1
|
Guo Z, Xiao Q, Li T, Deng Y, Liu P, Ren X, Xu B, Chen X, Huang H, Qin W, Huang C, Luo L, Liu J, Lu S. Co-exposure to polycyclic aromatic hydrocarbons and nicotine and their associations with cognitive impairment risk in older adults from southern China. Food Chem Toxicol 2025; 197:115255. [PMID: 39828119 DOI: 10.1016/j.fct.2025.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke is widespread and linked to various adverse health outcomes. Their potential to disturb the neurological system has raised much concern, particularly among older adults. Thus, we conducted a case-control study to assess the associations between co-exposure to PAHs and nicotine, and the risk of cognitive impairment and oxidative stress in older adults. A total of 384 adults aged 60 years and older were recruited from 2017 to 2018 in Shenzhen, China. Morning spot urine samples were collected for the analysis of 6 mono-hydroxylated PAHs, 8 nicotine metabolites, and a typical biomarker for oxidative stress, 8-hydroxy-2'-deoxyguanosine (8-OHdG). The Mini-Mental State Examination was used to assess the cognitive function of participants. Quantile-based g-computation (QGC), weighted quantile sum regression, and Bayesian kernel machine regression were used to analyze the associations between the exposure mixture and outcomes. QGC showed co-exposure to PAHs and nicotine were positively associated with cognitive impairment risk (OR: 1.66, 95% CI: 1.36-2.03, P < 0.001) and 8-OHdG (β:11.19, 95% CI: 3.90-18.48, P < 0.001). The primary contributors to cognitive impairment risk were (S)-nicotine-N-β-glucuronide (NicGluc), cotinine N-β-D-glucuronide (CotGluc) and (S)-cotinine N-oxide (CNO) and Cotinine (Cot), with no-linear dose-response relationships. However, 8-OHdG did not mediate the association between PAHs, nicotine and cognitive impairment risk.
Collapse
Affiliation(s)
- Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qunlin Xiao
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Tian Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China; Beijing Daxing District Center for Disease Control and Prevention, Beijng, 102699, China
| | - Yilan Deng
- Zhuhai Maternity and Child Health Care Hospital, Zhuhai, 519001, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Weizhen Qin
- Physical and Chemical Testing Department, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Chengpeng Huang
- Physical and Chemical Testing Department, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Lan Luo
- Physical and Chemical Testing Department, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Liu T, Wang Y, Meng T, Ren Q, Shi H, Lin C. Association between cardiovascular health and all-cause mortality risk in patients with osteoarthritis. BMC Musculoskelet Disord 2024; 25:641. [PMID: 39143482 PMCID: PMC11323624 DOI: 10.1186/s12891-024-07729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND This study was to explore the relationship between cardiovascular health (CVH) and the risk of all-cause mortality in patients with osteoarthritis (OA). METHODS This cohort study retrieved the data of 3642 patients with OA aged ≥ 20 years from the 2007-2018 National Health and Nutrition Examination Survey (NHANES). CVH was evaluated based on Life's Essential 8 (LE8) includes diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose, and blood pressure. The outcome of all-cause mortality was assessed using the death certificate records of participants from the National Death Index. Variables that might affect all-cause mortality were used as covariates. The weighted univariate COX proportional hazards model was used to explore the association between each covariate and all-cause mortality. The weighted univariate and multivariate COX proportional hazards models were used to explore the association between different CVH levels and all-cause mortality. A restricted cubic spline (RCS) curve was plotted to show the association between different CVH levels and all-cause mortality in OA patients. Hazard ratio (HR) and 95% confidence interval (CI) were calculated. RESULTS Findings show that people with moderate CVH (HR = 0.67, 95% CI = 0.45-0.98) and high CVH (HR = 0.47, 95% CI = 0.26-0.87) were associated with reduced risk of all-cause mortality in patients with OA. The HR of all-cause mortality in patients with OA decreased by 0.12 as per 10 points increase of LE8 score (HR = 0.81, 95% CI = 0.73-0.90). The RCS curve revealed that the HR of all-cause mortality decreased with the increase in LE8 score. The survival probability of patients in the high CVH group was higher than the moderate CVH group and low CVH group (p = 0.002). CONCLUSION Moderate-to-high CVH is associated with a decreased risk of all-cause mortality in patients with OA. These findings might provide a reference for the formulation of prognosis improvement strategies for the management of patients with OA.
Collapse
Affiliation(s)
- Tao Liu
- Department of Bone and Joint Surgery, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong Province, 256600, China
| | - Yaning Wang
- The Department of Nephrology, Binzhou Medical University Hospital, Binzhou, Shandong Province, 256600, China
| | - Tao Meng
- Department of Bone and Joint Surgery, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong Province, 256600, China
| | - Qiang Ren
- Department of Bone and Joint Surgery, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong Province, 256600, China
| | - Hui Shi
- Department of Bone and Joint Surgery, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong Province, 256600, China
| | - Chao Lin
- Department of Bone and Joint Surgery, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong Province, 256600, China.
| |
Collapse
|
3
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
4
|
Zhang R, Wu M, Zhang W, Liu X, Pu J, Wei T, Zhu Z, Tang Z, Wei N, Liu B, Cui Q, Wang J, Liu F, Lv Y. Association between life's essential 8 and biological ageing among US adults. J Transl Med 2023; 21:622. [PMID: 37710295 PMCID: PMC10503107 DOI: 10.1186/s12967-023-04495-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Biological ageing is tightly linked to cardiovascular disease (CVD). We aimed to investigate the relationship between Life's Essential 8 (LE8), a currently updated measure of cardiovascular health (CVH), and biological ageing. METHODS This cross-sectional study selected adults ≥ 20 years of age from the 2005-2010 National Health and Nutrition Examination Survey. LE8 scores (range 0-100) were obtained from measurements based on American Heart Association definitions, divided into health behavior and health factor scores. Biological ageing was assessed by different methods including phenotypic age, phenotypic age acceleration (PhenoAgeAccel), biological age and biological age acceleration (BioAgeAccel). Correlations were analyzed by weighted linear regression and restricted cubic spline models. RESULTS Of the 11,729 participants included, the mean age was 47.41 ± 0.36 years and 5983 (51.01%) were female. The mean phenotypic and biological ages were 42.96 ± 0.41 and 46.75 ± 0.39 years, respectively, and the mean LE8 score was 67.71 ± 0.35. After adjusting for potential confounders, higher LE8 scores were associated with lower phenotypic age, biological age, PhenoAgeAccel, and BioAgeAccel, with nonlinear dose-response relationships. Negative associations were also found between health behavior and health factor scores and biological ageing, and were stronger for health factors. In health factor-specific analyses, the β negativity was greater for blood glucose and blood pressure. The inverse correlations of LE8 scores with phenotypic age and biological age in the stratified analyses remained solid across strata. CONCLUSIONS LE8 and its subscale scores were strongly negatively related to biological ageing. Encouraging optimal CVH levels may be advantageous in preventing and slowing down ageing.
Collapse
Affiliation(s)
- Ronghuai Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Min Wu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Xuna Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jie Pu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Tao Wei
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
- Department of Cardiovascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Zhanfang Zhu
- Xi'an Jiaotong University Hospital, Xi'an, People's Republic of China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Na Wei
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Bo Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Fuqiang Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Ying Lv
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
5
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Nicotine's effect on cognition, a friend or foe? Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110723. [PMID: 36736944 DOI: 10.1016/j.pnpbp.2023.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.
Collapse
|
7
|
Nicotine rebalances NAD + homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun 2023; 14:900. [PMID: 36797299 PMCID: PMC9935903 DOI: 10.1038/s41467-023-36543-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Imbalances in NAD+ homeostasis have been linked to aging and various diseases. Nicotine, a metabolite of the NAD+ metabolic pathway, has been found to possess anti-inflammatory and neuroprotective properties, yet the underlying molecular mechanisms remained unknown. Here we find that, independent of nicotinic acetylcholine receptors, low-dose nicotine can restore the age-related decline of NAMPT activity through SIRT1 binding and subsequent deacetylation of NAMPT, thus increasing NAD+ synthesis. 18F-FDG PET imaging revealed that nicotine is also capable of efficiently inhibiting glucose hypermetabolism in aging male mice. Additionally, nicotine ameliorated cellular energy metabolism disorders and deferred age-related deterioration and cognitive decline by stimulating neurogenesis, inhibiting neuroinflammation, and protecting organs from oxidative stress and telomere shortening. Collectively, these findings provide evidence for a mechanism by which low-dose nicotine can activate NAD+ salvage pathways and improve age-related symptoms.
Collapse
|
8
|
Cao K, Xiang J, Dong YT, Xu Y, Guan ZZ. Activation of α7 Nicotinic Acetylcholine Receptor by its Selective Agonist Improved Learning and Memory of Amyloid Precursor Protein/Presenilin 1 (APP/PS1) Mice via the Nrf2/HO-1 Pathway. Med Sci Monit 2022; 28:e933978. [PMID: 34980874 PMCID: PMC8742434 DOI: 10.12659/msm.933978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To reveal the mechanism underlying the effect of alpha7 nicotinic acetylcholine receptor (nAChR) on neurodegeneration in Alzheimer disease (AD), the influence of the receptor on recognition in APP/PS1 mice was evaluated by using its selective agonist (PNU-282987). MATERIAL AND METHODS APP/PS1 and wild-type (WT) mice were treated with PNU or saline, respectively, for 7 days at the ages of 6 and 10 months. RESULTS Morris water maze analysis showed that both at 6 and 10 months of age, PNU treatment enhanced the learning and memory of APP/PS1 mice. However, PNU treatment did not alter the number of senile plaques. Furthermore, a higher protein expression of Nrf2/HO-1, ADAM10, SYP, and SNAP-25, and a lower level of oxidative stress, were observed in the hippocampus of APP/PS1 mice treated with PNU compared with the control group. CONCLUSIONS The results indicated that the activation of alpha7 nAChR by PNU improved the learning and memory of mice carrying the APP/PS1 mutation, regulated the levels of enzymes that mediate APP metabolization to reduce ß-amyloid peptide damage, and decreased the level of oxidative stress and maintained synaptic plasticity, in which the mechanism might be enhancement of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jie Xiang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, PR China
| | - Yi Xu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
| | - Zhi-Zhong Guan
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, PR China
| |
Collapse
|
9
|
Seyedaghamiri F, Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farhoudi M. Possible Engagement of Nicotinic Acetylcholine Receptors in Pathophysiology of Brain Ischemia-Induced Cognitive Impairment. J Mol Neurosci 2021; 72:642-652. [PMID: 34596872 DOI: 10.1007/s12031-021-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Post-stroke disabilities like cognitive impairment impose are complex conditions with great economic burdens on health care systems. For these comorbidities, no effective therapies have been identified yet. Nicotinic acetylcholine receptors (nAChRs) are multifunctional receptors participating in various behavioral and neurobiological functions. During brain ischemia, the increased glutamate accumulation leads to neuronal excitotoxicity as well as mitochondrial dysfunction. These abnormalities then cause the increased levels of oxidants, which play key roles in neuronal death and apoptosis in the infarct zone. Additionally, recall of cytokines and inflammatory factors play a prominent role in the exacerbation of ischemic injury. As well, neurotrophic factors' insufficiency results in synaptic dysfunction and cognitive impairments in ischemic brain. Of note, nAChRs through various signaling pathways can participate in therapeutic approaches such as cholinergic system's stimulation, and reduction of excitotoxicity, inflammation, apoptosis, oxidative stress, mitochondrial dysfunction, and autophagy. Moreover, the possible roles of nAChRs in neurogenesis, synaptogenesis, and stimulation of neurotrophic factors expression have been reported previously. On the other hand, the majority of the above-mentioned mechanisms were found to be common in both brain ischemia pathogenesis and cognitive function tuning. Therefore, it seems that nAChRs might be known as key regulators in the control of ischemia pathology, and their modulation could be considered as a new avenue in the multi-target treatment of post-stroke cognitive impairment.
Collapse
Affiliation(s)
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Majdi A, Sadigh‐Eteghad S, Gjedde A. Effects of transdermal nicotine delivery on cognitive outcomes: A meta-analysis. Acta Neurol Scand 2021; 144:179-191. [PMID: 33899218 DOI: 10.1111/ane.13436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE By the association of nicotinic acetylcholine receptors in the brain, nicotine in the therapeutic window lowers neuronal damage and raises protective factors. These data, however, are contradicted by other findings. Here, we assessed the effects of transdermal nicotine administration on cognitive functions in healthy non-smoker adults by systematic review and meta-analysis of clinical trials. METHODS We included reports of clinical trials comparing the effects of nicotine patches with placebo in healthy non-smoking adults. The main outcome was the impact of nicotine patches on overall cognitive function with a focus on attention and memory. Standard meta-analytic and statistical methods measured the effect of transdermal nicotine compared with placebo patches. RESULTS We included 31 publications involving 978 subjects. Nicotine patches boosted cognitive function in healthy adults (0.233 SMD, 95%CI, 0.111-0.355, p < .001). Overall heterogeneity of the studies was found to be modest (ϰ2 = 68.24, T2 = 0.07, I2 = 50.17%, p < .001). Also, nicotine patches improved attention (0.231 SMD, 95%CI, 0.106-0.356, p < .001). We found the inter-study heterogeneity to be low (ϰ2 = 40.95, T2 = 0.03, I2 = 34.07%, p = .042). Further, the enhancement of memory by transdermal nicotine did not reach statistical significance in normal subjects (0.270 SMD, 95% CI, -0.293-0.833, p = .347). Also, high inter-study heterogeneity was found among studies (ϰ2 = 27.25, T2 = 0.43, I2 = 77.98%, p < .001). CONCLUSION The meta-analysis showed that transdermal nicotine had statistically significant positive effects on attention, and non-significant effects on memory, in healthy non-smoking adults. The results encourage further studies of the therapeutic potential of nicotine patches in disorders of cognition.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center Tabriz University of Medical Sciences Tabriz Iran
| | | | - Albert Gjedde
- Neurosciences Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Research Translational Neuropsychiatry Unit Aarhus University Aarhus Denmark
- Department of Neuroscience University of Copenhagen Copenhagen Denmark
- Department of Neurology and Neurosurgery McGill University Montreal QC Canada
| |
Collapse
|
11
|
Brooks AC, Henderson BJ. Systematic Review of Nicotine Exposure's Effects on Neural Stem and Progenitor Cells. Brain Sci 2021; 11:172. [PMID: 33573081 PMCID: PMC7912116 DOI: 10.3390/brainsci11020172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
While various modalities of chronic nicotine use have been associated with numerous negative consequences to human health, one possible benefit of nicotine exposure has been uncovered. The discovery of an inverse correlation between smoking and Parkinson's disease, and later Alzheimer's disease as well, motivated investigation of nicotine as a neuroprotective agent. Some studies have demonstrated that nicotine elicits improvements in cognitive function. The hippocampus, along with the subventricular zone (SVZ), is a distinct brain region that allow for ongoing postnatal neurogenesis throughout adulthood and plays a major role in certain cognitive behaviors like learning and memory. Therefore, one hypothesis underlying nicotine-induced neuroprotection is possible effects on neural stem cells and neural precursor cells. On the other hand, nicotine withdrawal frequently leads to cognitive impairments, particularly in hippocampal-dependent behaviors, possibly suggesting an impairment of hippocampal neurogenesis with nicotine exposure. This review discusses the current body of evidence on nicotine's effects on neural stem cells and neural progenitors. Changes in neural stem cell proliferation, survival, intracellular dynamics, and differentiation following acute and chronic nicotine exposure are examined.
Collapse
Affiliation(s)
- Arrin C. Brooks
- Department of Biomedical Science, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25545, USA;
| | | |
Collapse
|
12
|
Delli Pizzi S, Granzotto A, Bomba M, Frazzini V, Onofrj M, Sensi SL. Acting Before; A Combined Strategy to Counteract the Onset and Progression of Dementia. Curr Alzheimer Res 2020; 17:790-804. [PMID: 33272186 DOI: 10.2174/1567205017666201203085524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Brain aging and aging-related neurodegenerative disorders are posing a significant challenge for health systems worldwide. To date, most of the therapeutic efforts aimed at counteracting dementiarelated behavioral and cognitive impairment have been focused on addressing putative determinants of the disease, such as β-amyloid or tau. In contrast, relatively little attention has been paid to pharmacological interventions aimed at restoring or promoting the synaptic plasticity of the aging brain. The review will explore and discuss the most recent molecular, structural/functional, and behavioral evidence that supports the use of non-pharmacological approaches as well as cognitive-enhancing drugs to counteract brain aging and early-stage dementia.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Alberto Granzotto
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Manuela Bomba
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Valerio Frazzini
- AP-HP, Epilepsy Unit, Pitie-Salpetriere Hospital and Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, Sorbonne Universite), Pitie-Salpetriere Hospital, Paris, France
| | - Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| |
Collapse
|
13
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Petre BA, Hritcu L. Cotinine and 6-Hydroxy-L-Nicotine Reverses Memory Deficits and Reduces Oxidative Stress in Aβ 25-35-Induced Rat Model of Alzheimer's Disease. Antioxidants (Basel) 2020; 9:E768. [PMID: 32824768 PMCID: PMC7465470 DOI: 10.3390/antiox9080768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
The nicotinic derivatives, cotinine (COT), and 6-hydroxy-L-nicotine (6HLN), showed promising cognitive-improving effects without exhibiting the nicotine's side-effects. Here, we investigated the impact of COT and 6HLN on memory impairment and the oxidative stress in the Aβ25-35-induced rat model of Alzheimer's disease (AD). COT and 6HLN were chronically administered to Aβ25-35-treated rats, and their memory performances were assessed using in vivo tasks (Y-maze, novel object recognition, and radial arm maze). By using in silico tools, we attempted to associate the behavioral outcomes with the calculated binding potential of these nicotinic compounds in the allosteric sites of α7 and α4β2 subtypes of the nicotinic acetylcholine receptors (nAChRs). The oxidative status and acetylcholinesterase (AChE) activity were determined from the hippocampal tissues. RT-qPCR assessed bdnf, arc, and il-1β mRNA levels. Our data revealed that COT and 6HLN could bind to α7 and α4β2 nAChRs with similar or even higher affinity than nicotine. Consequently, the treatment exhibited a pro-cognitive, antioxidant, and anti-AChE profile in the Aβ25-35-induced rat model of AD. Finally, RT-qPCR analysis revealed that COT and 6HLN positively modulated the bdnf, arc, and il-1β genes expression. Therefore, these nicotinic derivatives that act on the cholinergic system might represent a promising choice to ameliorate AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| | - Bogdan Alexandru Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Brindusa Alina Petre
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania;
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
14
|
Sadigh-Eteghad S, Vatandoust SM, Mahmoudi J, Rahigh Aghsan S, Majdi A. Cotinine ameliorates memory and learning impairment in senescent mice. Brain Res Bull 2020; 164:65-74. [PMID: 32818583 DOI: 10.1016/j.brainresbull.2020.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to assess the effects of cotinine on age-induced memory and learning impairment and related downstream pathways in mice. Thirty aged (18-month old) and 10 young mice (8-week old) were randomly divided into 4 groups (n = 10 each) and subjected to cotinine at 5 mg/kg dose and/or methyllycaconitine (MLA) at 1 mg/kg, i.p. dose (α7 nAChRs antagonist) for 4 weeks. Morris water maze (MWM) and novel object recognition (NOR) tasks were used to assess spatial and recognition learning and memories of the mice, respectively. Levels of oxidative stress, apoptosis, neuroinflammation, and structural synaptic plasticity, and also neurotrophic factors and α7 nAChRs were assessed in the hippocampus using either ELISA or Western blotting. Aging was associated with learning and memory disabilities and dysregulation of the assessed pathways in the hippocampus of mice. Chronic cotinine treatment improved learning and memory in aged animals, indicated by decreased latency time, and increased time spent in the target quadrant and discrimination index (DI) in the MWM and NOR tasks. Also, chronic cotinine injection increased total antioxidant capacity (TAC), SOD and GSH-px activity, PSD-95, GAP-43, SYN, brain-derived neurotrophic factor, and neural growth factor levels and decreased malondialdehyde, TNF-α, and IL-1β in the hippocampus of aged mice. Conversely, MLA treatment reversed most of the mentioned effects via the blockade of α7 nAChRs. Cotinine improves age-induced memory and learning impairment via its modulatory effects on α7 nAChRs and subsequent activation/deactivation of the mentioned pathways in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghsan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Majdi A, Sadigh-Eteghad S, Rahigh Aghsan S, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J. Amyloid-β, tau, and the cholinergic system in Alzheimer's disease: seeking direction in a tangle of clues. Rev Neurosci 2020; 31:391-413. [PMID: 32017704 DOI: 10.1515/revneuro-2019-0089] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022]
Abstract
The link between histopathological hallmarks of Alzheimer's disease (AD), i.e. amyloid plaques, and neurofibrillary tangles, and AD-associated cognitive impairment, has long been established. However, the introduction of interactions between amyloid-beta (Aβ) as well as hyperphosphorylated tau, and the cholinergic system to the territory of descriptive neuropathology has drastically changed this field by adding the theory of synaptic neurotransmission to the toxic pas de deux in AD. Accumulating data show that a multitarget approach involving all amyloid, tau, and cholinergic hypotheses could better explain the evolution of events happening in AD. Various species of both Aβ and tau could be traced in cholinergic neurons of the basal forebrain system early in the course of the disease. These molecules induce degeneration in the neurons of this system. Reciprocally, aberrant cholinergic system modulation promotes changes in amyloid precursor protein (APP) metabolism and tau phosphorylation, resulting in neurotoxicity, neuroinflammation, and neuronal death. Altogether, these changes may better correlate with the clinical findings and cognitive impairment detected in AD patients. Failure of several of Aβ- and tau-related therapies further highlights the need for special attention to molecules that target all of these mentioned pathologic changes. Another noteworthy fact here is that none of the popular hypotheses of AD such as amyloidopathy or tauopathy seem to be responsible for the changes observed in AD alone. Thus, the main culprit should be sought higher in the stream somewhere in APP metabolism or Wnt signaling in the cholinergic system of the basal forebrain. Future studies should target these pathological events.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Sepideh Rahigh Aghsan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Ali Namvaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| |
Collapse
|
16
|
Han T, Wang Q, Lai R, Zhang D, Diao Y, Yin Y. Nicotine Induced Neurocognitive Protection and Anti-inflammation Effect by Activating α 4β 2 Nicotinic Acetylcholine Receptors in Ischemic Rats. Nicotine Tob Res 2019; 22:919-924. [PMID: 31403667 DOI: 10.1093/ntr/ntz126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023]
Abstract
Abstract
Introduction
The main objective of this study was to explore the mechanism of nicotine improving cognitive impairments in ischemic rats.
Methods
Twenty adult male Sprague–Dawley (SD) rats underwent ischemic model surgery by injecting endothelin-1 into the left thalamus, which were classified into four different groups with different intervention: nicotine (1.5 mg/kg/d), dihydro-β-erythroidine (DHβE; 3 mg/kg/d), nicotine (1.5 mg/kg/d) + DHβE (3 mg/kg/d), or saline, after ischemic model surgery. Another five male SD rats also underwent same surgery, while not injecting endothelin-1 but saline, as the control group. Morris water maze (MWM) test was adopted to assess the cognition. All the rats underwent the MWM test, micro positron emission tomography imaging with 2-[18F]-A-85380, and messenger RNA (mRNA) test of α 4 nicotinic acetylcholine receptor (nAChR), β 2 nAChR, tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-6.
Results
The MWM test showed the rats given nicotine showing better memory than ischemic rats (p < .05), whereas the rats given DHβE or both nicotine and DHβE did not show any statistical difference from the ischemic rats (p > .05). Micro positron emission tomography imaging showed higher uptake of tracer in the left thalamus and whole brain in rats given nicotine than in ischemic rats, but the rats given DHβE or both nicotine and DHβE did not. By real-time PCR test, the mRNA of α 4 nAChR and β 2 nAChR in rats given nicotine increased significantly compared with ischemic rats and decreased TNF-α, IL-1β, and IL-6 mRNA (all ps < .05).
Conclusions
By activating α 4β 2 nAChRs, nicotine plays a role in inhibiting the inflammatory factors, which contributes to improving cognitive impairment in ischemic rats.
Implications
It is well acknowledged that vascular cognitive impairment (VCI) is the second most common cause of dementia after Alzheimer’s disease. Cholinergic agents have potential for the symptomatic treatment of the cognitive symptoms of dementia, but the exact mechanism still remains unclear. There are potential complex associations and interactions between VCI and inflammation. This study showed that nicotine had anti-inflammatory potency, which is most likely because of the activation of the nAChRs. By activating α4β2 nAChRs, nicotine played a role in inhibiting the inflammatory factors, which contribute to improving cognitive impairment in ischemic rats.
Collapse
Affiliation(s)
- Tingting Han
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qi Wang
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Ruihe Lai
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Dalong Zhang
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yao Diao
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yafu Yin
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Garibotto V, Wissmeyer M, Giavri Z, Ratib O, Picard F. Nicotinic Acetylcholine Receptor Density in the “Higher-Order” Thalamus Projecting to the Prefrontal Cortex in Humans: a PET Study. Mol Imaging Biol 2019; 22:417-424. [DOI: 10.1007/s11307-019-01377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Majdi A, Kamari F, Sadigh-Eteghad S, Gjedde A. Molecular Insights Into Memory-Enhancing Metabolites of Nicotine in Brain: A Systematic Review. Front Neurosci 2019; 12:1002. [PMID: 30697142 PMCID: PMC6341027 DOI: 10.3389/fnins.2018.01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023] Open
Abstract
Background: The alleged procognitive effects of nicotine and its metabolites in brain are controversial. Objective: Here, we review the pharmacologically active metabolites of nicotine in brain and their effects on neuronal mechanisms involving two main cognitive domains, i.e., learning and memory. Methods: We searched Embase, Medline via PubMed, Scopus, and Web of Science databases for entries no later than May 2018, and restricted the search to articles about nicotine metabolites and cognitive behavior or cognitive mechanisms. Results: The initial search yielded 425 articles, of which 17 were eligible for inclusion after application of exclusion criteria. Of these, 13 were experimental, two were clinical, and two were conference papers. Conclusions: The results revealed three pharmacologically active biotransformations of nicotine in the brain, including cotinine, norcotinine, and nornicotine, among which cotinine and nornicotine both had a procognitive impact without adverse effects. The observed effect was significant only for cotinine.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Kamari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Brem AK, Sensi SL. Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging. Trends Neurosci 2018; 41:885-897. [DOI: 10.1016/j.tins.2018.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
|
20
|
Nasrolahi A, Mahmoudi J, Akbarzadeh A, Karimipour M, Sadigh-Eteghad S, Salehi R, Farhoudi M. Neurotrophic factors hold promise for the future of Parkinson's disease treatment: is there a light at the end of the tunnel? Rev Neurosci 2018; 29:475-489. [PMID: 29305570 DOI: 10.1515/revneuro-2017-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by a spectrum of clinicopathologic signs and a complex etiology. PD results from the degeneration of dopaminergic (DAergic) neurons in the substantia nigra. Current therapies for PD are only able to alleviate symptoms without stopping disease progression. In addition, the available therapeutic strategies do not have long-lasting effects. Furthermore, these therapies cause different ranges of adverse side effects. There is great interest in neurotrophic factors (NTFs) due to their ability to promote the survival of different neural cells. These factors are divided into four families: neurotrophins, neurokines, the glial cell line-derived NTF family of ligands, and the newly recognized cerebral DA NTF/mesencephalic astrocyte-derived NTF family. The protective and therapeutic effects of these factors on DAergic neurons make them suitable for the prevention of progressive cell loss in PD. Based on the above premise, we focus on the protective effects of NTFs, especially CDNF and MANF, on nigrostriatal DAergic neurons in PD.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Mohammad Karimipour
- Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran.,Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran.,Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| |
Collapse
|
21
|
Basavan D, Chalichem NSS, Kumar MKS. Phytoconstituents and their Possible Mechanistic Profile for Alzheimer's Disease - A Literature Review. Curr Drug Targets 2018; 20:263-291. [PMID: 30101703 DOI: 10.2174/1389450119666180813095637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
Memory is an associated part of life without which livelihood of a human being becomes miserable. As the global aged population is increasing tremendously, time has come to concentrate on tail end life stage diseases. Alzheimer's disease (AD) is one of such diseases whose origin is enigmatic, having an impact on later stage of life drastically due to irreparable damage of cognition, characterised by the presence of neurotoxic amyloid-beta (Aβ) plaques and hyper phosphorylated Tau protein as fibrillary tangles. Existing therapeutic regimen mainly focuses on symptomatic relief by targeting neurotransmitters that are secondary to AD pathology. Plant derived licensed drugs, Galantamine and Huperzine-A were studied extensively due to their AChE inhibitory action for mild to moderate cases of AD. Although many studies have proved the efficacy of AChEIs as a preferable symptom reliever, they cannot offer long term protection. The future generation drugs of AD is expected to alter various factors that underlie the disease course with a symptomatic benefit promise. As AD involves complex pathology, it is essential to consider several molecular divergent factors apart from the events that result in the production of toxic plaques and neurofibrillary tangles. Even though several herbals have shown neuroprotective actions, we have mentioned about the phytoconstituents that have been tested experimentally against different Alzheimer's pathology models. These phytoconstituents need to be considered by the researchers for further drug development process to make them viable clinically, which is currently a lacuna.
Collapse
Affiliation(s)
- Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Nehru S S Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Mohan K S Kumar
- TIFAC CORE Herbal drugs, Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), ooty-643001, India
| |
Collapse
|
22
|
Majdi A, Sadigh-Eteghad S, Talebi M, Farajdokht F, Erfani M, Mahmoudi J, Gjedde A. Nicotine Modulates Cognitive Function in D-Galactose-Induced Senescence in Mice. Front Aging Neurosci 2018; 10:194. [PMID: 30061821 PMCID: PMC6055060 DOI: 10.3389/fnagi.2018.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/08/2018] [Indexed: 01/21/2023] Open
Abstract
Here, we tested the claim that nicotine attenuates the signs of brain dysfunction in the model of brain aging induced by D-galactose (DGal) in mice. We administered nicotine at doses of 0.1, 0.5 and 1 mg/kg by the subcutaneous (s.c.) or at 0.1 mg/kg by the intranasal (i.n.) routes in mice that had received DGal at the dose of 500 mg/kg subcutaneous (s.c.) for 6 weeks. We assessed animal withdrawal signs as the number of presented somatic signs, thermal hyperalgesia, elevated plus maze (EPM) and open field tests. We evaluated spatial memory and recognition with Barnes maze and novel object recognition (NOR) tests. We tested brain tissue for reactive oxygen species (ROS), mitochondrial membrane potential, caspase-3, Bax, Bcl-2, cytochrome C, brain-derived neurotrophic factor and nerve growth factor levels. Nicotine administration in model groups (0.5 mg/kg s.c. and 0.1 mg/kg i.n. doses) significantly attenuated impairment of spatial and episodic memories in comparison to normal saline-received model group. These doses also reduced mito-oxidative damage as well as apoptosis and raised neurotrophic factors level in model groups in comparison to normal saline-received model group. The 1 mg/kg s.c. dose nicotine revealed withdrawal signs compared with the other nicotine-received groups. Nicotine at specific doses and routes has the potential to attenuate age-related cognitive impairment, mito-oxidative damage, and apoptosis. The doses raise neurotrophic factors without producing withdrawal signs.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Departments of Clinical Research and Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|