1
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
2
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. Glia 2024; 72:167-183. [PMID: 37667994 PMCID: PMC10840680 DOI: 10.1002/glia.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
4
|
Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 2019; 49:3-16. [PMID: 31568602 DOI: 10.1111/ahe.12496] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Earlier observations in neuroscience suggested that no new neurons form in the mature central nervous system. Evidence now indicates that new neurons do form in the adult mammalian brain. Two regions of the mature mammalian brain generate new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone) and (b) the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This review focuses only on new neuron formation in the dentate gyrus of the hippocampus. During normal prenatal and early postnatal development, neural stem cells (NSCs) give rise to differentiated neurons. NSCs persist in the dentate gyrus SGZ, undergoing cell division, with some daughter cells differentiating into functional neurons that participate in learning and memory and general cognition through integration into pre-existing neural networks. Axons, which emanate from neurons in the entorhinal cortex, synapse with dendrites of the granule cells (small neurons) of the dentate gyrus. Axons from granule cells synapse with pyramidal cells in the hippocampal CA3 region, which send axons to synapse with CA1 hippocampal pyramidal cells that send their axons out of the hippocampus proper. Adult neurogenesis includes proliferation, differentiation, migration, the death of some newly formed cells and final integration of surviving cells into neural networks. We summarise these processes in adult mammalian hippocampal neurogenesis and discuss the roles of major signalling molecules that influence neurogenesis, including neurotransmitters and some hormones. The recent controversy raised concerning whether or not adult neurogenesis occurs in humans also is discussed.
Collapse
Affiliation(s)
- Louise C Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fikru Nigussie
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
5
|
Minegishi T, Uesugi Y, Kaneko N, Yoshida W, Sawamoto K, Inagaki N. Shootin1b Mediates a Mechanical Clutch to Produce Force for Neuronal Migration. Cell Rep 2018; 25:624-639.e6. [DOI: 10.1016/j.celrep.2018.09.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/26/2022] Open
|
6
|
Safahani M, Aligholi H, Noorbakhsh F, Djalali M, Pishva H, Modarres Mousavi SM, Alizadeh L, Gorji A, Koohdani F. Switching from high-fat diet to foods containing resveratrol as a calorie restriction mimetic changes the architecture of arcuate nucleus to produce more newborn anorexigenic neurons. Eur J Nutr 2018; 58:1687-1701. [PMID: 29785640 DOI: 10.1007/s00394-018-1715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE These days, obesity threatens the health for which one of the main interventions is calorie restriction (CR). Due to the difficulty of compliance with this treatment, CR mimetics such as resveratrol (RSV) have been considered. The present study compared the effects of RSV and CR on hypothalamic remodeling in a diet-switching experiment. METHODS C57BL/6 male mice received high-fat diet (HFD) for 4 weeks, subsequently their diet switched to chow diet, HFD + RSV, chow diet + RSV or CR diet for a further 6 weeks. Body weight, fat accumulation, hypothalamic apoptosis and expression of trophic factors as well as generation and fate specification of newborn cells in arcuate nucleus (ARC) were evaluated. RESULTS Switching diet to RSV-containing foods leading to weight and fat loss after 6 weeks. In addition, not only a significant reduction in apoptosis but also a considerable increase in production of newborn cells in ARC occurred following consumption of RSV-enriched diets. These were in line with augmentation of hypothalamic ciliary neurotrophic factor and leukemia inhibitory factor expression. Interestingly, RSV-containing diets changed the fate of newborn neurons toward generation of more proopiomelanocortin than neuropeptide Y neurons. The CR had effects similar to those of RSV-containing diets in the all-evaluated aspects besides neurogenesis in ARC. CONCLUSIONS Although both RSV-containing and CR diets changed the fate of newborn neurons to create an anorexigenic architecture for ARC, newborn neurons were more available after switching to RSV-enriched diets. It can be consider as a promising mechanism for future investigations.
Collapse
Affiliation(s)
- Maryam Safahani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Pishva
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran. .,Department of Neurology, Department of Neurosurgery, Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 45, 48149, Münster, Germany. .,Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hemopexin is required for adult neurogenesis in the subventricular zone/olfactory bulb pathway. Cell Death Dis 2018; 9:268. [PMID: 29449593 PMCID: PMC5833796 DOI: 10.1038/s41419-018-0328-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/03/2022]
Abstract
The neural stem cells (NSCs) of the subventricular zone (SVZ) reside within a specialized niche critical for neurogenesis. Hemopexin, a plasma glycoprotein, has been extensively studied as a heme scavenger at the systemic level. However, little is known about its function in the central nervous system, especially in neurogenesis. In the present study, we demonstrate that deletion of hemopexin leads to neurogenic abnormalities in the SVZ/olfactory bulb (OB) pathway. The lateral ventricle is enlarged in hemopexin-deficient mice, and more apoptosis was observed in Dcx+ cells. Lineage differentiation of NSCs was also inhibited in the SVZ of hemopexin-deficient mice, with more stem cells stayed in an undifferentiated, GFAP+ radial glia-like cell stage. Moreover, hemopexin deletion resulted in impaired neuroblast migration in the rostral migratory stream. Furthermore, exogenous hemopexin protein inhibited apoptosis and promoted the migration and differentiation of cultured NSCs. Finally, immunohistochemical analysis demonstrated that deletion of hemopexin reduced the number of interneurons in the OB. Together, these results suggest a new molecular mechanism for the NSC niche that regulates adult neurogenesis in the SVZ/OB pathway. Our findings may benefit the understanding for olfactory system development.
Collapse
|
8
|
Belvindrah R, Natarajan K, Shabajee P, Bruel-Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer JC, Janke C, Francis F. Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol 2017; 216:2443-2461. [PMID: 28687665 PMCID: PMC5551700 DOI: 10.1083/jcb.201607074] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022] Open
Abstract
Mutation of α-tubulin isotypes is associated with cortical malformations. Belvindrah et al. show that Tuba1 mutation leads to impaired neuronal saltatory migration in vivo as a result of functional and structural microtubule defects. Comparative analyses of Tuba1a and Tuba8 in tubulin heterodimer structure and microtubule polymerization reveal an essential, noncompensated role for Tuba1a in the neuronal rostral migratory system. Brain development involves extensive migration of neurons. Microtubules (MTs) are key cellular effectors of neuronal displacement that are assembled from α/β-tubulin heterodimers. Mutation of the α-tubulin isotype TUBA1A is associated with cortical malformations in humans. In this study, we provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial cells are dispersed along the rostral migratory stream in postnatal and adult brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and increased neuronal branching, which correlated with directionality alterations and perturbed nucleus–centrosome (N–C) coupling. Tuba1a mutation led to increased straightness of newly polymerized MTs, and structural modeling data suggest a conformational change in the α/β-tubulin heterodimer. We show that Tuba8, another α-tubulin isotype previously associated with cortical malformations, has altered function compared with Tuba1a. Our work shows that Tuba1a plays an essential, noncompensated role in neuronal saltatory migration in vivo and highlights the importance of MT flexibility in N–C coupling and neuronal-branching regulation during neuronal migration.
Collapse
Affiliation(s)
- Richard Belvindrah
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Kathiresan Natarajan
- Institut Curie, Paris Sciences et Lettres Research Université (PSL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 3348, Orsay, France
| | - Preety Shabajee
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Elodie Bruel-Jungerman
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jennifer Bernard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Marie Goutierre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Imane Moutkine
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Xavier H Jaglin
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, Neuroscience Institute, New York University, New York, NY
| | - Mythili Savariradjane
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Theano Irinopoulou
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Christophe Poncer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres Research Université (PSL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 3348, Orsay, France
| | - Fiona Francis
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
9
|
Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017; 141:835-847. [DOI: 10.1111/jnc.14002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; Okazaki Aichi Japan
| |
Collapse
|
10
|
Clark AR, Carter AB, Hager LE, Price EM. In Vivo Neural Tissue Engineering: Cylindrical Biocompatible Hydrogels That Create New Neural Tracts in the Adult Mammalian Brain. Stem Cells Dev 2016; 25:1109-18. [PMID: 27295980 DOI: 10.1089/scd.2016.0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individuals with neurodegenerative disorders or brain injury have few treatment options and it has been proposed that endogenous adult neural stem cells can be harnessed to repopulate dysfunctional nonneurogenic regions of the brain. We have accomplished this through the development of rationally designed hydrogel implants that recruit endogenous cells from the adult subventricular zone to create new relatively long tracts of neuroblasts. These implants are biocompatible and biodegradable cylindrical hydrogels consisting of fibrin and immobilized neurotrophic factors. When implanted into rat brain such that the cylinder intersected the migratory path of endogenous neural progenitors (the rostral migratory stream) and led into the nonneurogenic striatum, we observed a robust neurogenic response in the form of migrating neuroblasts with long (>100 μm) complex neurites. The location of these new neural cells in the striatum was directly coincident with the original track of the fibrin implant, which itself had completely degraded, and covered a significant area and distance (>2.5 mm). We also observed a significant number of neuroblasts in the striatal region between the implant track and the lateral ventricle. When these fibrin cylinders were implanted into hemiparkinson rats, correction of parkinsonian behavior was observed. There were no obvious behavioral, inflammatory or tumorigenic sequelae as a consequence of the implants. In conclusion, we have successfully engineered neural tissue in vivo, using neurogenic biomaterials cast into a unique cylindrical architecture. These results represent a novel approach to efficiently induce neurogenesis in a controlled and targeted manner, which may lead toward a new therapeutic modality for neurological disorders.
Collapse
Affiliation(s)
- Amanda R Clark
- Department of Biology, Marshall University , Huntington, West Virginia
| | - Arrin B Carter
- Department of Biology, Marshall University , Huntington, West Virginia
| | - Lydia E Hager
- Department of Biology, Marshall University , Huntington, West Virginia
| | - Elmer M Price
- Department of Biology, Marshall University , Huntington, West Virginia
| |
Collapse
|
11
|
Capilla-Gonzalez V, Bonsu JM, Redmond KJ, Garcia-Verdugo JM, Quiñones-Hinojosa A. Implications of irradiating the subventricular zone stem cell niche. Stem Cell Res 2016; 16:387-96. [PMID: 26921873 PMCID: PMC8442998 DOI: 10.1016/j.scr.2016.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/10/2016] [Accepted: 02/14/2016] [Indexed: 01/19/2023] Open
Abstract
Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as neurological deficits. While likely multi-factorial, the effect may in part be associated with the impact of radiation on the neurogenic niches. In the adult mammalian brain, the neurogenic niches are localized in the subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus of the hippocampus, where the neural stem cells (NSCs) reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term olfactory memory and a reduced capacity to respond to brain damage in animal models, as well as compromised tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review, we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation dose to the SVZ and both tumor control and toxicity.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Department of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville 41092, Spain
| | - Janice M Bonsu
- Department of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kristin J Redmond
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, CIBERNED, Paterna 46980, Valencia, Spain
| | | |
Collapse
|
12
|
Bohrer C, Pfurr S, Mammadzada K, Schildge S, Plappert L, Hils M, Pous L, Rauch KS, Dumit VI, Pfeifer D, Dengjel J, Kirsch M, Schachtrup K, Schachtrup C. The balance of Id3 and E47 determines neural stem/precursor cell differentiation into astrocytes. EMBO J 2015; 34:2804-19. [PMID: 26438726 DOI: 10.15252/embj.201591118] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
Adult neural stem/precursor cells (NSPCs) of the subventricular zone (SVZ) are an endogenous source for neuronal replacement in CNS disease. However, adult neurogenesis is compromised after brain injury in favor of a glial cell fate, which is mainly attributed to changes in the NSPC environment. Yet, it is unknown how this unfavorable extracellular environment translates into a transcriptional program altering NSPC differentiation. Here, we show that genetic depletion of the transcriptional regulator Id3 decreased the number of astrocytes generated from SVZ-derived adult NSPCs in the cortical lesion area after traumatic brain injury. Cortical brain injury resulted in rapid BMP-2 and Id3 up-regulation in the SVZ stem cell niche. Id3(-/-) adult NSPCs failed to differentiate into BMP-2-induced astrocytes, while NSPCs deficient for the Id3-controlled transcription factor E47 readily differentiated into astrocytes in the absence of BMP-2. Mechanistically, E47 repressed the expression of several astrocyte-specific genes in adult NSPCs. These results identify Id3 as the BMP-2-induced transcriptional regulator, promoting adult NSPC differentiation into astrocytes upon CNS injury and reveal a molecular link between environmental changes and NSPC differentiation in the CNS after injury.
Collapse
Affiliation(s)
- Christian Bohrer
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sabrina Pfurr
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Könül Mammadzada
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sebastian Schildge
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Leandra Plappert
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miriam Hils
- Faculty of Biology, University of Freiburg, Freiburg, Germany Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Lauriane Pous
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina S Rauch
- Faculty of Biology, University of Freiburg, Freiburg, Germany Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Verónica I Dumit
- Department of Dermatology, Medical Center, Freiburg Institute for Advanced Studies (FRIAS), ZBSA Center for Biological Systems Analysis, BIOSS Center for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Dermatology, Medical Center, Freiburg Institute for Advanced Studies (FRIAS), ZBSA Center for Biological Systems Analysis, BIOSS Center for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Matthias Kirsch
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Posttraining ablation of adult-generated olfactory granule cells degrades odor-reward memories. J Neurosci 2015; 34:15793-803. [PMID: 25411506 DOI: 10.1523/jneurosci.2336-13.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proliferation of neural progenitor cells in the subventricular zone leads to the continuous generation of new olfactory granule cells (OGCs) throughout life. These cells synaptically integrate into olfactory bulb circuits after ∼2 weeks and transiently exhibit heightened plasticity and responses to novel odors. Although these observations suggest that adult-generated OGCs play important roles in olfactory-related memories, global suppression of olfactory neurogenesis does not typically prevent the formation of odor-reward memories, perhaps because residual OGCs can compensate. Here, we used a transgenic strategy to selectively ablate large numbers of adult-generated OGCs either before or after learning in mice. Consistent with previous studies, pretraining ablation of adult-generated OGCs did not prevent the formation of an odor-reward memory, presumably because existing OGCs can support memory formation in their absence. However, ablation of a similar cohort of adult-generated OGCs after training impaired subsequent memory expression, indicating that if these cells are available at the time of training, they play an essential role in subsequent expression of odor-reward memories. Memory impairment was associated with the loss of adult-generated OGCs that were >10 d in age and did not depend on the developmental stage in which they were generated, suggesting that, once sufficiently mature, OGCs generated during juvenility and adulthood play similar roles in the expression of odor-reward memories. Finally, ablation of adult-generated OGCs 1 month after training did not produce amnesia, indicating that adult-generated OGCs play a time-limited role in the expression of odor-reward memories.
Collapse
|
14
|
Cuccioli V, Bueno C, Belvindrah R, Lledo PM, Martinez S. Attractive action of FGF-signaling contributes to the postnatal developing hippocampus. Hippocampus 2014; 25:486-99. [DOI: 10.1002/hipo.22386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Affiliation(s)
- V. Cuccioli
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández (CSIC-UMH); Sant Joan d'Alacant 03550 Spain
| | - C. Bueno
- Faculty of Medicine; Department of Human Anatomy and Psychobiology; IMIB-Arrixaca and CIBERSAM (Centro Investigación Biomedica en Red Salud Mental), University of Murcia E-30071; Murcia Spain
| | - R. Belvindrah
- Laboratory for Perception and Memory; Institut Pasteur; F-75015 Paris France
- Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche 3571 F-75015 Paris France
| | - P.-M. Lledo
- Laboratory for Perception and Memory; Institut Pasteur; F-75015 Paris France
- Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche 3571 F-75015 Paris France
| | - S. Martinez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández (CSIC-UMH); Sant Joan d'Alacant 03550 Spain
- Faculty of Medicine; Department of Human Anatomy and Psychobiology; IMIB-Arrixaca and CIBERSAM (Centro Investigación Biomedica en Red Salud Mental), University of Murcia E-30071; Murcia Spain
| |
Collapse
|
15
|
Kaneko N, Kako E, Sawamoto K. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives. Front Cell Neurosci 2013; 7:235. [PMID: 24348331 PMCID: PMC3842008 DOI: 10.3389/fncel.2013.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022] Open
Abstract
In the postnatal mammalian brain, stem cells in the ventricular-subventricular zone (V-SVZ) continuously generate neuronal and glial cells throughout life. Genetic labeling of cells of specific lineages have demonstrated that the V-SVZ is an important source of the neuroblasts and/or oligodendrocyte progenitor cells (OPCs) that migrate toward injured brain areas in response to several types of insult, including ischemia and demyelinating diseases. However, this spontaneous regeneration is insufficient for complete structural and functional restoration of the injured brain, so interventions to enhance these processes are sought for clinical applications. Erythropoietin (EPO), a clinically applied erythropoietic factor, is reported to have cytoprotective effects in various kinds of insult in the central nervous system. Moreover, recent studies suggest that EPO promotes the V-SVZ-derived neurogenesis and oligodendrogenesis. EPO increases the proliferation of progenitors in the V-SVZ and/or the migration and differentiation of their progenies in and around injured areas, depending on the dosage, timing, and duration of treatment, as well as the type of animal model used. On the other hand, EPO has undesirable side effects, including thrombotic complications. We recently demonstrated that a 2-week treatment with the EPO derivative asialo-EPO promotes the differentiation of V-SVZ-derived OPCs into myelin-forming mature oligodendrocytes in the injured white matter of neonatal mice without causing erythropoiesis. Here we present an overview of the multifaceted effects of EPO and its derivatives in the V-SVZ and discuss the possible applications of these molecules in regenerative medicine.
Collapse
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Eisuke Kako
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan ; Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| |
Collapse
|
16
|
Puzzo D, Bizzoca A, Privitera L, Furnari D, Giunta S, Girolamo F, Pinto M, Gennarini G, Palmeri A. F3/Contactin promotes hippocampal neurogenesis, synaptic plasticity, and memory in adult mice. Hippocampus 2013; 23:1367-82. [PMID: 23939883 DOI: 10.1002/hipo.22186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
F3/contactin, a cell-adhesion molecule belonging to the immunoglobulin supergene family, is involved in several aspects of neural development including synapse building, maintenance and functioning. Here, we examine F3/contactin function in adult hippocampal neurogenesis, synaptic plasticity, and memory, using as a model TAG/F3 transgenic mice, where F3/contactin overexpression was induced under control of regulatory sequences from the human TAG-1 (TAX-1) gene. Transgenic mice aged 5 (M5) and 12 (M12) months exhibited an increase in hippocampal size, which correlated with positive effects on precursor proliferation and NeuN expression, these data suggesting a possible role for F3/contactin in promoting adult hippocampal neurogenesis. On the functional level, TAG/F3 mice exhibited increased CA1 long-term potentiation and improved spatial and object recognition memory, notably at 12 months of age. Interestingly, these mice showed an increased expression of the phosphorylated transcription factor CREB, which may represent the main molecular correlate of the observed morphological and functional effects. Altogether, these findings indicate for the first time that F3/contactin plays a role in promoting adult hippocampal neurogenesis and that this effect correlates with improved synaptic function and memory.
Collapse
Affiliation(s)
- Daniela Puzzo
- Section of Physiology, Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bartolini G, Ciceri G, Marín O. Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and Adults. Neuron 2013; 79:849-64. [DOI: 10.1016/j.neuron.2013.08.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2013] [Indexed: 01/31/2023]
|
18
|
Pan YW, Storm DR, Xia Z. Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem 2013; 105:81-92. [PMID: 23871742 DOI: 10.1016/j.nlm.2013.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Adult neurogenesis occurs in two discrete regions of the adult mammalian brain, the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) along the lateral ventricles. Signaling mechanisms regulating adult neurogenesis in the SGZ are currently an active area of investigation. Adult-born neurons in the DG functionally integrate into the hippocampal circuitry and form functional synapses, suggesting a role for these neurons in hippocampus-dependent memory formation. Although results from earlier behavioral studies addressing this issue were inconsistent, recent advances in conditional gene targeting technology, viral injection and optogenetic approaches have provided convincing evidence supporting a role for adult-born neurons in the more challenging forms of hippocampus-dependent learning and memory. Here, we briefly summarize these recent studies with a focus on extra signal-regulated kinase (ERK) 5, a MAP kinase whose expression in the adult brain is restricted to the neurogenic regions including the SGZ and SVZ. We review evidence identifying ERK5 as a novel endogenous signaling pathway that regulates the pro-neural transcription factor Neurogenin 2, is activated by neurotrophins and is critical for adult neurogenesis. We discuss studies demonstrating that specific deletion of ERK5 in the adult neurogenic regions impairs several forms of hippocampus-dependent memory formation in mice. These include contextual fear memory extinction, the establishment and maintenance of remote contextual fear memory, and several other challenging forms of hippocampus-dependent memory formation including 48h memory for novel object recognition, contextual fear memory established by a weak foot shock, pattern separation, and reversal of spatial learning and memory. We also briefly discuss current evidence that increasing adult neurogenesis, by small molecules or genetic manipulation, improves memory formation and long-term memory.
Collapse
Affiliation(s)
- Yung-Wei Pan
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
19
|
Li T, Pan YW, Wang W, Abel G, Zou J, Xu L, Storm DR, Xia Z. Targeted deletion of the ERK5 MAP kinase impairs neuronal differentiation, migration, and survival during adult neurogenesis in the olfactory bulb. PLoS One 2013; 8:e61948. [PMID: 23630619 PMCID: PMC3632513 DOI: 10.1371/journal.pone.0061948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/15/2013] [Indexed: 01/13/2023] Open
Abstract
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.
Collapse
Affiliation(s)
- Tan Li
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry and Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yung-Wei Pan
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Wenbin Wang
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Glen Abel
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Junhui Zou
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lihong Xu
- Department of Biochemistry and Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Zhengui Xia
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Achanta P, Capilla-Gonzalez V, Purger D, Reyes J, Sailor K, Song H, Garcia-Verdugo JM, Gonzalez-Perez O, Ford E, Quinones-Hinojosa A. Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts. Stem Cells 2013; 30:2548-60. [PMID: 22948813 DOI: 10.1002/stem.1214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Radiation therapy is a part of the standard treatment for brain tumor patients, often resulting in irreversible neuropsychological deficits. These deficits may be due to permanent damage to the neural stem cell (NSC) niche, damage to local neural progenitors, or neurotoxicity. Using a computed tomography-guided localized radiation technique, we studied the effects of radiation on NSC proliferation and neuroblast migration in the mouse brain. Localized irradiation of the subventricular zone (SVZ) eliminated the proliferating neural precursor cells and migrating neuroblasts. After irradiation, type B cells in the SVZ lacked the ability to generate migrating neuroblasts. Neuroblasts from the unirradiated posterior SVZ did not follow their normal migratory path through the irradiated anterior SVZ. Our results indicate that the migrating neuroblasts were not replenished, despite the presence of type B cells in the SVZ post-irradiation. This study provides novel insights into the effects of localized SVZ radiation on neurogenesis and cell migration that may potentially lead to the development of new radiotherapy strategies to minimize damage to NSCs and neuroblast migration.
Collapse
Affiliation(s)
- Pragathi Achanta
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pan YW, Kuo CT, Storm DR, Xia Z. Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behavior. PLoS One 2012; 7:e49622. [PMID: 23185386 PMCID: PMC3504159 DOI: 10.1371/journal.pone.0049622] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/11/2012] [Indexed: 01/02/2023] Open
Abstract
Although adult-born neurons in the subventricular zone (SVZ) and olfactory bulb (OB) have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.
Collapse
Affiliation(s)
- Yung-Wei Pan
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Chay T. Kuo
- Departments of Cell Biology and Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Zhengui Xia
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Sakaguchi M, Okano H. Neural stem cells, adult neurogenesis, and galectin-1: from bench to bedside. Dev Neurobiol 2012; 72:1059-67. [PMID: 22488739 DOI: 10.1002/dneu.22023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neural stem cells (NSCs) in the adult brain have been a consistent focus of biomedical research largely because of their potential clinical application. To fully exploit this potential, the molecular mechanisms that regulate NSCs must be clarified. Several lines of evidence show that a multifunctional protein, Galectin-1, is expressed and has a functional role in a subset of adult NSCs. Researchers, including our group, have explored the physiological role of Galectin-1 in NSCs and its application in the treatment of animal models of neurological disorders such as brain ischemia and spinal cord injury. Here, we summarize what is currently known regarding the role of Galectin-1 in adult NSCs. Furthermore, we discuss current issues in researching the role of Galectin-1 in adult NSCs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Masanori Sakaguchi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
23
|
Hirota Y, Sawada M, Kida YS, Huang SH, Yamada O, Sakaguchi M, Ogura T, Okano H, Sawamoto K. Roles of Planar Cell Polarity Signaling in Maturation of Neuronal Precursor Cells in the Postnatal Mouse Olfactory Bulb. Stem Cells 2012; 30:1726-33. [DOI: 10.1002/stem.1137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Massaro A, Bizzoca A, Corsi P, Pinto MF, Carratù MR, Gennarini G. Significance of F3/Contactin gene expression in cerebral cortex and nigrostriatal development. Mol Cell Neurosci 2012; 50:221-37. [PMID: 22579730 DOI: 10.1016/j.mcn.2012.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/19/2012] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
F3/Contactin is a neuronal surface glycoprotein, which plays a general role in neural development and, in particular, in neuronal and oligodendrocyte differentiation. In a previous study using the F3/EGFP transgenic mice, which express an EGFP reporter under control of the regulatory region from the mouse F3/Contactin gene, the activation of the F3/Contactin promoter was found to correlate with granule and Purkinje neuron differentiation in developing cerebellar cortex. Here we report that in developing cerebral cortex and basal ganglia the F3/Contactin gene is mostly activated during early commitment of neuronal precursors, thus indicating a region-specific profile of its developmental activation. We also report that, in the same structures of F3/EGFP mice, a downregulation of the endogenous F3/Contactin gene occurs, which correlates with upregulation of the dopaminergic phenotype and with locomotor pattern abnormalities. Therefore, F3/EGFP transgenic mice exhibit morphological and functional phenotypes recapitulating those arising from imbalance of the striatal dopaminergic pathway. As for the underlying mechanisms, we postulate that in F3/EGFP mice F3/Contactin downregulation results from the ability of transgene promoter sequences to interfere with the activation of the endogenous gene, thus realizing an F3/Contactin knockdown model, while dopaminergic upregulation is consistent with a general F3/Contactin inhibitory effect on the neuronal phenotype.
Collapse
Affiliation(s)
- Antonio Massaro
- Department of Basic Medical Sciences, Medical School, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Adult-brain-derived neural stem cells grafting into a vein bridge increases postlesional recovery and regeneration in a peripheral nerve of adult pig. Stem Cells Int 2012; 2012:128732. [PMID: 22448170 PMCID: PMC3289924 DOI: 10.1155/2012/128732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy.
Collapse
|
26
|
Capilla-Gonzalez V, Gil-Perotin S, Ferragud A, Bonet-Ponce L, Canales JJ, Garcia-Verdugo JM. Exposure to N-ethyl-N-nitrosourea in adult mice alters structural and functional integrity of neurogenic sites. PLoS One 2012; 7:e29891. [PMID: 22238669 PMCID: PMC3251592 DOI: 10.1371/journal.pone.0029891] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 12/07/2011] [Indexed: 01/08/2023] Open
Abstract
Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Faggioli F, Vijg J, Montagna C. Chromosomal aneuploidy in the aging brain. Mech Ageing Dev 2011; 132:429-36. [PMID: 21549743 PMCID: PMC3168579 DOI: 10.1016/j.mad.2011.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/28/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
Abstract
Mechanisms that govern genome integrity and stability are major guarantors of viability and longevity. As people age, memory and the ability to carry out tasks often decline and their risk for neurodegenerative diseases increases. The biological mechanisms underlying this age-related neuronal decline are not well understood. Genome instability has been implicated in neurodegenerative processes in aging and disease. Aneuploidy, a chromosome content that deviates from a diploid genome, is a recognized form of genomic instability. Here, we will review chromosomal aneuploidy in the aging brain, its possible causes, its consequences for cellular homeostasis and its possible link to functional decline and neuropathies.
Collapse
Affiliation(s)
- Francesca Faggioli
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
- Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| |
Collapse
|
28
|
Abnormal neuronal migration changes the fate of developing neurons in the postnatal olfactory bulb. J Neurosci 2011; 31:7551-62. [PMID: 21593340 DOI: 10.1523/jneurosci.6716-10.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neuronal precursors are continuously integrated into the adult olfactory bulb (OB). The vast majority of these precursor cells originates from the subventricular zone and migrates along the rostral migratory stream (RMS) en route to the OB. This process, called postnatal neurogenesis, results from intricate pathways depending both on cell-autonomous factors and extrinsic regulation provided by the local environment. Using electroporation in postnatal mice to label neuronal precursors with green fluorescent protein (GFP) and to reduce the expression levels of doublecortin (DCX) with short-hairpin (Sh) RNA, we investigated the consequences of impairing migration on the fate of postnatal-formed neurons. First, we showed that electroporation of Dcx ShRNA plasmid efficiently knocks down the expression of DCX and disrupts cells migration along the RMS. Second, we found misplaced anomalous migrating cells that displayed defects in polarity and directionality. Third, patch-clamp recordings performed at 5-7 days post-electroporation (dpe) revealed increased density of voltage-dependent Na(+) channels and enhanced responsiveness to GABA(A) receptor agonist. At later time points (i.e., 12 and 30 dpe), most of the Dcx ShRNA(+) cells developed in the core of the OB and displayed aberrant dendritic length and branching. Additional analysis revealed the formation of GABAergic and glutamatergic synaptic inputs on the mispositioned neurons. Finally, quantifying fate determination by numbering the proportion of GFP(+)/calretinin(+) newborn neurons revealed that Dcx ShRNA(+) cells acquire mature phenotype despite their immature location. We conclude that altering the pace of migration at early stages of postnatal neurogenesis profoundly modifies the tightly orchestrated steps of neuronal maturation, and unveils the influence of microenvironment on controlling neuronal development in the postnatal forebrain.
Collapse
|
29
|
Capilla-Gonzalez V, Hernandez-Rabaza V. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications. Pharmaceuticals (Basel) 2011. [PMCID: PMC4055961 DOI: 10.3390/ph4060915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG) of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Valencia, Spain
- Brain Tumor Stem Cell Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Avda Autopista del Saler 16, 46012, Valencia, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +34-96-328-9680; Fax: +34-96-328-9701
| |
Collapse
|
30
|
Le Maître TW, Xia S, Le Maitre E, Dun XP, Lu J, Theodorsson E, Ogren SO, Hökfelt T, Xu ZQD. Galanin receptor 2 overexpressing mice display an antidepressive-like phenotype: possible involvement of the subiculum. Neuroscience 2011; 190:270-88. [PMID: 21672612 DOI: 10.1016/j.neuroscience.2011.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 01/13/2023]
Abstract
The behavioral phenotype of a transgenic mouse overexpressing a galanin receptor 2 (GalR2)-enhanced, green fluorescent protein (EGFP)-construct under the platelet-derived growth factor-B promoter, and of controls, was assessed in various behavioral tests, such as the Porsolt forced swim test, as well as the open field, elevated plus maze and passive avoidance tests. In addition, the distribution of GalR2-EGFP expressing cell bodies and processes was studied in the brain of these mice using histochemical methods. Three age groups of the transgenic mice demonstrated decreased levels of immobility in the forced swim test, indicative of antidepressive-like behavior and/or increased stress resistance. Anxiety-like behaviors, measured in two different tests, did not differ between the GalR2-overexpressing and the wild-type mice, nor did motor activity levels, emotional learning or memory behaviors. High levels of GalR2 mRNA and protein expression were observed in the presubiculum, subiculum, cingulate cortex, retrosplenial granular and agranular cortices, subregions of prefrontal cortex, and the olfactory bulb, regions which are directly or indirectly implicated in depression-like behavior. These results may contribute to the understanding of the pathophysiology of major depressive disorder and the role of GalR2 in the regulation of mood, and suggest a potential therapeutic effect by targeting the GalR2 for treatment of depressive disorders.
Collapse
Affiliation(s)
- T Wardi Le Maître
- Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Johnston MV. Education of a child neurologist: developmental neuroscience relevant to child neurology. Semin Pediatr Neurol 2011; 18:133-8. [PMID: 22036501 PMCID: PMC3289954 DOI: 10.1016/j.spen.2011.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Developmental neuroscience is increasingly relevant to clinical child neurology, and study of advances in neurobiology, neurochemistry and neurogenetics should be part of the curriculum of residency training. The profile of synaptic development is especially relevant to neurodevelopmental disorders such as autism, Fragile X syndrome, and early epileptic encephalopathies. This knowledge is increasingly being translated into therapies for previously untreatable disorders.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|