, La Gamba V, Fusco P, Russo A, Borelli M, Torti C, the IDTM UMG COVID-19 Group. Evolution of in-hospital patient characteristics and predictors of death in the COVID-19 pandemic across four waves: are they moving targets with implications for patient care? Front Public Health 2024; 11:1280835. [PMID: 38249374 PMCID: PMC10800172 DOI: 10.3389/fpubh.2023.1280835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Objectives The aim of this work was to study characteristics, outcomes and predictors of all-cause death in inpatients with SARS-CoV-2 infection across the pandemic waves in one large teaching hospital in Italy to optimize disease management. Methods All patients with SARS-CoV-2 infection admitted to our center from March 2020 to June 2022 were included in this retrospective observational cohort study. Both descriptive and regression tree analyses were applied to identify factors influencing all-cause mortality. Results 527 patients were included in the study (65.3% with moderate and 34.7% with severe COVID-19). Significant evolutions of patient characteristics were found, and mortality increased in the last wave with respect to the third wave notwithstanding vaccination. Regression tree analysis showed that in-patients with severe COVID-19 had the greatest mortality across all waves, especially the older adults, while prognosis depended on the pandemic waves in patients with moderate COVID-19: during the first wave, dyspnea was the main predictor, while chronic kidney disease emerged as determinant factor afterwards. Conclusion Patients with severe COVID-19, especially the older adults during all waves, as well as those with moderate COVID-19 and concomitant chronic kidney disease during the most recent waves require more attention for monitoring and care. Therefore, our study drives attention towards the importance of co-morbidities and their clinical impact in patients with COVID-19 admitted to hospital, indicating that the healthcare system should adapt to the evolving features of the epidemic.
Collapse
Affiliation(s)
- Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Vincenzo Olivadese
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Chiara Davoli
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Francesca Serapide
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Bruno Tassone
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, “Renato Dulbecco” Teaching Hospital, Catanzaro, Italy
| | - Massimo Borelli
- UMG School of PhD Programmes "Life Sciences and Technologies", “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
21
|
Barone A, Zimbo AM, d'Avanzo N, Tolomeo AM, Ruga S, Cardamone A, Celia C, Scalise M, Torella D, La Deda M, Iaccino E, Paolino D. Thermoresponsive M1 macrophage-derived hybrid nanovesicles for improved in vivo tumor targeting. Drug Deliv Transl Res 2023; 13:3154-3168. [PMID: 37365403 PMCID: PMC10624726 DOI: 10.1007/s13346-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Despite the efforts and advances done in the last few decades, cancer still remains one of the main leading causes of death worldwide. Nanomedicine and in particular extracellular vesicles are one of the most potent tools to improve the effectiveness of anticancer therapies. In these attempts, the aim of this work is to realize a hybrid nanosystem through the fusion between the M1 macrophages-derived extracellular vesicles (EVs-M1) and thermoresponsive liposomes, in order to obtain a drug delivery system able to exploit the intrinsic tumor targeting capability of immune cells reflected on EVs and thermoresponsiveness of synthetic nanovesicles. The obtained nanocarrier has been physicochemically characterized, and the hybridization process has been validated by cytofluorimetric analysis, while the thermoresponsiveness was in vitro confirmed through the use of a fluorescent probe. Tumor targeting features of hybrid nanovesicles were in vivo investigated on melanoma-induced mice model monitoring the accumulation in tumor site through live imaging and confirmed by cytofluorimetric analysis, showing higher targeting properties of hybrid nanosystem compared to both liposomes and native EVs. These promising results confirmed the ability of this nanosystem to combine the advantages of both nanotechnologies, also highlighting their potential use as effective and safe personalized anticancer nanomedicine.
Collapse
Affiliation(s)
- Antonella Barone
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food, Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food, Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", 66100, Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus G. 9, 44307, Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036, Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, 87036, Cosenza, Rende, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
22
|
Mimmi S, Ciavarella S, Gentile M, Iaccino E. Editorial: Lymphoid cells and tumor microenvironment: a functional crosstalk. Front Med (Lausanne) 2023; 10:1319904. [PMID: 38020170 PMCID: PMC10643133 DOI: 10.3389/fmed.2023.1319904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Selena Mimmi
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Massimo Gentile
- Department of Hematology and Oncology, Health Agency of Cosenza, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Enrico Iaccino
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Brahmer A, Geiß C, Lygeraki A, Neuberger E, Tzaridis T, Nguyen TT, Luessi F, Régnier-Vigouroux A, Hartmann G, Simon P, Endres K, Bittner S, Reiners KS, Krämer-Albers EM. Assessment of technical and clinical utility of a bead-based flow cytometry platform for multiparametric phenotyping of CNS-derived extracellular vesicles. Cell Commun Signal 2023; 21:276. [PMID: 37803478 PMCID: PMC10559539 DOI: 10.1186/s12964-023-01308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) originating from the central nervous system (CNS) can enter the blood stream and carry molecules characteristic of disease states. Therefore, circulating CNS-derived EVs have the potential to serve as liquid-biopsy markers for early diagnosis and follow-up of neurodegenerative diseases and brain tumors. Monitoring and profiling of CNS-derived EVs using multiparametric analysis would be a major advance for biomarker as well as basic research. Here, we explored the performance of a multiplex bead-based flow-cytometry assay (EV Neuro) for semi-quantitative detection of CNS-derived EVs in body fluids. METHODS EVs were separated from culture of glioblastoma cell lines (LN18, LN229, NCH82) and primary human astrocytes and measured at different input amounts in the MACSPlex EV Kit Neuro, human. In addition, EVs were separated from blood samples of small cohorts of glioblastoma (GB), multiple sclerosis (MS) and Alzheimer's disease patients as well as healthy controls (HC) and subjected to the EV Neuro assay. To determine statistically significant differences between relative marker signal intensities, an unpaired samples t-test or Wilcoxon rank sum test were computed. Data were subjected to tSNE, heatmap clustering, and correlation analysis to further explore the relationships between disease state and EV Neuro data. RESULTS Glioblastoma cell lines and primary human astrocytes showed distinct EV profiles. Signal intensities were increasing with higher EV input. Data normalization improved identification of markers that deviate from a common profile. Overall, patient blood-derived EV marker profiles were constant, but individual EV populations were significantly increased in disease compared to healthy controls, e.g. CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis. tSNE and heatmap clustering analysis separated GB patients from HC, but not MS patients from HC. Correlation analysis revealed a potential association of CD107a+EVs with neurofilament levels in blood of MS patients and HC. CONCLUSIONS The semi-quantitative EV Neuro assay demonstrated its utility for EV profiling in complex samples. However, reliable statistical results in biomarker studies require large sample cohorts and high effect sizes. Nonetheless, this exploratory trial confirmed the feasibility of discovering EV-associated biomarkers and monitoring circulating EV profiles in CNS diseases using the EV Neuro assay. Video Abstract.
Collapse
Affiliation(s)
- Alexandra Brahmer
- Cellular Neurobiology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany.
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Institute of Sports Sciences, Johannes Gutenberg University of Mainz, Mainz, Germany.
| | - Carsten Geiß
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Andriani Lygeraki
- Cellular Neurobiology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Institute of Sports Sciences, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen- Bonn-Cologne-Düsseldorf, Partner Site Bonn, University of Bonn, Bonn, Germany
| | - Tinh Thi Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Institute of Sports Sciences, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Eva-Maria Krämer-Albers
- Cellular Neurobiology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
24
|
Mitchell MI, Loudig O. Communicator Extraordinaire: Extracellular Vesicles in the Tumor Microenvironment Are Essential Local and Long-Distance Mediators of Cancer Metastasis. Biomedicines 2023; 11:2534. [PMID: 37760975 PMCID: PMC10526527 DOI: 10.3390/biomedicines11092534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Human tumors are increasingly being described as a complex "ecosystem", that includes many different cell types, secreted growth factors, extracellular matrix (ECM) components, and microvessels, that altogether create the tumor microenvironment (TME). Within the TME, epithelial cancer cells control the function of surrounding stromal cells and the non-cellular ECM components in an intricate orchestra of signaling networks specifically designed for cancer cells to exploit surrounding cells for their own benefit. Tumor-derived extracellular vesicles (EVs) released into the tumor microenvironment are essential mediators in the reprogramming of surrounding stromal cells, which include cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), and tumor endothelial cells (TECs), which are responsible for the promotion of neo-angiogenesis, immune cell evasion, and invasion which are essential for cancer progression. Perhaps most importantly, tumor-derived EVs play critical roles in the metastatic dissemination of tumor cells through their two-fold role in initiating cancer cell invasion and the establishment of the pre-metastatic niche, both of which are vital for tumor cell migration, homing, and colonization at secondary tumor sites. This review discusses extracellular vesicle trafficking within the tumor microenvironment and pre-metastatic niche formation, focusing on the complex role that EVs play in orchestrating cancer-to-stromal cell communication in order to promote the metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
25
|
Velázquez-Cervantes MA, Benítez-Zeferino YR, Flores-Pliego A, Helguera-Repetto AC, Meza-Sánchez DE, Maravillas-Montero JL, León-Reyes G, Mancilla-Ramírez J, Cerna-Cortés JF, Baeza-Ramírez MI, León-Juaárez M. A Review Study of the Participation of Late Domains in Sorting and Transport of Viral Factors to Exosomes. Life (Basel) 2023; 13:1842. [PMID: 37763246 PMCID: PMC10532540 DOI: 10.3390/life13091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular communication depends heavily on the participation of vesicular systems generated by most cells of an organism. Exosomes play central roles in this process. Today, these vesicles have been characterized, and it has been determined that the cargo they transport is not within a random system. In fact, it depends on various molecular signals and the recruitment of proteins that participate in the biogenesis of exosomes. It has also been shown that multiple viruses can recruit these vesicles to transport viral factors such as genomes or proteins. It has been shown that the late domains present in viral proteins are critical for the exosomal selection and biogenesis systems to recognize these viral proteins and introduce them into the exosomes. In this review, the researchers discuss the evidence related to the characterization of these late domains and their role in exosome recruitment during viral infection.
Collapse
Affiliation(s)
- Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Yazmín Rocío Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - David Eduardo Meza-Sánchez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico;
| | - Javier Mancilla-Ramírez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 113440, Mexico;
- Hospital de la Mujer, Secretaría de Salud, Mexico City 11340, Mexico
| | - Jorge Francisco Cerna-Cortés
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Moises León-Juaárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
| |
Collapse
|
26
|
Almeida B, Dias TR, Teixeira AL, Dias F, Medeiros R. MicroRNAs Derived from Extracellular Vesicles: Keys to Understanding SARS-CoV-2 Vaccination Response in Cancer Patients? Cancers (Basel) 2023; 15:4017. [PMID: 37627045 PMCID: PMC10452664 DOI: 10.3390/cancers15164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked a global pandemic identified as coronavirus disease (COVID-19), with millions of deaths worldwide. However, several important questions regarding its impact on public health remain unanswered, such as the impact of vaccination on vulnerable subpopulations such as cancer patients. Cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, being manifested in most immunocompromised individuals. This strong immunosuppression can lead to a dysfunctional antiviral response to natural viral infection and compromised vaccination response. Extracellular vesicles (EVs) are membrane-bound vesicles released from cells that are involved in intercellular communication. EVs carry various molecules including microRNAs that play a crucial role in COVID-19 pathophysiology, influencing cellular responses. This review summarizes the state of the art concerning the role of EV-derived miRNAs in COVID-19 infection and their potential use as prognosis biomarkers for vaccination response in cancer patients.
Collapse
Affiliation(s)
- Beatriz Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia R. Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
- Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Biomedicine Research Center (CEBIMED), Research Inovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, Portuguese League against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| |
Collapse
|
27
|
Wang J, Chen HC, Sheng Q, Dawson TR, Coffey RJ, Patton JG, Weaver AM, Shyr Y, Liu Q. Systematic Assessment of Small RNA Profiling in Human Extracellular Vesicles. Cancers (Basel) 2023; 15:3446. [PMID: 37444556 PMCID: PMC10340377 DOI: 10.3390/cancers15133446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
MOTIVATION Extracellular vesicles (EVs) are produced and released by most cells and are now recognized to play a role in intercellular communication through the delivery of molecular cargo, including proteins, lipids, and RNA. Small RNA sequencing (small RNA-seq) has been widely used to characterize the small RNA content in EVs. However, there is a lack of a systematic assessment of the quality, technical biases, RNA composition, and RNA biotypes enrichment for small RNA profiling of EVs across cell types, biofluids, and conditions. METHODS We collected and reanalyzed small RNA-seq datasets for 2756 samples from 83 studies involving 55 with EVs only and 28 with both EVs and matched donor cells. We assessed their quality by the total number of reads after adapter trimming, the overall alignment rate to the host and non-host genomes, and the proportional abundance of total small RNA and specific biotypes, such as miRNA, tRNA, rRNA, and Y RNA. RESULTS We found that EV extraction methods varied in their reproducibility in isolating small RNAs, with effects on small RNA composition. Comparing proportional abundances of RNA biotypes between EVs and matched donor cells, we discovered that rRNA and tRNA fragments were relatively enriched, but miRNAs and snoRNA were depleted in EVs. Except for the export of eight miRNAs being context-independent, the selective release of most miRNAs into EVs was study-specific. CONCLUSION This work guides quality control and the selection of EV isolation methods and enhances the interpretation of small RNA contents and preferential loading in EVs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - T. Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA;
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|