1
|
Fatima S, Iqbal M, Bhatti HN, Alwadai N, Al Huwayz M, Nazir A, Iqbal M. Kinetics and thermodynamics studies of nickel manganite nanoparticle as photocatalyst and fuel additive. Heliyon 2024; 10:e33861. [PMID: 39071692 PMCID: PMC11276917 DOI: 10.1016/j.heliyon.2024.e33861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, nickel manganite (NiMn2O4) nanoparticles were prepared using a hydrothermal method and examined its potential as a photocatalyst for the Acid Green 25 (AG-25) dye degradation. The nanoparticles were subjected to structural analysis using X-ray diffraction (XRD) and morphological analysis using scanning electron microscopy (SEM). The study examined the kinetics and thermodynamics of degradation processes that are catalyzed by photocatalysis. To ascertain their effect on dye degradation, several parameters, such as catalyst dose, H2O2 concentration, and temperature, were investigated. With a temperature of 315 K in a pseudo-first-order kinetic reaction, a 0.3 M H2O2 concentration, 0.05 mg/mL catalyst dose, and a promising removal efficiency of 96 % was achieved by the NiMn2O4 NPs in 40 min. Thermodynamic analysis revealed the spontaneous and entropy-driven nature of catalytic degradation, progressing favorably at elevated temperatures. Additionally, the NiMn2O4 NPs were applied as a fuel additive to analyze its influence on combustion and the physical characteristics of the modified fuel. The modified fuel demonstrated exceptional catalytic efficiency, emphasizing the potential of the NiMn2O4 NPs as an effective additive.
Collapse
Affiliation(s)
- Shumaila Fatima
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Mahwish Iqbal
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Norah Alwadai
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Maryam Al Huwayz
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Huyen DT, Bui TQ, Si NT, Nhat PV, Quy PT, Nhung NTA. Theoretical study of the binding mechanism between anticancerous drug mercaptopurine and gold nanoparticles using a cluster model. J Mol Model 2023; 29:307. [PMID: 37682358 DOI: 10.1007/s00894-023-05716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
CONTEXT Mercaptopurine is an effective anticancer medicine yet known with serious adverse reactions, thus requiring further attempts to enhance its biological targeting. Small gold clusters Aun (n = 2-10) were used as model reactants to simulate the surface of gold nanoparticles. The computed results show that the drug molecules tend to anchor on the gold clusters at the S atom with the associated binding energies varying from -50 to -34 kcal mol-1 (in vacuum) and from -42 to -28 kcal mol-1 (in aqueous solution). Furthermore, the adsorption of the drug onto the gold surface is considered as a reversible process, and the mechanism of drug releasing was found to be triggerable by internal factors, such as a pH change or the concentrated presence of thiol amino acids in cancerous protein structures. METHOD Calculations based on density functional theory (DFT) were performed to probe the nature of interactions between the drug and gold nanoparticles. Structural features, thermodynamic parameters, bonding characteristics, and electronic properties of the resulting complexes were investigated at the PBE//cc-pVTZ/cc-pVDZ-PP level.
Collapse
Affiliation(s)
- Duong Thi Huyen
- Department of Chemistry-Biology, Faculty of Basic Science, Tra Vinh University, Tra Vinh, Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| | | | - Pham Vu Nhat
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam.
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam.
| |
Collapse
|
3
|
Vindhya PS, Suresh S, Kunjikannan R, Kavitha VT. Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:167-185. [PMID: 37159742 PMCID: PMC10163207 DOI: 10.1007/s40201-023-00851-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
In the present study, ZnO nanoparticles doped with 3%, 5% and 7% of cobalt have been synthesized by green method using Annona muricata leaf extract. The obtained nanopowder was characterised by XRD, FTIR, XPS, HRTEM, SAED, SEM, EDAX and UV-Visible spectroscopy techniques. XRD patterns confirm the formation of pure and Co doped ZnO nanoparticles with a hexagonal wurtzite structure with high phase purity. FTIR spectra indicate the stretching vibration of Zn-O at 495 cm-1. The incorporation of Co2+ ions into the ZnO lattice was identified by XPS analysis. EDX spectra confirm the existence of Co, Zn and O elements. The SEM and HRTEM micrographs show morphology of nanoparticles. The optical study specifies a decrease in energy band gap with an increase in Co-doping concentration. The photocatalytic performance of ZnO and Zn0.93Co0.07O has been examined for the degradation of methylene blue (MB) under sunlight irradiation. The antimicrobial activity of synthesized nanoparticles against s.aureus, p.aeruginosa, b.subtilis bacterial strains c.albicans and a.niger fungal strains as investigated. The Zn0.93Co0.07O nanoparticles exhibit good antioxidant properties. Moreover, the cytotoxicity of ZnO nanoparticles was evaluated against L929 normal fibroblast cells. So, this work suggests that Annona muricata leaf extract mediated pure and Co-doped ZnO nanoparticles are a potential candidate for biomedical and photocatalytic applications.
Collapse
Affiliation(s)
- P. S. Vindhya
- Post Graduate and Research Department of Physics, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, 695004 Kerala India
| | - Sandhya Suresh
- Post Graduate and Research Department of Physics, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, 695004 Kerala India
| | - R. Kunjikannan
- Department of Physical Education, University College, Thiruvananthapuram , 695034 Kerala India
| | - V. T. Kavitha
- Post Graduate and Research Department of Physics, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, 695004 Kerala India
- NSS College for Women, University of Kerala, Thiruvananthapuram , 695040 Kerala India
| |
Collapse
|
4
|
Abbas G, Bhatti IA, Amjed N, Zeshan M, Ibrahim SM, Nazir A, Iqbal M. Microwave-assisted desulphurization of coal in alkaline medium and conditions optimization by response surface methodology. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Abstract
The coal is an imperative source of energy, which on combustion, it emits sulphur dioxide, which cause air pollution. In the present study, microwave mediated desulphurization of coal was investigated and input variables were optimized by response surface methodology (RSM). The proximate analysis and ultimate analysis report indicate the sample belongs to subbituminous having sulphur (6.96%), volatile matter (34.5%) and calorific value (5099 kcal/kg). Under microwave irradiation, up to 68% of sulphur was leached in alkaline medium. The particle size of coal, concentration of potassium hydroxide (KOH), microwave exposure time and power of microwave radiation were systematically optimized for maximum desulphurization of the coal. Under optimum conditions of the process variables, 63.06% desulphurization of coal was achieved. The optimum levels of process variables are as, particle size 500 µm, irradiation time 8.54 min, radiation power 720 W and concentration of KOH 15% (w/v). Findings revealed that the microwave-assisted desulphurization under alkaline condition furnished promising efficiency, which can be employed for the desulphurization of coal.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Nyla Amjed
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Muhammed Zeshan
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry , College of Science, King Saud University , P.O. Box: 2455 , Riyadh 11451 , Saudi Arabia
| | - Arif Nazir
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , University of Lahore , Lahore , Pakistan
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
5
|
Ata S, Bano S, Bibi I, Alwadai N, Mohsin IU, Al Huwayz M, Iqbal M, Nazir A. Cationic distributions and dielectric properties of magnesium ferrites fabricated by sol-gel route and photocatalytic activity evaluation. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Sol-gel auto combustion method was adopted to fabricate magnesium ferrite (MgFe2O4) nanoparticles. The structural and morphological properties was studied by XRD, FTIR, and SEM analysis. The average particle sizes of MgFe2O4 was in the range of 35–55 nm. The octahedral & Tetrahedral bond lengths, R
AE (tetrahedral edge length), R
BE (shared octahedral edge length) and R
BEU (individual octahedral edge length), cationic radii (tetra and octa-sites) were also determined. The magnetic strength also showed direct reliance on bond angle and indirect to bond length. Hoping length L
a and L
b and bond angles are also measured. The frequency dependent conductivity and dielectric properties of MgFe2O4 were investigated by Impedance analyzer. The photocatalytic activity (PCA) is appraised against MB (methylene blue) dye and MgFe2O4 calcined at 800 °C showed promising degradation (78%) under visible light irradiation. The findings revealed that MgFe2O4 is can harvest the solar light, which could be employed for the remediation of wastewater contains textile dyes.
Collapse
Affiliation(s)
- Sadia Ata
- School of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Sara Bano
- School of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Norah Alwadai
- Department of Physics , College of Sciences, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Ijaz ul Mohsin
- Institute of Applied Materials–Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Maryam Al Huwayz
- Department of Physics , College of Sciences, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
6
|
Ali Z, Nazir R, Saleem S, Nazir A, Alfryyan N, Alwadai N, Iqbal M. Extraction of silica from fly-ash and fabrication of silica-clay composite for dye removal and kinetic studies. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
A facile and green approach to extract silica from the coal fly-ash waste is extremely critical for environmental sustainability and economically suitable. In this study, we have used acid-alkali coupled approach to improvised the proficiency of the extraction process. The sodium hydroxide (NaOH) soaking results the formation of the sodium silicate (Na2SiO3) solution then pure silica was obtained by heating at high temperature; this coupled route-way results better yield of silica (SiO2) which is ∼ 40 g. The efficiency of pure silica is not enough to remove toxic effluents from the aqueous media. A highly versatile approach of composite formation was adopted to fabricate silica-clay composite using kaolinite-clay and extracted silica. Both materials, extracted silica and its silica-clay composite were analyzed using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) method, X-ray diffraction technique (XRD) and Fourier transform infra-red spectroscopy (FTIR). The silica-clay composite showed plate-tubular like morphology with enormous binding sites available for the sorption pollutants like organic dyes. It has shown excellent sorption of methylene blue (MB) efficiency of 131.5 mg/g, while silica furnished the sorption of 70.5 mg/g. Results revealed that the synthesized material could probably have better potential for dye removal from industrial effluents.
Collapse
Affiliation(s)
- Zahid Ali
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
- State Key Laboratory of Organic–Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Rabia Nazir
- Analytical Chemistry Research Centre , Pakistan Council of Scientific and Industrial Research , Lahore , Pakistan
| | - Sumaira Saleem
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Nada Alfryyan
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
7
|
Pervaiz S, Bibi I, Hussain Shah SW, Wahab ZU, Ilyas H, Khan A, Khan M, Zada A. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
The present study details the green synthesis of silver nanoparticles using clove oil as a reducing and stabilizing agent. Cationic, anionic, nonionic and zwitterionic surfactants were introduced to study the change in size, shape, and morphology of nanoparticles. The nanoparticles were characterized using different techniques. The nanoparticles had shown specific surface Plasmon resonance band with absorbance between 380 and 385 nm. The X-ray diffraction study revealed that the nanoparticles are composed of spherical cubic crystals with average size between 136 and 180 nm while Dynamic Laser scattering (DLS) studies revealed an effective diameter of 82 nm and polydispersity index of 0.005. Thermogravimetric analysis suggested that the particles are stable even at 600 °C. All the samples presented good antibacterial and antifungal efficacies against Staphylococcus aureus, Klebsiella pneumonia and Candida albicans and good catalytic activities for the degradation of fast green and Allura red dyes. Further, thin edible films of the nanoparticles were prepared using sodium alginate for food preservation. The films were coated on fruits and vegetables for extending their shelf life to cope with demand and supply gap.
Collapse
Affiliation(s)
- Seemab Pervaiz
- Department of Conservation Studies , Hazara University , Mansehra , Pakistan
- Department of Chemistry , Hazara University , Mansehra , Pakistan
- Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan
| | - Iram Bibi
- Department of Chemistry , Hazara University , Mansehra , Pakistan
| | | | - Zain Ul Wahab
- Department of Conservation Studies , Hazara University , Mansehra , Pakistan
| | - Hafsa Ilyas
- Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan
| | - Ahmad Khan
- Department of Oral and Maxillofacial Surgery Bacha Khan Medical College Mardan , Khyber Pakhtunkhwa , 23200 Pakistan
| | - Muhammad Khan
- School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , 710072 , P. R. China
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University Mardan , Khyber Pakhtunkhwa , 23200 Pakistan
| |
Collapse
|
8
|
Manzoor Q, Shahab MR, Sajid A, Yaseen HM, Alqahtani FO, Malik QM, Nazir A, Arif K, Iqbal M. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Environmental pollution is the major issue of 21st century. The toxic industrial effluents are crucially damaging aquatic environment, in the form of heavy metals, dyes and acids. The heavy metals are toxic, carcinogenic, non-degradable and therefore must be removed to save natural environment and human health. Batch sorption efficiency of Momordica Charantia L. stem and root (MCS and MCR) was studied for Cr(VI) metal ions removal under controlled adsorption parameters. The adsorbed and residual concentration of Cr(VI) was determined by atomic absorption spectrophotometer (AAS). The adsorbent surface morphology was determined by FTIR, BET, SEM and elemental analysis by EDX. The Freundlich and Langmuir equilibrium isotherm and pseudo 1st and 2nd order kinetic models were studied to understand bio-sorption mechanism. The Freundlich isotherm and pseudo 2nd order kinetic was best fitted model for MCS and MCR bio-sorption process. The maximum Langmuir adsorption capacity (q
max) was 312.50 and 400 (mg/g) for MCS and MCR respectively. The trend of removal efficiency (%) and metal uptake (q
e) was in order as MCS > MCR. All data was statistically analyzed using mean values ± standard deviation (SD). In conclusion, MCS and MCR are suggested as excellent sorbents for the elimination of numerous contaminants from the wastewater.
Collapse
Affiliation(s)
- Qaisar Manzoor
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | | | - Fatimah Othman Alqahtani
- Department of Chemistry , College of Science, King Faisal University , P.O. Box 380 , Al-Ahsa , 31982 , Saudi Arabia
| | | | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Khalid Arif
- Department of Mathematics and Statistics , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
9
|
Gul N, Ata S, Bibi I, Ijaz-ul-Mohsin, Azam M, Shahid A, Alwadai N, Masood N, Iqbal M. Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present investigation, silver nanoparticles were synthesized and a comparative analysis was performed of modified Turkevich and BRUST methods. Silver nitrate precursor was reduced by trisodium citrate dihydrate and ascorbic acid was used as a surfactant. Based on Turkevich and BRUST methods, the process variables, i.e., temperature, reducing agent concentration, stirring speed, mode of injecting reducing agent/precursor to large excess volume of either precursor/reducing agent were studied. The size of the particles was preliminarily ascertained by DLS studies and it was found that modified BRUST method yielded silver nanoparticles with average particle size of 25 nm, while modified Turkevich method furnished nanoparticles with average particle size of 15 nm. The silver nanoparticles were characterized by employing the UV/visible, Zeta sizer, scanning electron microscopy (SEM) and energy dispersive microscopy (EDX) techniques. Results revealed that the silver nanoparticles size can be controlled by optimizing the conditions of modified Turkevich and BRUST methods.
Collapse
Affiliation(s)
- Nouroze Gul
- School of Chemistry , University of the Punjab , Lahore , Pakistan
- Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul-Mohsin
- Institute for Applied Materials–Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Muhammad Azam
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Abubaker Shahid
- Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Nasir Masood
- Department of Environmental Sciences , COMSATS University Islamabad, Vehari Campus , Punjab , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|