1
|
Kim HN, Gasmi-Seabrook GMC, Uchida A, Gebregiworgis T, Marshall CB, Ikura M. Switch II pocket inhibitor allosterically freezes KRAS G12Dnucleotide-binding site and arrests the GTPase cycle. J Mol Biol 2025:169162. [PMID: 40268231 DOI: 10.1016/j.jmb.2025.169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
KRAS is frequently mutated in multiple cancers, with the most common mutation being G12D. The recently developed KRASG12D inhibitor MRTX1133 binds a cryptic allosteric pocket near switch II (SII-P), similar to covalent G12C inhibitors, with remarkable picoM non-covalent affinity. Despite its advancement to clinical trials, some aspects of the molecular mechanisms-of-action remain unclear, indicating a need to uncover the mechanisms underlying MRTX1133 efficacy and potential acquired resistance, thus we characterized the biochemical and biophysical outcomes of MRTX1133 binding KRAS. Hydrogen/deuterium exchange experiments showed that MRTX1133 binding to the induced SII-P reduces the overall conformational plasticity of KRASG12D. This extends well beyond SII-P, with the nucleotide-binding regions (P-loop and G-3/4/5-box motifs) particularly exhibiting stabilization. This conformational rigidification by MRTX1133 is coupled with complete arrest of the GTPase cycle: When the compound engages KRASG12D-GDP, both intrinsic and GEF-mediated nucleotide exchange are blocked while engagement of KRASG12D-GTP blocks both intrinsic and GAP-mediated hydrolysis. MRTX1133 attenuates the interaction between activated KRASG12D and the RAS-binding domain of the effector BRAF. The binding site in Switch I remains flexible, which enables binding, albeit with ∼10-fold lower affinity, and remarkably, this interaction with BRAF reverses the compound's blockage of intrinsic GTP hydrolysis. Unlike KRASWT, GDP-loaded KRASG12D surprisingly maintains a low-affinity interaction with BRAF-RBD, but MRTX1133 can circumvent this mutant-specific abnormal interaction. Taken together, MRTX1133 allosterically 'freezes' the KRASG12D nucleotide-binding site conformation, arresting the canonical GTPase cycle of this oncogenic mutant. This provides a framework for understanding the mechanisms-of-action of SII-P-directed inhibitors and how tumours may acquire resistance.
Collapse
Affiliation(s)
- Ha-Neul Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Arisa Uchida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
2
|
França TC, Maddalena M, Kouidmi I, Ayotte Y, Islam ST, LaPlante SR. SI/II Pocket of Ras: An Opportunity for a Once "Undruggable" Target. ACS OMEGA 2025; 10:9463-9473. [PMID: 40092832 PMCID: PMC11904710 DOI: 10.1021/acsomega.4c10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered "undruggable," recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRasG12V was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRasG12V in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a "tyrosine toggle" capable of restricting the pocket access.
Collapse
Affiliation(s)
- Tanos
C. C. França
- INRS
Centre Armand Frappier Santé Biotechnologie, 531 des Prairies Boulevard, Laval, Quebec H7 V 1B7, Canada
- Laboratory
of Molecular Modeling Applied to the Chemical and Biological Defense
(LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio
80, 22290-270 Rio
de Janeiro, Brazil
- Center
for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michael Maddalena
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Imène Kouidmi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
3
|
Yan X, Zhu L, Li Q, Tian Y, Qiu J, Liu X, Tong HHY, Ouyang Q, Yao X, Liu H. QM/MM study reveals novel mechanism of KRAS and KRAS G12R catalyzed GTP hydrolysis. Int J Biol Macromol 2025; 297:139820. [PMID: 39805439 DOI: 10.1016/j.ijbiomac.2025.139820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
As a crucial drug target, KRAS can regulate most cellular processes involving guanosine triphosphate (GTP) hydrolysis. However, the mechanism of GTP hydrolysis has remained controversial over the past decades. Here, several different GTP hydrolysis mechanisms catalyzed by wild-type KRAS (WT-KRAS) and KRASG12R mutants were discussed via four QM/MM calculation models. Based on the computational results, a Mg2+-coordinated H2O-mediated GTP hydrolysis mechanism was proposed. In this mechanism, a Mg2+-coordinated H2O first protonates the fully deprotonated GTP, and then the Mg2+ coordinated hydroxyl anion is generated. The Pγ-O bond is formed via the SN2 attack of the second H2O on the Pγ atom of the GTP, leading to the simultaneous cleavage of the Pγ-O bond. Meanwhile, the hydroxyl anion coordinated to Mg2+ and generated in the first step acts as a proton acceptor from water. This Mg2+ coordinated H2O-involved GTP hydrolysis mechanism may also be suitable for Mg2+-catalyzed ATP hydrolysis. Furthermore, the mechanism of GTP hydrolysis catalyzed by the KRASG12R mutant, whose hydrolysis rate was approximately 40-fold slower than WT-KRAS, was also discussed. Our QM/MM calculations reveal that GTP is easily protonated by the residue R12, and the energy barrier of GTP hydrolysis catalyzed by the KRASG12R mutant is lower than the corresponding barrier for WT-KRAS. Nevertheless, molecular dynamics (MD) simulations reveal that R12, a residue characterized by significant steric hindrance, is positioned at the GTP site where the nucleophilic attack by water occurs during Pγ-O bond formation, thereby strongly impeding the approach of water molecules to GTP. As a result, the GTP hydrolysis rate catalyzed by the KRASG12R mutant was severely impaired. Uncovering the GTP hydrolysis mechanism catalyzed by the WT-KRAS and KRASG12R mutant may also give a reasonable explanation for the relationship between the KRASG12R mutation and the occurrence of cancer. We hope this finding will provide useful guidance for drug discovery that targets KRAS.
Collapse
Affiliation(s)
- Xiao Yan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Qin Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Yanan Tian
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Jiayue Qiu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Xiaomeng Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China.
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China.
| |
Collapse
|
4
|
Li Y, Huang W, Guo L, Sun Q. Ras S89D mutation induced allosteric changes that promoted its nucleotide exchange and signaling activation. Int J Biol Macromol 2025; 294:139538. [PMID: 39778822 DOI: 10.1016/j.ijbiomac.2025.139538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation. The S89D mutant retained unaltered hydrolysis kinetics and GTP/GDP relative affinity but exhibited an accelerated intrinsic nucleotide exchange rate, due to impaired nucleotide binding. A 1.2 Å crystal structure of the S89D mutant revealed substantial local conformational changes, as well as alterations propagating to the nucleotide-binding pocket, providing a structural basis for the observed biochemical properties. Collectively, these findings established that the S89D mutation activated Ras by enhancing intrinsic nucleotide exchange, offering new insights into Ras allostery.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenxin Huang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Sabek Y, Zhang Z, Nishibe N, Maruta S. Ionic control of small GTPase HRas using calmodulin. J Biochem 2025; 177:153-161. [PMID: 39696662 DOI: 10.1093/jb/mvae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
HRas is a small GTPase that plays physiologically important roles in various intracellular signal transduction processes, such as cell growth and proliferation. The structure and action mechanisms of HRas have been well characterized, leading to its widespread use as a molecular switch in bionanomachines. Calmodulin (CaM), a calcium ion-binding protein, acts as an ion-binding molecular switch and activates the target enzymes. We previously demonstrated that the fusion protein of HRas (M13-HRas) with the CaM target peptide M13 at the N-terminus of HRas exhibits reversible regulation of GTPase activity and the interaction between M13-HRas and the downstream signalling factor Raf by calcium ions with CaM. In this study, we prepared two new HRas fusion proteins with the M13 peptide at the C-terminus (HRas-M13) and both termini (M13-HRas-M13) of HRas and analysed the calcium-dependent regulation of HRas function. M13-HRas-M13 more efficiently controlled GTPase, interaction with Raf and the HRas regulator GEF by calcium ions with CaM.
Collapse
Affiliation(s)
- Yassine Sabek
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ziyun Zhang
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
6
|
Wlodarczyk A, Treda C, Pacholczyk M, Rutkowska A, Wegierska M, Kierasinska-Kalka A, Wasiak K, Ciunowicz D, Grot D, Glowacki P, Stoczynska-Fidelus E, Rieske P. First molecules to reactivate RAS G12V GTPase activity. BMC Cancer 2025; 25:182. [PMID: 39891136 PMCID: PMC11783748 DOI: 10.1186/s12885-025-13580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Small-molecule compounds that even partially restore the GTPase activity of RASG12V can be used in anticancer therapy. Until now, attempts to obtain such compounds have failed. Compounds with this ability have been defined in our research. METHODS The compounds were initially identified through virtual screening, and their optimal binding conformation in the RAS SW-II pocket was determined using the flexible docking technique. Efficacy was verified based on the IC50 determination, GTPase activity, as well as the AKT and ERK phospho WB assays. RESULTS The IC50 of the tested compounds was significantly lower against cells with the RASG12V mutation than against selected types of normal cells. The molecular mechanism of action of these compounds was proposed - minimization of the negative impact of the V12 sidechain on GTP hydrolysis of RASG12V. The work also indicates that the model of action of RAS mutants in cell lines is incomplete. The analysed cell line (SW-480) with RAS mutations does not always show increased ERK and AKT activity. CONCLUSIONS We have demonstrated molecules that partially restore the GTPase activity of RASG12V. Their mechanism of action is well explained based on current RAS mutant conformation and mechanistic models. These molecules inhibit the RAS-AKT pathway and show higher cytotoxicity against cancer cells with the RASG12V mutation (SW-480 cell line). However, SW-480 cells can switch into the subline proliferating independently of AKT phosphorylation and show partial resistance to the molecules described in this article.
Collapse
Affiliation(s)
- Aneta Wlodarczyk
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland.
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland.
| | - Cezary Treda
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Marcin Pacholczyk
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16 St, Gliwice, 44-100, Poland
| | - Adrianna Rutkowska
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90-752, Poland
| | - Marta Wegierska
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Amelia Kierasinska-Kalka
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Katarzyna Wasiak
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Damian Ciunowicz
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90-752, Poland
| | - Dagmara Grot
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Pawel Glowacki
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90-752, Poland
| | - Piotr Rieske
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| |
Collapse
|
7
|
Pandey D, Chauhan SC, Kashyap VK, Roy KK. Structural insights into small-molecule KRAS inhibitors for targeting KRAS mutant cancers. Eur J Med Chem 2024; 277:116771. [PMID: 39167893 DOI: 10.1016/j.ejmech.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The Kirsten rat sarcoma viral (KRAS) oncogene is the most frequently mutated isoform of RAS, associated with 85 % of RAS-driven cancers. KRAS functions as a signaling hub, participating in various cellular signaling pathways and regulating a wide range of important activities, including cell proliferation, differentiation, growth, metabolism, and migration. Despite being the most frequently altered oncogenic protein in solid tumors, over the past four decades, KRAS has historically been considered "undruggable" owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design and development have culminated in the development of selective inhibitors for KRAS mutants. Recent developments have led to the successful targeting of the KRASG12C mutant through covalent inhibitors that exploit the unique cysteine residue introduced by the mutation at 12th position. These inhibitors bind covalently to C12, locking KRAS in its inactive GDP-bound state and preventing downstream signaling. Some of these inhibitors have shown encouraging results in KRASG12C mutant cancer patients but suffer from drug resistance, toxicity, and low therapeutic efficacy. Recently, there have been great advancements in the discovery of drugs that directly target the switch I (S-I), switch-II (S-II) and S-I/II interface sites of KRAS mutant proteins. These include KRASG12C inhibitors like AMG510 (Sotorasib) and MRTX849 (Adagrasib), which have got FDA approval for non-small cell lung cancer harboring the KRASG12C mutation. There is no approved drug for cancers harboring other KRAS mutations, although efforts have expanded to target other KRAS mutations and the Switch I/II interface, aiming to disrupt KRAS-driven oncogenic signaling. Structure-activity relationship (SAR) studies have been instrumental in optimizing the binding affinity, selectivity, and pharmacokinetic properties of these inhibitors, leading to the development of promising therapeutic agents like Sotorasib and Adagrasib. This review provides an overview of the KRAS pathway, KRAS binding sites, strategies for direct and indirect inhibition using small molecules, and SAR based on the co-crystal structures of inhibitors with KRAS mutants which is expected to offer new hope for patients with KRAS-driven cancers through the development of new KRAS-targeted drugs.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Vivek K Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
8
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Fink JC, Landry D, Webb LJ. Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe. Biochemistry 2024; 63:1752-1760. [PMID: 38967549 DOI: 10.1021/acs.biochem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.
Collapse
Affiliation(s)
- Jackson C Fink
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Danielle Landry
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Lucas SCC, Milbradt AG, Blackwell JH, Bonomo S, Brierley A, Cassar DJ, Freeman J, Hadfield TE, Morrill LA, Riemens R, Sarda S, Schiesser S, Wiktelius D, Ahmed S, Bostock MJ, Börjesson U, De Fusco C, Guerot C, Hargreaves D, Hewitt S, Lamb ML, Su N, Whatling R, Wheeler M, Kettle JG. Design of a Lead-Like Cysteine-Targeting Covalent Library and the Identification of Hits to Cys55 of Bfl-1. J Med Chem 2024; 67:11209-11225. [PMID: 38916990 DOI: 10.1021/acs.jmedchem.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Silvia Bonomo
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andrew Brierley
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Doyle J Cassar
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jared Freeman
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolic Disorders (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Thomas E Hadfield
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lucas A Morrill
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rick Riemens
- Medicinal Chemistry, Oncology R&D, Acerta B. V., a Part of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Sunil Sarda
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Stefan Schiesser
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Daniel Wiktelius
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Samiyah Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Claudia De Fusco
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carine Guerot
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Michelle L Lamb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Ryan Whatling
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew Wheeler
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jason G Kettle
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
11
|
Nishibe N, Maruta S. Photocontrol of small GTPase Ras fused with a photoresponsive protein. J Biochem 2024; 176:11-21. [PMID: 38366640 DOI: 10.1093/jb/mvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
Collapse
Affiliation(s)
- Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
12
|
Smith SF, Islam AFMT, Alimukhamedov S, Weiss ET, Charest PG. Molecular determinants of Ras-mTORC2 signaling. J Biol Chem 2024; 300:107423. [PMID: 38815864 PMCID: PMC11255897 DOI: 10.1016/j.jbc.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Stephen F Smith
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - A F M Tariqul Islam
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Ethan T Weiss
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Pascale G Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
13
|
Rasche R, Apken LH, Michalke E, Kümmel D, Oeckinghaus A. κB-Ras proteins are fast-exchanging GTPases and function via nucleotide-independent binding of Ral GTPase-activating protein complexes. FEBS Lett 2024; 598:1769-1782. [PMID: 38604989 DOI: 10.1002/1873-3468.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
κB-Ras (NF-κB inhibitor-interacting Ras-like protein) GTPases are small Ras-like GTPases but harbor interesting differences in important sequence motifs. They act in a tumor-suppressive manner as negative regulators of Ral (Ras-like) GTPase and NF-κB signaling, but little is known about their mode of function. Here, we demonstrate that, in contrast to predictions based on primary structure, κB-Ras GTPases possess hydrolytic activity. Combined with low nucleotide affinity, this renders them fast-cycling GTPases that are predominantly GTP-bound in cells. We characterize the impact of κB-Ras mutations occurring in tumors and demonstrate that nucleotide binding affects κB-Ras stability but is not strictly required for RalGAP (Ral GTPase-activating protein) binding. This demonstrates that κB-Ras control of RalGAP/Ral signaling occurs in a nucleotide-binding- and switch-independent fashion.
Collapse
Affiliation(s)
- René Rasche
- Institute of Biochemistry, University Münster, Germany
| | | | - Esther Michalke
- Institute of Molecular Tumor Biology, University Münster, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University Münster, Germany
| | | |
Collapse
|
14
|
Bischof L, Schweitzer F, Heinisch JJ. Functional Conservation of the Small GTPase Rho5/Rac1-A Tale of Yeast and Men. Cells 2024; 13:472. [PMID: 38534316 PMCID: PMC10969153 DOI: 10.3390/cells13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.
Collapse
Affiliation(s)
| | | | - Jürgen J. Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany; (L.B.); (F.S.)
| |
Collapse
|
15
|
Talajić A, Dominko K, Lončarić M, Ambriović-Ristov A, Ćetković H. The ancestral type of the R-RAS protein has oncogenic potential. Cell Mol Biol Lett 2024; 29:27. [PMID: 38383288 PMCID: PMC10882905 DOI: 10.1186/s11658-024-00546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.
Collapse
Affiliation(s)
- Antea Talajić
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Kristina Dominko
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Baumann P, Jin Y. Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF 3- complexes. Commun Chem 2024; 7:19. [PMID: 38297137 PMCID: PMC10830474 DOI: 10.1038/s42004-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Tyrosine phosphorylation on Ras by Src kinase is known to uncouple Ras from upstream regulation and downstream communication. However, the mechanisms by which phosphorylation modulates these interactions have not been detailed. Here, the major mono-phosphorylation level on tyrosine64 is quantified by 31P NMR and mutagenesis. Crystal structures of unphosphorylated and tyrosine64-phosphorylated Ras in complex with a BeF3- ground state analogue reveal "closed" Ras conformations very different from those of the "open" conformations previously observed for non-hydrolysable GTP analogue structures of Ras. They deliver new mechanistic and conformational insights into intrinsic GTP hydrolysis. Phosphorylation of tyrosine64 delivers conformational changes distant from the active site, showing why phosphorylated Ras has reduced affinity to its downstream effector Raf. 19F NMR provides evidence for changes in the intrinsic GTPase and nucleotide exchange rate and identifies the concurrent presence of a major "closed" conformation alongside a minor yet functionally important "open" conformation at the ground state of Ras. This study expands the application of metal fluoride complexes in revealing major and minor conformational changes of dynamic and modified Ras proteins.
Collapse
Affiliation(s)
- Patrick Baumann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
17
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
18
|
Bhadhadhara K, Jani V, Koulgi S, Sonavane U, Joshi R. Studying early structural changes in SOS1 mediated KRAS activation mechanism. Curr Res Struct Biol 2023; 7:100115. [PMID: 38188543 PMCID: PMC10765296 DOI: 10.1016/j.crstbi.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
KRAS activation is known to be modulated by a guanine nucleotide exchange factor (GEF), namely, Son of Sevenless1 (SOS1). SOS1 facilitates the exchange of GDP to GTP thereby leading to activation of KRAS. The binding of GDP/GTP to KRAS at the REM/allosteric site of SOS1 regulates the activation of KRAS at CDC25/catalytic site by facilitating its exchange. Different aspects of the allosteric activation of KRAS through SOS1 are still being explored. To understand the SOS1 mediated activation of KRAS, molecular dynamics simulations for a total of nine SOS1 complexes (KRAS-SOS1-KRAS) were performed. These nine systems comprised different combinations of KRAS-bound nucleotides (GTP/GDP) at REM and CDC25 sites of SOS1. Various conformational and thermodynamic parameters were analyzed for these simulation systems. MMPBSA free energy analysis revealed that binding at CDC25 site of SOS1 was significantly low for GDP-bound KRAS as compared to that of GTP-bound KRAS. It was observed that presence of either GDP/GTP bound KRAS at the REM site of SOS1 affected the activation related changes in the KRAS present at CDC25 site. The conformational changes at the catalytic site of SOS1 resulting from GDP/GTP-bound KRAS at the allosteric changes may hint at KRAS activation through different pathways (slow/fast/rare). The allosteric effect on activation of KRAS at CDC25 site may be due to conformations adopted by switch-I, switch-II, beta2 regions of KRAS at REM site. The effect of structural rearrangements occurring at allosteric KRAS may have led to increased interactions between SOS1 and KRAS at both the sites. The SOS1 residues involved in these important interactions with KRAS at the REM site were R694, S732 and K735. Whereas the ones interacting with KRAS at CDC25 site were S807, W809 and K814. This may suggest the crucial role of these residues in guiding the allosteric activation of KRAS at CDC25 site. The conformational shifts observed in the switch-I, switch-II and alpha3 regions of KRAS at CDC25 site may be attributed to be a part of allosteric activation. The binding affinities, interacting residues and conformational dynamics may provide an insight into development of inhibitors targeting the SOS1 mediated KRAS activation.
Collapse
Affiliation(s)
- Kirti Bhadhadhara
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Vinod Jani
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Shruti Koulgi
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Uddhavesh Sonavane
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Rajendra Joshi
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| |
Collapse
|
19
|
Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. J Am Chem Soc 2023; 145:20302-20310. [PMID: 37682266 PMCID: PMC10515638 DOI: 10.1021/jacs.3c04330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/09/2023]
Abstract
Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.
Collapse
Affiliation(s)
- Dénes Berta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Kinga Nyíri
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Beáta G. Vértessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| |
Collapse
|
20
|
Manso JA, Carabias A, Sárkány Z, de Pereda JM, Pereira PJB, Macedo-Ribeiro S. Pathogen-specific structural features of Candida albicans Ras1 activation complex: uncovering new antifungal drug targets. mBio 2023; 14:e0063823. [PMID: 37526476 PMCID: PMC10470544 DOI: 10.1128/mbio.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.
Collapse
Affiliation(s)
- José A. Manso
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Zsuzsa Sárkány
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Pedro José Barbosa Pereira
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Chmielewska I, Krawczyk P, Grenda A, Wójcik-Superczyńska M, Krzyżanowska N, Gil M, Milanowski J. Breaking the 'Undruggable' Barrier: Anti-PD-1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer Patients with KRAS Mutations-A Comprehensive Review and Description of Single Site Experience. Cancers (Basel) 2023; 15:3732. [PMID: 37509393 PMCID: PMC10378665 DOI: 10.3390/cancers15143732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homologue (KRAS) gene mutations are among the most commonly found oncogenic alterations in non-small cell lung cancer (NSCLC) patients. Unfortunately, KRAS mutations have been considered "undruggable" for many years, making treatment options very limited. Immunotherapy targeting programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) has emerged as a promising therapeutic option for NSCLC patients. However, some studies have suggested a lower response rate to immunotherapy in KRAS-mutated NSCLC patients with the coexistence of mutations in the STK11 (Serine/Threonine Kinase 11) gene. However, recent clinical trials have shown promising results with the combination of immunotherapy and chemotherapy or immunotherapy and KRAS inhibitors (sotorasib, adagrasib) in such patients. In other studies, the high efficacy of immunotherapy has been demonstrated in NSCLC patients with mutations in the KRAS gene that do not coexist with other mutations or coexist with the TP53 gene mutations. In this paper, we review the available literature on the efficacy of immunotherapy in KRAS-mutated NSCLC patients. In addition, we presented single-site experience on the efficacy of immunotherapy in NSCLC patients with KRAS mutations. The effectiveness of chemoimmunotherapy or immunotherapy as well as KRAS inhibitors extends the overall survival of advanced NSCLC patients with the G12C mutation in the KRAS gene to 2-3 years. This type of management has become the new standard in the treatment of NSCLC patients. Further studies are needed to clarify the potential benefits of immunotherapy in KRAS-mutated NSCLC patients and to identify potential biomarkers that may help predict response to therapy.
Collapse
Affiliation(s)
- Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Michał Gil
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
22
|
Junk P, Kiel C. Structure-based prediction of Ras-effector binding affinities and design of "branchegetic" interface mutations. Structure 2023; 31:870-883.e5. [PMID: 37167973 DOI: 10.1016/j.str.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Ras is a central cellular hub protein controlling multiple cell fates. How Ras interacts with a variety of potential effector proteins is relatively unexplored, with only some key effectors characterized in great detail. Here, we have used homology modeling based on X-ray and AlphaFold2 templates to build structural models for 54 Ras-effector complexes. These models were used to estimate binding affinities using a supervised learning regressor. Furthermore, we systematically introduced Ras "branch-pruning" (or branchegetic) mutations to identify 200 interface mutations that affect the binding energy with at least one of the model structures. The impacts of these branchegetic mutants were integrated into a mathematical model to assess the potential for rewiring interactions at the Ras hub on a systems level. These findings have provided a quantitative understanding of Ras-effector interfaces and their impact on systems properties of a key cellular hub.
Collapse
Affiliation(s)
- Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
23
|
García-España A, Philips MR. Origin and Evolution of RAS Membrane Targeting. Oncogene 2023; 42:1741-1750. [PMID: 37031342 PMCID: PMC10413328 DOI: 10.1038/s41388-023-02672-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the RAS proto-oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionary conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS protein function. The persistence of four RAS isoforms through >400 million years of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
25
|
Dinet C, Mignot T. Unorthodox regulation of the MglA Ras-like GTPase controlling polarity in Myxococcus xanthus. FEBS Lett 2023; 597:850-864. [PMID: 36520515 DOI: 10.1002/1873-3468.14565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Motile cells have developed a large array of molecular machineries to actively change their direction of movement in response to spatial cues from their environment. In this process, small GTPases act as molecular switches and work in tandem with regulators and sensors of their guanine nucleotide status (GAP, GEF, GDI and effectors) to dynamically polarize the cell and regulate its motility. In this review, we focus on Myxococcus xanthus as a model organism to elucidate the function of an atypical small Ras GTPase system in the control of directed cell motility. M. xanthus cells direct their motility by reversing their direction of movement through a mechanism involving the redirection of the motility apparatus to the opposite cell pole. The reversal frequency of moving M. xanthus cells is controlled by modular and interconnected protein networks linking the chemosensory-like frizzy (Frz) pathway - that transmits environmental signals - to the downstream Ras-like Mgl polarity control system - that comprises the Ras-like MglA GTPase protein and its regulators. Here, we discuss how variations in the GTPase interactome landscape underlie single-cell decisions and consequently, multicellular patterns.
Collapse
Affiliation(s)
- Céline Dinet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| |
Collapse
|
26
|
GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. Comput Biol Chem 2023; 104:107835. [PMID: 36893567 DOI: 10.1016/j.compbiolchem.2023.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
Collapse
|
27
|
Jiang H, Zu S, Lu Y, Sun Z, Adeerjiang A, Guo Q, Zhang H, Dong C, Wu Q, Ding H, Du D, Wang M, Liu C, Tang Y, Liang Z, Luo C. A RhoA structure with switch II flipped outward revealed the conformational dynamics of switch II region. J Struct Biol 2023; 215:107942. [PMID: 36781028 DOI: 10.1016/j.jsb.2023.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Small GTPase RhoA switches from GTP-bound state to GDP-bound state by hydrolyzing GTP, which is accelerated by GTPases activating proteins (GAPs). However, less study of RhoA structural dynamic changes was conducted during this process, which is essential for understanding the molecular mechanism of GAP dissociation. Here, we solved a RhoA structure in GDP-bound state with switch II flipped outward. Because lacking the intermolecular interactions with guanine nucleotide, we proposed this conformation of RhoA could be an intermediate after GAP dissociation. Further molecular dynamics simulations found the conformational changes of switch regions are indeed existing in RhoA and involved in the regulation of GAP dissociation and GEF recognition. Besides, the guanine nucleotide binding pocket extended to switch II region, indicating a potential "druggable" cavity for RhoA. Taken together, our study provides a deeper understanding of the dynamic properties of RhoA switch regions and highlights the direction for future drug development.
Collapse
Affiliation(s)
- Hao Jiang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Shijia Zu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Yu Lu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhongya Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Akejiang Adeerjiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Qiao Guo
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Huimin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| | - Chen Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Qiqi Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Daohai Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Tang
- Ensem Therapeutics, Inc, 200 Boston Ave, Medford, MA 02155, USA
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China.
| |
Collapse
|
28
|
Sevrin T, Strasser L, Ternet C, Junk P, Caffarini M, Prins S, D’Arcy C, Catozzi S, Oliviero G, Wynne K, Kiel C, Luthert PJ. Whole-cell energy modeling reveals quantitative changes of predicted energy flows in RAS mutant cancer cell lines. iScience 2023; 26:105931. [PMID: 36711246 PMCID: PMC9874014 DOI: 10.1016/j.isci.2023.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cellular utilization of available energy flows to drive a multitude of forms of cellular "work" is a major biological constraint. Cells steer metabolism to address changing phenotypic states but little is known as to how bioenergetics couples to the richness of processes in a cell as a whole. Here, we outline a whole-cell energy framework that is informed by proteomic analysis and an energetics-based gene ontology. We separate analysis of metabolic supply and the capacity to generate high-energy phosphates from a representation of demand that is built on the relative abundance of ATPases and GTPases that deliver cellular work. We employed mouse embryonic fibroblast cell lines that express wild-type KRAS or oncogenic mutations and with distinct phenotypes. We observe shifts between energy-requiring processes. Calibrating against Seahorse analysis, we have created a whole-cell energy budget with apparent predictive power, for instance in relation to protein synthesis.
Collapse
Affiliation(s)
- Thomas Sevrin
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Lisa Strasser
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Camille Ternet
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Miriam Caffarini
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Stella Prins
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Cian D’Arcy
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Simona Catozzi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Corresponding author
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Corresponding author
| |
Collapse
|
29
|
Jeuken S, Shkura O, Röger M, Brickau V, Choidas A, Degenhart C, Gülden D, Klebl B, Koch U, Stoll R, Scherkenbeck J. Synthesis, Biological Evaluation, and Binding Mode of a New Class of Oncogenic K-Ras4b Inhibitors. ChemMedChem 2022; 17:e202200392. [PMID: 35979853 PMCID: PMC9826232 DOI: 10.1002/cmdc.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Indexed: 01/14/2023]
Abstract
Ras proteins are implicated in some of the most common life-threatening cancers. Despite intense research during the past three decades, progress towards small-molecule inhibitors of mutant Ras proteins still has been limited. Only recently has significant progress been made, in particular with ligands for binding sites located in the switch II and between the switch I and switch II region of K-Ras4B. However, the structural diversity of inhibitors identified for those sites to date is narrow. Herein, we show that hydrazones and oxime ethers of specific bis(het)aryl ketones represent structurally variable chemotypes for new GDP/GTP-exchange inhibitors with significant cellular activity.
Collapse
Affiliation(s)
- Stephan Jeuken
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| | - Oleksandr Shkura
- Faculty of Chemistry and BiochemistryBiomolecular Spectroscopy and RUBiospec | NMRUniversity of BochumUniversitätsstrasse 15044780BochumGermany
| | - Marc Röger
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| | - Victoria Brickau
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | - Axel Choidas
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | | | - Daniel Gülden
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| | - Bert Klebl
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | - Uwe Koch
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | - Raphael Stoll
- Faculty of Chemistry and BiochemistryBiomolecular Spectroscopy and RUBiospec | NMRUniversity of BochumUniversitätsstrasse 15044780BochumGermany
| | - Jürgen Scherkenbeck
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| |
Collapse
|
30
|
Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRAS G12D inhibitors for cancer therapy. Sci Rep 2022; 12:17796. [PMID: 36273239 PMCID: PMC9588042 DOI: 10.1038/s41598-022-22668-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The Kirsten rat sarcoma (KRAS) oncoprotein has been on drug hunters list for decades now. Initially considered undruggable, recent advances have successfully broken the jinx through covalent inhibition that exploits the mutated cys12 in the switch II binding pocket (KRASG12C). Though this approach has achieved some level of success, patients with mutations other than cys12 are still uncatered for. KRASG12D is the most frequent KRAS mutated oncoprotein. It is only until recently, MRTX1133 has been discovered as a potential inhibitor of KRASG12D. This study seeks to unravel the structural binding mechanism of MRTX1133 as well as identify potential drug leads of KRASG12D based on structural binding characteristics of MRTX1133. It was revealed that MRTX1133 binding stabilizes the binding site by increasing the hydrophobicity which resultantly induced positive correlated movements of switches I and II which could disrupt their interaction with effector and regulatory proteins. Furthermore, MRTX1133 interacted with critical residues; Asp69 (- 4.54 kcal/mol), His95 (- 3.65 kcal/mol), Met72 (- 2.27 kcal/mol), Thr58 (- 2.23 kcal/mol), Gln99 (- 2.03 kcal/mol), Arg68 (- 1.67 kcal/mol), Tyr96 (- 1.59 kcal/mol), Tyr64 (- 1.34 kcal/mol), Gly60 (- 1.25 kcal/mol), Asp12 (- 1.04 kcal/mol), and Val9 (- 1.03 kcal/mol) that contributed significantly to the total free binding energy of - 73.23 kcal/mol. Pharmacophore-based virtual screening based on the structural binding mechanisms of MRTX1133 identified ZINC78453217, ZINC70875226 and ZINC64890902 as potential KRASG12D inhibitors. Further, structural optimisations and biochemical testing of these compounds would assist in the discovery of effective KRASG12D inhibitors.
Collapse
|
31
|
Juette MF, Carelli JD, Rundlet EJ, Brown A, Shao S, Ferguson A, Wasserman MR, Holm M, Taunton J, Blanchard SC. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022; 11:e81608. [PMID: 36264623 PMCID: PMC9584604 DOI: 10.7554/elife.81608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/03/2022] [Indexed: 12/11/2022] Open
Abstract
Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.
Collapse
Affiliation(s)
- Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Emily J Rundlet
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell MedicineNew YorkUnited States
| | - Alan Brown
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Sichen Shao
- MRC-LMB, Francis Crick AvenueCambridgeUnited Kingdom
| | - Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Michael R Wasserman
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Jack Taunton
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| |
Collapse
|
32
|
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends Biochem Sci 2022; 47:875-891. [PMID: 35585008 PMCID: PMC9464697 DOI: 10.1016/j.tibs.2022.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
33
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
34
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Biomolecules 2022; 12:1345. [PMID: 36291554 PMCID: PMC9599529 DOI: 10.3390/biom12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
35
|
Nanoscopic Spatial Association between Ras and Phosphatidylserine on the Cell Membrane Studied with Multicolor Super Resolution Microscopy. Biomolecules 2022; 12:biom12081033. [PMID: 35892343 PMCID: PMC9332490 DOI: 10.3390/biom12081033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.
Collapse
|
36
|
Schaefer A, Der CJ. RHOA takes the RHOad less traveled to cancer. Trends Cancer 2022; 8:655-669. [PMID: 35568648 DOI: 10.1016/j.trecan.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
RAS and RHO GTPases function as signaling nodes that regulate diverse cellular processes. Whereas RAS mutations were identified in human cancers nearly four decades ago, only recently have mutations in two RHO GTPases, RAC1 and RHOA, been identified in cancer. RAS mutations are found in a diverse spectrum of human cancer types. By contrast, RAC1 and RHOA mutations are associated with distinct and restricted cancer types. Despite a conservation of RAS and RAC1 residues that comprise mutational hotspots, RHOA mutations comprise highly divergent hotspots. Whereas RAS and RAC1 act as oncogenes, RHOA may act as both an oncogene and a tumor suppressor. Thus, while RAS and RHO each take different mutational paths, they arrive at the same biological destination as cancer drivers.
Collapse
Affiliation(s)
- Antje Schaefer
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Catozzi S, Ternet C, Gourrege A, Wynne K, Oliviero G, Kiel C. Reconstruction and analysis of a large-scale binary Ras-effector signaling network. Cell Commun Signal 2022; 20:24. [PMID: 35246154 PMCID: PMC8896392 DOI: 10.1186/s12964-022-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/18/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ras is a key cellular signaling hub that controls numerous cell fates via multiple downstream effector pathways. While pathways downstream of effectors such as Raf, PI3K and RalGDS are extensively described in the literature, how other effectors signal downstream of Ras is often still enigmatic. METHODS A comprehensive and unbiased Ras-effector network was reconstructed downstream of 43 effector proteins (converging onto 12 effector classes) using public pathway and protein-protein interaction (PPI) databases. The output is an oriented graph of pairwise interactions defining a 3-layer signaling network downstream of Ras. The 2290 proteins comprising the network were studied for their implication in signaling crosstalk and feedbacks, their subcellular localizations, and their cellular functions. RESULTS The final Ras-effector network consists of 2290 proteins that are connected via 19,080 binary PPIs, increasingly distributed across the downstream layers, with 441 PPIs in layer 1, 1660 in layer 2, and 16,979 in layer 3. We identified a high level of crosstalk among proteins of the 12 effector classes. A class-specific Ras sub-network was generated in CellDesigner (.xml file) and a functional enrichment analysis thereof shows that 58% of the processes have previously been associated to a respective effector pathway, with the remaining providing insights into novel and unexplored functions of specific effector pathways. CONCLUSIONS Our large-scale and cell general Ras-effector network is a crucial steppingstone towards defining the network boundaries. It constitutes a 'reference interactome' and can be contextualized for specific conditions, e.g. different cell types or biopsy material obtained from cancer patients. Further, it can serve as a basis for elucidating systems properties, such as input-output relationships, crosstalk, and pathway redundancy. Video Abstract.
Collapse
Affiliation(s)
- Simona Catozzi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Camille Ternet
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alize Gourrege
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
38
|
Waninger JJ, Beyett TS, Gadkari VV, Siebenaler RF, Kenum C, Shankar S, Ruotolo BT, Chinnaiyan AM, Tesmer JJ. Biochemical characterization of the interaction between KRAS and Argonaute 2. Biochem Biophys Rep 2022; 29:101191. [PMID: 34988297 PMCID: PMC8695255 DOI: 10.1016/j.bbrep.2021.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
Oncogenic mutations in KRAS result in a constitutively active, GTP-bound form that in turn activates many proliferative pathways. However, because of its compact and simple architecture, directly targeting KRAS with small molecule drugs has been challenging. Another approach is to identify targetable proteins that interact with KRAS. Argonaute 2 (AGO2) was recently identified as a protein that facilitates RAS-driven oncogenesis. Whereas previous studies described the in vivo effect of AGO2 on cancer progression in cells harboring mutated KRAS, here we sought to examine their direct interaction using purified proteins. We show that full length AGO2 co-immunoprecipitates with KRAS using purified components, however, a complex between FL AGO2 and KRAS could not be isolated. We also generated a smaller N-terminal fragment of AGO2 (NtAGO2) which is believed to represent the primary binding site of KRAS. A complex with NtAGO2 could be detected via ion-mobility mass spectrometry and size exclusion chromatography. However, the data suggest that the interaction of KRAS with purified AGO2 (NtAGO2 or FL AGO2) is weak and likely requires additional cellular components or proteo-forms of AGO2 that are not readily available in our purified assay systems. Future studies are needed to determine what conformation or modifications of AGO2 are necessary to enrich KRAS association and regulate its activities.
Collapse
Affiliation(s)
- Jessica J. Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tyler S. Beyett
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ronald F. Siebenaler
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - John J.G. Tesmer
- Departments of Biological Sciences and Medicinal Chemistry & Molecular Pharmacology, Purdue University, Indiana, USA
| |
Collapse
|
39
|
Li Y, Han L, Zhang Z. Understanding the influence of AMG 510 on the structure of KRAS G12C empowered by molecular dynamics simulation. Comput Struct Biotechnol J 2022; 20:1056-1067. [PMID: 35284050 PMCID: PMC8894142 DOI: 10.1016/j.csbj.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
The KRASG12C mutant is often associated with human cancers, and AMG 510 as a promising covalent inhibitor of KRASG12C has achieved surprising efficacy in clinical trials. However, the interaction mechanism between KRASG12C and AMG 510 is not completely understood. Here, we performed all-atom molecular dynamics simulations on the complex of KRASG12C-AMG 510 to explore the influence of this covalent inhibitor on the conformational change of KRASG12C. A PCA (Principal Component Analysis) model was constructed based on known KRAS crystal structures to distinguish different conformations (active, inactive, and other). By mapping simulation trajectories onto the PCA model, we observed that the conformations of KRASG12C bound with AMG 510 were mainly concentrated in the inactive conformation. Further analysis demonstrated that AMG 510 reduced the flexibility of two switch regions to make the complex of KRASG12C-AMG 510 restricted in the inactive conformation. In the meantime, we also identified key interacting residues between KRASG12C and AMG 510 through the calculation of binding energy. Finally, we built a series of KRAS second-site mutation systems (i.e. KRASG12C/mutations) to conduct large-scale screening of potential resistance mutations. By further combining MD simulations and the PCA model, we not only recapitulated the currently known resistance mutations of AMG 510 successfully but also proposed some novel potential resistant mutations. Taken together, these results broaden our insight into the influence of AMG 510 on the conformational change of the KRASG12C mutant at the atomic level, thereby providing crucial hints for the improvement and optimization of drug candidates.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Ozdemir ES, Koester AM, Nan X. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes (Basel) 2022; 13:219. [PMID: 35205266 PMCID: PMC8872464 DOI: 10.3390/genes13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
| | - Anna M. Koester
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| | - Xiaolin Nan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| |
Collapse
|
41
|
Chen D, Hughes ED, Saunders TL, Wu J, Hernández Vásquez MN, Makinen T, King PD. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 2022; 7:156928. [PMID: 35015735 PMCID: PMC8876457 DOI: 10.1172/jci.insight.156928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss of function mutations in RASA1 or EPHB4 genes that encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4) respectively. However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell (EC)-specific disruption of Ephb4 in mice results in accumulation of collagen IV in the EC endoplasmic reticulum leading to EC apoptotic death and defective developmental, neonatal and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice can be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4 mutant mice that express a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity show normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications with regards possible means of treatment of this disease.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States of America
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Taija Makinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, United States of America
| |
Collapse
|
42
|
Hannan JP, Swisher GH, Martyr JG, Cordaro NJ, Erbse AH, Falke JJ. HPLC method to resolve, identify and quantify guanine nucleotides bound to recombinant ras GTPase. Anal Biochem 2021; 631:114338. [PMID: 34433016 PMCID: PMC8511091 DOI: 10.1016/j.ab.2021.114338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022]
Abstract
The Ras superfamily of small G proteins play central roles in diverse signaling pathways. Superfamily members act as molecular on-off switches defined by their occupancy with GTP or GDP, respectively. In vitro functional studies require loading with a hydrolysis-resistant GTP analogue to increase the on-state lifetime, as well as knowledge of fractional loading with activating and inactivating nucleotides. The present study describes a method combining elements of previous approaches with new, optimized features to analyze the bound nucleotide composition of a G protein loaded with activating (GMPPNP) or inactivating (GDP) nucleotide. After nucleotide loading, the complex is washed to remove unbound nucleotides then bound nucleotides are heat-extracted and subjected to ion-paired, reverse-phase HPLC-UV to resolve, identify and quantify the individual nucleotide components. These data enable back-calculation to the nucleotide composition and fractional activation of the original, washed G protein population prior to heat extraction. The method is highly reproducible. Application to multiple HRas preparations and mutants confirms its ability to fully extract and analyze bound nucleotides, and to resolve the fractional on- and off-state populations. Furthermore, the findings yield a novel hypothesis for the molecular disease mechanism of Ras mutations at the E63 and Y64 positions.
Collapse
Affiliation(s)
- Jonathan P Hannan
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - G Hayden Swisher
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Justin G Martyr
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Nicholas J Cordaro
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Annette H Erbse
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
43
|
Mathieu M, Steier V, Fassy F, Delorme C, Papin D, Genet B, Duffieux F, Bertrand T, Delarbre L, Le-Borgne H, Parent A, Didier P, Marquette JP, Lowinski M, Houtmann J, Lamberton A, Debussche L, Alexey R. KRAS G12C fragment screening renders new binding pockets. Small GTPases 2021; 13:225-238. [PMID: 34558391 DOI: 10.1080/21541248.2021.1979360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
KRAS genes belong to the most frequently mutated family of oncogenes in cancer. The G12C mutation, found in a third of lung, half of colorectal and pancreatic cancer cases, is believed to be responsible for a substantial number of cancer deaths. For 30 years, KRAS has been the subject of extensive drug-targeting efforts aimed at targeting KRAS protein itself, but also its post-translational modifications, membrane localization, protein-protein interactions and downstream signalling pathways. So far, most KRAS targeting strategies have failed, and there are no KRAS-specific drugs available. However, clinical candidates targeting the KRAS G12C protein have recently been developed. MRTX849 and recently approved Sotorasib are covalent binders targeting the mutated cysteine 12, occupying Switch II pocket.Herein, we describe two fragment screening drug discovery campaigns that led to the identification of binding pockets on the KRAS G12C surface that have not previously been described. One screen focused on non-covalent binders to KRAS G12C, the other on covalent binders.
Collapse
Affiliation(s)
- Magali Mathieu
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Valérie Steier
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Florence Fassy
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Cécile Delorme
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - David Papin
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Bruno Genet
- Biologics Development, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Francis Duffieux
- Biologics Research, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Thomas Bertrand
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Laure Delarbre
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Hélène Le-Borgne
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Annick Parent
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Patrick Didier
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | | | - Maryse Lowinski
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Jacques Houtmann
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | | | - Laurent Debussche
- Molecular Oncology, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| | - Rak Alexey
- Integrated Drug Discovery, Quai Jules Guesde, Vitry Sur Seine Cedex, France
| |
Collapse
|
44
|
Heinrich F, Van QN, Jean-Francois F, Stephen AG, Lösche M. Membrane-bound KRAS approximates an entropic ensemble of configurations. Biophys J 2021; 120:4055-4066. [PMID: 34384763 PMCID: PMC8510975 DOI: 10.1016/j.bpj.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022] Open
Abstract
KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.
Collapse
Affiliation(s)
- Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland.
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Frantz Jean-Francois
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
45
|
Ottaiano A, Santorsola M, Caraglia M, Circelli L, Gigantino V, Botti G, Nasti G. Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease? Transl Oncol 2021; 14:101131. [PMID: 34034007 PMCID: PMC8144733 DOI: 10.1016/j.tranon.2021.101131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) originates as consequence of multiple genetic alterations. Some of the involved genes have been extensively studied (APC, TP53, KRAS, SMAD4, PIK3CA, MMR genes) in highly heterogeneous and poly-metastatic cohorts. However, about 10% of metastatic CRC patients presents with an indolent oligo-metastatic disease differently from other patients with poly-metastatic and aggressive clinical course. Which are the genetic dynamics underlying the differences between oligo- and poly-metastatic CRC? The understanding of the genetic trajectories (primary→metastatic) of CRC, in patients selected to represent homogenous clinical models, is crucial to make genotype/phenotype correlations and to identify the molecular events pushing the disease towards an increasing malignant phenotype. This information is crucial to plan innovative therapeutic strategies aimed to reverse or inhibit these phenomena. In the present study, we review the genetic evolution of CRC with the intent to give a developmental perspective on the border line between oligo- and poly-metastatic diseases.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio, 7 80138, Naples, Italy; Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031, Ariano Irpino, Italy
| | - Luisa Circelli
- AMES-Centro Polidiagnostico Strumentale, 80013, Casalnuovo di Napoli, Italy
| | - Valerio Gigantino
- Innovalab scarl, Molecular Biology, Centro Direzionale, isola A2, 80143, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| |
Collapse
|
46
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
47
|
Rudack T, Teuber C, Scherlo M, Güldenhaupt J, Schartner J, Lübben M, Klare J, Gerwert K, Kötting C. The Ras dimer structure. Chem Sci 2021; 12:8178-8189. [PMID: 34194708 PMCID: PMC8208300 DOI: 10.1039/d1sc00957e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutated Ras is a key player in cancer, but despite intense and expensive approaches its catalytic center seems undruggable. The Ras dimer interface is a possible alternative drug target. Dimerization at the membrane affects cell growth signal transduction. In vivo studies indicate that preventing dimerization of oncogenic mutated Ras inhibits uncontrolled cell growth. Conventional computational drug-screening approaches require a precise atomic dimer model as input to successfully access drug candidates. However, the proposed dimer structural models are controversial. Here, we provide a clear-cut experimentally validated N-Ras dimer structural model. We incorporated unnatural amino acids into Ras to enable the binding of labels at multiple positions via click chemistry. This labeling allowed the determination of multiple distances of the membrane-bound Ras-dimer measured by fluorescence and electron paramagnetic resonance spectroscopy. In combination with protein-protein docking and biomolecular simulations, we identified key residues for dimerization. Site-directed mutations of these residues prevent dimer formation in our experiments, proving our dimer model to be correct. The presented dimer structure enables computational drug-screening studies exploiting the Ras dimer interface as an alternative drug target.
Collapse
Affiliation(s)
- Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Christian Teuber
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Marvin Scherlo
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Jörn Güldenhaupt
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Jonas Schartner
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Mathias Lübben
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Johann Klare
- Department of Physics, Osnabrück University 49074 Osnabrück Germany
| | - Klaus Gerwert
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Carsten Kötting
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| |
Collapse
|
48
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
49
|
Lin Y, Lu S, Zhang J, Zheng Y. Structure of an inactive conformation of GTP-bound RhoA GTPase. Structure 2021; 29:553-563.e5. [PMID: 33497604 DOI: 10.1016/j.str.2020.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/22/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
By using 31P NMR, we present evidence that the Rho family GTPase RhoA, similar to Ras GTPases, exists in an equilibrium of conformations when bound to GTP. High-resolution crystal structures of RhoA bound to the GTP analog GMPPNP and to GDP show that they display a similar overall inactive conformation. In contrast to the previously reported crystal structures of GTP analog-bound forms of two RhoA dominantly active mutants (G14V and Q63L), GMPPNP-bound RhoA assumes an open conformation in the Switch I loop with a previously unseen interaction between the γ-phosphate and Pro36, instead of the canonical Thr37. Molecular dynamics simulations found that the oncogenic RhoAG14V mutant displays a reduced flexibility in the Switch regions, consistent with a crystal structure of GDP-bound RhoAG14V. Thus, GDP- and GTP-bound RhoA can present similar inactive conformations, and the molecular dynamics in the Switch regions are likely to have a role in RhoA activation.
Collapse
Affiliation(s)
- Yuan Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 Chongqing South Road, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 Chongqing South Road, Shanghai 200025, China
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
50
|
Abstract
Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.
Collapse
|