1
|
The Ionic Organic Cage: An Effective and Recyclable Testbed for Catalytic CO2 Transformation. Catalysts 2021. [DOI: 10.3390/catal11030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porous organic cages (POC) are a class of relatively new molecular porous materials, whose concept was raised in 2009 by Cooper’s group and has rarely been directly used in the area of organic catalysis. In this contribution, a novel ionic quasi-porous organic cage (denoted as Iq-POC), a quaternary phosphonium salt, was easily synthesized through dynamic covalent chemistry and a subsequent nucleophilic addition reaction. Iq-POC was applied as an effective nucleophilic catalyst for the cycloaddition reaction of CO2 and epoxides. Owing to the combined effect of the relatively large molecular weight (compared with PPh3+I−) and the strong polarity of Iq-POC, the molecular catalyst Iq-POC displayed favorable heterogeneous nature (i.e., insolubility) in this catalytic system. Therefore, the Iq-POC catalyst could be easily separated and recycled by simple centrifugation method, and the catalyst could be reused five times without obvious loss of activity. The molecular weight augmentation route in this study (from PPh3+I− to Iq-POC) provided us a “cage strategy” of designing separable and recyclable molecular catalysts.
Collapse
|
2
|
Liu M, Zhang L, Little MA, Kapil V, Ceriotti M, Yang S, Ding L, Holden DL, Balderas-Xicohténcatl R, He D, Clowes R, Chong SY, Schütz G, Chen L, Hirscher M, Cooper AI. Barely porous organic cages for hydrogen isotope separation. Science 2020; 366:613-620. [PMID: 31672893 DOI: 10.1126/science.aax7427] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 01/18/2023]
Abstract
The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
Collapse
Affiliation(s)
- Ming Liu
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Linda Zhang
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Marc A Little
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Venkat Kapil
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Siyuan Yang
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Lifeng Ding
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Daniel L Holden
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | | | - Donglin He
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Rob Clowes
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Samantha Y Chong
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Gisela Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Linjiang Chen
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Michael Hirscher
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK. .,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| |
Collapse
|