1
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
2
|
Martucci C, Allen AD, Moretto N, Bagnacani V, Fioni A, Patacchini R, Civelli M, Villetti G, Facchinetti F. CHF6297: a novel potent and selective p38 MAPK inhibitor with robust anti-inflammatory activity and suitable for inhaled pulmonary administration as dry powder. Front Pharmacol 2024; 15:1343941. [PMID: 38549671 PMCID: PMC10973839 DOI: 10.3389/fphar.2024.1343941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 11/09/2024] Open
Abstract
Inhibition of p38 mitogen-activated protein kinase (MAPKs) is a potential therapeutic approach for the treatment of acute and chronic pulmonary inflammatory conditions. Here, we report the in vitro and in vivo characterization of the anti-inflammatory effects of CHF6297, a novel potent and selective p38α inhibitor designed for inhalation delivery as a dry powder formulation. CHF6297 has been proven to inhibit p38α enzymatic activity with sub-nanomolar potency (IC50 = 0.14 ± 0.06 nM), with >1,000-fold selectivity against p38γ and p38δ. In human peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharides (LPS), as well as in human bronchial epithelial cells (BEAS2B) stimulated with TNF-α or cigarette smoke extract (CSE), CHF6297 inhibited interleukin (IL)-8 release with low nanomolar potency. CHF6297 administered to rats by using a nose-only inhalation device as a micronized dry powder formulation blended with lactose dose-dependently inhibited the LPS-induced neutrophil influx in the bronchoalveolar lavage fluid (BALF). CHF6297 administered intratracheally to rats dose-dependently counteracted the IL-1β (0.3 mg/kg)-induced neutrophil influx (ED50 = 0.22 mg/kg) and increase in IL-6 levels (ED50 = 0.82 mg/kg) in the BALF. In mice exposed to tobacco smoke (TS), CHF6297, administered intranasally (i.n.) for 4 days at 0.03 or 0.3 mg/kg, dose-dependently inhibited the corticosteroid-resistant TS-induced neutrophil influx in the BALF. In a murine house dust mite (HDM) model of asthma exacerbated by influenza virus A (IAV) (H3N3), CHF6297 (0.1 mg/kg, i.n.) significantly decreased airway neutrophilia compared to vehicle-treated IAV/HDM-challenged mice. When CHF6297, at a dose ineffective per se (0.03 mg/kg), was added to budesonide, it augmented the anti-inflammatory effects of the steroid. Overall, CHF6297 effectively counteracted lung inflammation in experimental models where corticosteroids exhibit limited anti-inflammatory activity, suggesting a potential for the treatment of acute exacerbations associated with chronic obstructive pulmonary disease (COPD) and asthma, acute lung injury (ALI), and viral-induced hyperinflammation.
Collapse
|
3
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
4
|
Ahmadi A, Ahrari S, Salimian J, Salehi Z, Karimi M, Emamvirdizadeh A, Jamalkandi SA, Ghanei M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun Signal 2023; 21:314. [PMID: 37919729 PMCID: PMC10623820 DOI: 10.1186/s12964-023-01337-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar remodeling. Although the abnormalities are primarily prompted by chronic exposure to inhaled irritants, maladjusted and self-reinforcing immune responses are significant contributors to the development and progression of the disease. The p38 isoforms are regarded as pivotal hub proteins that regulate immune and inflammatory responses in both healthy and disease states. As a result, their inhibition has been the subject of numerous recent studies exploring their therapeutic potential in COPD. MAIN BODY We performed a systematic search based on the PRISMA guidelines to find relevant studies about P38 signaling in COPD patients. We searched the PubMed and Google Scholar databases and used "P38" AND "COPD" Mesh Terms. We applied the following inclusion criteria: (1) human, animal, ex vivo and in vitro studies; (2) original research articles; (3) published in English; and (4) focused on P38 signaling in COPD pathogenesis, progression, or treatment. We screened the titles and abstracts of the retrieved studies and assessed the full texts of the eligible studies for quality and relevance. We extracted the following data from each study: authors, year, country, sample size, study design, cell type, intervention, outcome, and main findings. We classified the studies according to the role of different cells and treatments in P38 signaling in COPD. CONCLUSION While targeting p38 MAPK has demonstrated some therapeutic potential in COPD, its efficacy is limited. Nevertheless, combining p38 MAPK inhibitors with other anti-inflammatory steroids appears to be a promising treatment choice. Clinical trials testing various p38 MAPK inhibitors have produced mixed results, with some showing improvement in lung function and reduction in exacerbations in COPD patients. Despite these mixed results, research on p38 MAPK inhibitors is still a major area of study to develop new and more effective therapies for COPD. As our understanding of COPD evolves, we may gain a better understanding of how to utilize p38 MAPK inhibitors to treat this disease. Video Abstract.
Collapse
Affiliation(s)
- Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahrari
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
The role of transforming growth factor-β2 in cigarette smoke-induced lung inflammation and injury. Life Sci 2023; 320:121539. [PMID: 36870385 DOI: 10.1016/j.lfs.2023.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
AIMS Transforming growth factor-β2 (TGF-β2) plays an important role in pleiotropic functions and has been reported to be involved in the pathogenesis of chronic obstructive lung disease. The role of TGF-β2 in regulating cigarette smoke (CS)-induced lung inflammation and injury has not been investigated, and its underlying mechanism remains unclear. MAIN METHODS Primary bronchial epithelial cells (PBECs) were treated with cigarette smoke extract (CSE), and the signaling pathway of TGF-β2 regulating lung inflammation was investigated. Mice were exposed to CS and treated with TGF-β2 i.p. or bovine whey protein extract containing TGF-β2 p.o., and the role of TGF-β2 in alleviating lung inflammation/injury was studied. KEY FINDINGS In vitro, we demonstrated that TGF-β2 attenuated CSE-induced IL-8 production from PBECs through the TGF-β receptor I (TGF-βRI), Smad3, and mitogen-activated protein kinase signaling pathways. Selective TGF-βRI inhibitor (LY364947) and antagonist of Smad3 (SIS3) abolished the effect of TGF-β2 on alleviating CSE-induced IL-8 production. In vivo, CS exposure for 4 weeks in mice increased the levels of total protein, inflammatory cell counts, and monocyte chemoattractant protein-1 in bronchoalveolar fluid and induced lung inflammation/injury, as revealed by immunohistochemistry. Administration of TGF-β2 through intraperitoneal injection or oral feeding with bovine whey protein extract containing TGF-β2 significantly reduced CS-induced lung inflammation and injury. SIGNIFICANCE We concluded that TGF-β2 reduced CSE-induced IL-8 production through the Smad3 signaling pathway in PBECs and alleviated lung inflammation/injury in CS-exposed mice. The anti-inflammatory effect of TGF-β2 on CS-induced lung inflammation in humans deserves further clinical study.
Collapse
|
6
|
Romeo I, Ambrosio FA, Costa G, Corona A, Alkhatib M, Salpini R, Lemme S, Vergni D, Svicher V, Santoro MM, Tramontano E, Ceccherini-Silberstein F, Artese A, Alcaro S. Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach. Molecules 2022; 27:7522. [PMID: 36364347 PMCID: PMC9654784 DOI: 10.3390/molecules27217522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/14/2024] Open
Abstract
The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Mohammad Alkhatib
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Romina Salpini
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Saverio Lemme
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Davide Vergni
- Istituto per le Applicazioni del Calcolo “Mauro Picone”-CNR, 00185 Rome, Italy
| | - Valentina Svicher
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Maria Mercedes Santoro
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | | | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Yu H, Su X, Lei T, Zhang L, Feng Z, Zhang C, Zhang M, Wang Y, Chen X, Liu J. Safety and efficacy of p38 mitogen-activated protein kinase inhibitors (MAPKIs) in COPD. Front Pharmacol 2022; 13:950035. [PMID: 36249771 PMCID: PMC9554617 DOI: 10.3389/fphar.2022.950035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Chronic inflammation is the core mechanism of the development of chronic obstructive pulmonary disease (COPD). Corticosteroid resistance in COPD limits its anti-inflammatory potency. p38 MAPKIs were suggested as an alternative to corticosteroids despite the fact that there is currently no systematic review evaluating existing evidence.Methods: This randomized controlled trials (RCT)-based systematic review with meta-analysis was conducted following the PRISMA statement. RCTs were searched and screened from 8 databases. Three types of data, including basic information of included studies, pre-defined outcome data, and quality assessment information were extracted. Pooling values and associated 95 % confidence intervals were deemed as statistically significant only when two-tailed p values were smaller than 0.05.Results: This study included 10 RCTs with a total population of 1,751 [age, mean (SD) = 64.39 (8.06)]. Safety and several efficacy indicators of lung function, inflammatory biomarkers, and quality of life were meta-analyzed. Despite the improvement of post-bronchodilator-forced vital capacity (FVC), no difference between p38 MAPKIs and placebo was found in both safety and efficacy.Conclusion: Compared with placebo, p38 MAPKIs are safe but did not show any significant effects in the COPD population. Results of this study should be regarded with caution due to the small number of included studies and heterogeneity from combining different p38 MAPKIs as a whole.Systematic Review registration: PROSPERO #CRD42022302890.
Collapse
Affiliation(s)
- Haichuan Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaojie Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ting Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhouzhou Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chuchu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Meng Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yalei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xinlong Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Intensive Care Unit, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Jian Liu,
| |
Collapse
|
8
|
Armani E, Capaldi C, Bagnacani V, Saccani F, Aquino G, Puccini P, Facchinetti F, Martucci C, Moretto N, Villetti G, Patacchini R, Civelli M, Hurley C, Jennings A, Alcaraz L, Bloomfield D, Briggs M, Daly S, Panchal T, Russell V, Wicks S, Finch H, Fitzgerald M, Fox C, Delcanale M. Design, Synthesis, and Biological Characterization of Inhaled p38α/β MAPK Inhibitors for the Treatment of Lung Inflammatory Diseases. J Med Chem 2022; 65:7170-7192. [PMID: 35546685 DOI: 10.1021/acs.jmedchem.2c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of novel inhaled p38α/β mitogen-activated protein kinases (MAPK) (MAPK14/11) inhibitors suitable for the treatment of pulmonary inflammatory conditions has been described. A rational drug design approach started from the identification of a novel tetrahydronaphthalene series, characterized by nanomolar inhibition of p38α with selectivity over p38γ and p38δ isoforms. SAR optimization of 1c is outlined, where improvements in potency against p38α and ligand-enzyme dissociation kinetics led to several compounds showing pronounced anti-inflammatory effects in vitro (inhibition of TNFα release). Targeting of the defined physicochemical properties allowed the identification of compounds 3h, 4e, and 4f, which showed, upon intratracheal instillation, low plasma levels, prolonged lung retention, and anti-inflammatory effects in a rat acute model of a bacterial endotoxin-induced pulmonary inflammation. Compound 4e, in particular, displayed remarkable efficacy and duration of action and was selected for progression in disease models of asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Elisabetta Armani
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Carmelida Capaldi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Bagnacani
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Francesca Saccani
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Giancarlo Aquino
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fabrizio Facchinetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Cataldo Martucci
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Nadia Moretto
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Riccardo Patacchini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Chris Hurley
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Andrew Jennings
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Lilian Alcaraz
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Dawn Bloomfield
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Michael Briggs
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Stephen Daly
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Terry Panchal
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Vince Russell
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Sharon Wicks
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, United Kingdom
| | - Harry Finch
- Pulmagen Therapeutics, The Coach House, Grenville Court Britwell Road, Burnham, Slough SL1 8DF, United Kingdom
| | - Mary Fitzgerald
- Pulmagen Therapeutics, The Coach House, Grenville Court Britwell Road, Burnham, Slough SL1 8DF, United Kingdom
| | - Craig Fox
- Pulmagen Therapeutics, The Coach House, Grenville Court Britwell Road, Burnham, Slough SL1 8DF, United Kingdom
| | - Maurizio Delcanale
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
9
|
Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021; 61:173-199. [PMID: 34559922 DOI: 10.1002/mc.23348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, UNM School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Colby D Spiess
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hannah M Smith
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ajay Tejwani
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher E Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021; 30:30/160/210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD patients and a key modifiable factor, which requires timely identification and targeted holistic management strategies to improve outcomes and reduce the burden of disease.We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease, which are likely to be key to informing new management strategies.Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD, including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli (e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.Finally, we focus on current and new management strategies which may target these underlying mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.
Collapse
Affiliation(s)
- H Burke
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - T M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospitals Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
11
|
Brennan CM, Emerson CP, Owens J, Christoforou N. p38 MAPKs - roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight 2021; 6:e149915. [PMID: 34156029 PMCID: PMC8262482 DOI: 10.1172/jci.insight.149915] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
p38 MAPKs play a central role in orchestrating the cellular response to stress and inflammation and in the regulation of myogenesis. Potent inhibitors of p38 MAPKs have been pursued as potential therapies for several disease indications due to their antiinflammatory properties, although none have been approved to date. Here, we provide a brief overview of p38 MAPKs, including their role in regulating myogenesis and their association with disease progression. Finally, we discuss targeting p38 MAPKs as a therapeutic approach for treating facioscapulohumeral muscular dystrophy and other muscular dystrophies by addressing multiple pathological mechanisms in skeletal muscle.
Collapse
Affiliation(s)
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
12
|
Kazi AA, Subba Reddy BV, Ravithej Singh L. Synthetic approaches to FDA approved drugs for asthma and COPD from 1969 to 2020. Bioorg Med Chem 2021; 41:116212. [PMID: 34000507 DOI: 10.1016/j.bmc.2021.116212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 10/24/2022]
Abstract
Respiratory infections resulting from pulmonary inflammation emerging as a leading cause of death worldwide. However, only twenty-seven new drugs were approved in the last five decades. In this review, we presented synthetic approaches for twenty-seven FDA-approved medications used to treat asthma and chronic obstructive pulmonary diseases (COPD), along with their mode of action.
Collapse
Affiliation(s)
- Ayazoddin Aunoddin Kazi
- Fluoro-Agrochemicals Division, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - B V Subba Reddy
- Fluoro-Agrochemicals Division, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India; Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| | - L Ravithej Singh
- Fluoro-Agrochemicals Division, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India; Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
13
|
Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Saudi J Biol Sci 2021; 28:3152-3159. [PMID: 33649700 PMCID: PMC7901282 DOI: 10.1016/j.sjbs.2021.02.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023] Open
Abstract
Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Pelaia C, Vatrella A, Gallelli L, Lombardo N, Sciacqua A, Savino R, Pelaia G. Role of p38 Mitogen-Activated Protein Kinase in Asthma and COPD: Pathogenic Aspects and Potential Targeted Therapies. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1275-1284. [PMID: 33790539 PMCID: PMC8001041 DOI: 10.2147/dddt.s300988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Among the various members of the mitogen-activated protein kinase (MAPK) family, p38 MAPK subgroup is the most involved in airway and lung inflammation underlying asthma and chronic obstructive pulmonary disease (COPD). In particular, several environmental agents including aeroallergens, cigarette smoke, airborne pollutants, viral and bacterial pathogens activate the p38α isoform which in turn up-regulates the expression of multiple proinflammatory cytokines and chemokines, as well as the production of some fibrogenic factors. Therefore, p38 MAPK-induced bronchial inflammation and remodelling significantly contribute to the development, persistence and amplification of airflow limitation, which is the hallmark of asthma and COPD. Such advances in our understanding of p38 role in the pathobiology of the above widespread, chronic obstructive respiratory diseases, have led to consider p38 MAPK as a suitable molecular target for novel treatment strategies. Indeed, many studies have been carried out in both animal and clinical settings, with the aim of evaluating the potential therapeutic effects of p38 MAPK inhibitors in both asthma and COPD.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Luca Gallelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Nicola Lombardo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
15
|
Victoni T, Barreto E, Lagente V, Carvalho VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646923. [PMID: 33628371 PMCID: PMC7889360 DOI: 10.1155/2021/6646923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs) are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical investigation of safer, more efficacious compounds are now a priority.
Collapse
Affiliation(s)
- Tatiana Victoni
- University of Lyon, VetAgro Sup, APCSe, Marcy l'Étoile, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió, AL 57072-900, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Univ Rennes, Rennes, France
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21045-900, Brazil
| |
Collapse
|
16
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
17
|
Zonneville J, Colligan S, Grant S, Miller A, Wallace P, Abrams SI, Bakin AV. Blockade of p38 kinase impedes the mobilization of protumorigenic myeloid populations to impact breast cancer metastasis. Int J Cancer 2020; 147:2279-2292. [PMID: 32452014 PMCID: PMC7484223 DOI: 10.1002/ijc.33050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Patients with metastatic breast cancer (MBC) have limited therapeutic options and novel treatments are critically needed. Prior research implicates tumor-induced mobilization of myeloid cell populations in metastatic progression, as well as being an unfavorable outcome in MBC; however, the underlying mechanisms for these relationships remain unknown. Here, we provide evidence for a novel mechanism by which p38 promotes metastasis. Using triple-negative breast cancer models, we showed that a selective inhibitor of p38 (p38i) significantly reduced tumor growth, angiogenesis, and lung metastasis. Importantly, p38i decreased the accumulation of myeloid populations, namely, myeloid-derived suppressor cells (MDSCs) and CD163+ tumor-associated macrophages (TAMs). p38 controlled the expression of tumor-derived chemokines/cytokines that facilitated the recruitment of protumor myeloid populations. Depletion of MDSCs was accompanied by reduced TAM infiltration and phenocopied the antimetastatic effects of p38i. Reciprocally, p38i increased tumor infiltration by cytotoxic CD8+ T cells. Furthermore, the CD163+ /CD8+ expression ratio inversely correlated with metastasis-free survival in breast cancer, suggesting that targeting p38 may improve clinical outcomes. Overall, our study highlights a previously unknown p38-driven pathway as a therapeutic target in MBC.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antineoplastic Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Carcinogenesis/drug effects
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Chemokines/metabolism
- Cytokines/metabolism
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- MAP Kinase Signaling System/drug effects
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/metabolism
- Myeloid-Derived Suppressor Cells/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptors, Cell Surface/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Sean Colligan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Sydney Grant
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | | | - Paul Wallace
- Department of Flow & Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Andrei V. Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
- Sechenov Medical University, Moscow, Russia 119991
| |
Collapse
|
18
|
Raubo P, Evans R, Willis P. The discovery and evaluation of 3-amino-2(1H)-pyrazinones as a novel series of selective p38α MAP kinase inhibitors. Bioorg Med Chem Lett 2020; 30:127412. [PMID: 32717614 DOI: 10.1016/j.bmcl.2020.127412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/26/2022]
Abstract
The discovery and optimisation of a novel series of potent and selective p38α inhibitors is described. Evaluating the structure-activity relationship of an aminoalkyl substituent at the 3 position of the 2(1H)-pyrazinone core, p38α potency was increased 20000-fold. The most advanced compound (25) demonstrated excellent in vivo properties suitable for an inhaled route of administration.
Collapse
Affiliation(s)
- Piotr Raubo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK; AstraZeneca R&D Charnwood, Loughborough, UK.
| | | | | |
Collapse
|
19
|
Rojas LA, Valentine E, Accorsi A, Maglio J, Shen N, Robertson A, Kazmirski S, Rahl P, Tawil R, Cadavid D, Thompson LA, Ronco L, Chang AN, Cacace AM, Wallace O. p38 α Regulates Expression of DUX4 in a Model of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2020; 374:489-498. [PMID: 32576599 DOI: 10.1124/jpet.119.264689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 03/08/2025] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the loss of repression at the D4Z4 locus leading to aberrant double homeobox 4 (DUX4) expression in skeletal muscle. Activation of this early embryonic transcription factor results in the expression of its target genes causing muscle fiber death. Although progress toward understanding the signals driving DUX4 expression has been made, the factors and pathways involved in the transcriptional activation of this gene remain largely unknown. Here, we describe the identification and characterization of p38α as a novel regulator of DUX4 expression in FSHD myotubes. By using multiple highly characterized, potent, and specific inhibitors of p38α/β, we show a robust reduction of DUX4 expression, activity, and cell death across patient-derived FSHD1 and FSHD2 lines. RNA-seq profiling reveals that a small number of genes are differentially expressed upon p38α/β inhibition, the vast majority of which are DUX4 target genes. Our results reveal a novel and apparently critical role for p38α in the aberrant activation of DUX4 in FSHD and support the potential of p38α/β inhibitors as effective therapeutics to treat FSHD at its root cause. SIGNIFICANCE STATEMENT: Using patient-derived facioscapulohumeral muscular dystrophy (FSHD) myotubes, we characterize the pharmacological relationships between p38α/β inhibition, double homeobox 4 (DUX4) expression, its downstream transcriptional program, and muscle cell death. p38α/β inhibition results in potent and specific DUX4 downregulation across multiple genotypes without significant effects in the process of myogenesis in vitro. These findings highlight the potential of p38α/β inhibitors for the treatment of FSHD, a condition that today has no approved therapies.
Collapse
Affiliation(s)
- L Alejandro Rojas
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Erin Valentine
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Anthony Accorsi
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Joseph Maglio
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Ning Shen
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Alan Robertson
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Steven Kazmirski
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Peter Rahl
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Rabi Tawil
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Diego Cadavid
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Lorin A Thompson
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Lucienne Ronco
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Aaron N Chang
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Angela M Cacace
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Owen Wallace
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| |
Collapse
|
20
|
Park JB, Peters R, Pham Q, Wang TTY. Javamide-II Inhibits IL-6 without Significant Impact on TNF-alpha and IL-1beta in Macrophage-Like Cells. Biomedicines 2020; 8:biomedicines8060138. [PMID: 32485858 PMCID: PMC7344767 DOI: 10.3390/biomedicines8060138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main aim of this study is to find a therapeutic compound to inhibit IL-6, not TNF-alpha and IL-1beta, in macrophage-like cells, because the high-levels of IL-6 production by macrophages are reported to cause unfavorable outcomes under several disease conditions (e.g., autoimmune diseases, and acute viral infections, including COVID-19). In this study, the potential effects of javamide-II on IL-6, IL-1beta and TNF-alpha productions were determined using their ELISA kits in macrophage-like THP-1 cells. Western blots were also performed using the same cells, to determine its effects on signaling pathways (ERK, p38, JNK, c-Fos, ATF-2, c-Jun and NF-κB p65). At concentrations of 0.2–40 µM, javamide-II inhibited IL-6 production significantly in the THP-1 cells (IC50 of 0.8 µM) (P < 0.02). However, javamide-II did not inhibit IL-1beta or TNF-alpha productions much at the same concentrations. In addition, the treatment of javamide-II decreased the phosphorylation of p38 without significant effects on ERK and JNK phosphorylations in the THP-1 cells. Furthermore, the p38 inhibition, followed by the reduction of ATF-2 phosphorylation (not c-Fos, c-Jun or NF-κB p65), led to the suppression of IL-6 mRNA expression in the cells (P < 0.02). The data indicate that javamide-II may be a potent compound to inhibit IL-6 production via suppressing the p38 signal pathway, without significant effects on the productions of TNF-alpha and IL-1beta in macrophage-like THP-1 cells.
Collapse
Affiliation(s)
- Jae B. Park
- Correspondence: ; Tel.: +301-504-8365; Fax: +301-504-9062
| | | | | | | |
Collapse
|
21
|
Marenghi G, Clementino AR, Fioni A, Buttini F, Sonvico F. Pulmonary delivery of a p38 α/β MAP kinase inhibitor: bioanalytical method validation and biodistribution in rat plasma and respiratory tissues. Eur J Pharm Sci 2020; 149:105341. [PMID: 32305320 DOI: 10.1016/j.ejps.2020.105341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
PF-03715455, an inhaled p38 α/β mitogen-activated protein (MAP) kinase inhibitor (MAPK), has being identified as an agent with potential therapeutic action on lung diseases such as COPD and severe asthma. However, little is known about this MAPKs local and systemic pharmacokinetics after pulmonary delivery. Consequently, the aim of the present work was to develop and validate a method of extraction and quantification of PF-03715455 in rat plasma and lung tissues and to determine the drug biodistribution in plasma and respiratory tissues after intratracheal administration of the drug solution in rats. The method was validated in rat plasma samples and resulted selective and linear in the concentration range of 0.08-100 ng/ml. Then a partial validation was carried out on samples obtained by the extraction and quantification of PF-03715455 from rat lung homogenate in order to ascertain method applicability on lung tissue samples. The intratracheal administration of drug in solution to rats evidenced a rapid elimination from the plasma, while on the contrary a prolonged residence time in lung tissue was evidenced. In conclusion, a linear, accurate, precise and reproducible method has been developed and validated according to FDA and EMA guidelines to quantify plasmatic and tissue-associated concentrations of PF-03715455 in order to investigate this compound in pharmacokinetics pre-clinical studies in rats. The administration of drug solution evidenced a prolonged permanence of the drug in the lungs that could be related to a slow absorption/poor permeability of the drug across airways epithelia.
Collapse
Affiliation(s)
| | - Adryana Rocha Clementino
- Food and Drug Department, University of Parma, Parma, Italy; Biopharmanet-TEC, University of Parma, Parma, Italy
| | | | - Francesca Buttini
- Food and Drug Department, University of Parma, Parma, Italy; Biopharmanet-TEC, University of Parma, Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy; Biopharmanet-TEC, University of Parma, Parma, Italy.
| |
Collapse
|
22
|
Pelaia C, Vatrella A, Sciacqua A, Terracciano R, Pelaia G. Role of p38-mitogen-activated protein kinase in COPD: pathobiological implications and therapeutic perspectives. Expert Rev Respir Med 2020; 14:485-491. [PMID: 32077346 DOI: 10.1080/17476348.2020.1732821] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: The p38 serine-threonine kinases are members of the large family of mitogen-activated protein kinases (MAPK). In particular, p38 MAPK subgroup includes four isoforms (α, β, γ, δ), among which p38α and p38β are mainly involved in inflammatory disorders. Indeed, by activating key transcription factors and by inducing the expression of several cytokines and chemokines, p38α plays a central role in the pathobiology of chronic obstructive pulmonary disease (COPD).Areas covered: This concise review focuses on the contribution of p38 MAPK to development, maintenance, and amplification of chronic lung inflammation in COPD. Moreover, we discuss the potential role of p38 MAPK as suitable target for perspective therapeutic approaches under evaluation as potential new COPD treatments. In this regard, an extensive literature search has been conducted throughout PubMed source (1990-2020).Expert opinion: Despite some promising preclinical data, so far the results of clinical trials evaluating p38 MAPK inhibitors have been quite disappointing, thus suggesting a cautious judgment about the future perspectives of these drugs for COPD therapy.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 454] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
24
|
Development of a validated UPLC-MS/MS method for quantification of p38 MAPK inhibitor PH-797804: Application to a pharmacokinetic study in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1134-1135:121877. [PMID: 31785533 DOI: 10.1016/j.jchromb.2019.121877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023]
Abstract
PH-797804 is a selective p38 MAPK inhibitor currently evaluated in clinical trials. This study described a validated UPLC-MS/MS combined with one-step protein precipitation extraction method for determination of PH-797804 in rat plasma. After protein precipitation with acetonitrile, the plasma sample was analyzed by a Waters Acquity UPLC BEH C18 column, with acetonitrile/0.1% formic acid (70:30) as the mobile phase. Mass spectrometric detection was conducted with a Waters TQ-S mass spectrometer via electrospray, positive-mode ionization, with target quantitative ion pairs of m/z 476.895 → 126.860 for PH-797804, and 482.726 → 269.707 for regorafenib (internal standard). The assay showed a good linearity over the range of 1.0-1600 ng/mL, with acceptable accuracy (RE from -7.8% to 8.5%) and precision (RSD within 8.4%) values. Recovery from plasma was 81.4-90.2% and matrix effect was negligible (93.3-95.4%). The validated method presented a quantification method of PH-797804 in detail for the first time and utilized for a pharmacokinetic study at three dose concentrations after oral administration in Wistar rats. The pharmacokinetic profiles of PH-797804 showed a linear relationship between drug concentration and dose, which provided dosage and safety information on further clinical studies.
Collapse
|
25
|
Strâmbu IR, Kobalava ZD, Magnusson BP, MacKinnon A, Parkin JM. Phase II Study of Single/Repeated Doses of Acumapimod (BCT197) to Treat Acute Exacerbations of COPD. COPD 2019; 16:344-353. [PMID: 31682162 DOI: 10.1080/15412555.2019.1682535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitogen-activated protein kinase p38 is a key regulator in the inflammation pathway and is activated in the lungs of chronic obstructive pulmonary disease (COPD) patients. Acumapimod is a potent, selective, oral, p38 inhibitor under investigation for treatment of acute exacerbations of COPD (AECOPD). In this Phase II, double-blind, randomized, placebo-controlled dose-exploration study of acumapimod in patients with moderate or severe AECOPD (NCT01332097), patients presenting with AECOPD were randomized to receive single-dose acumapimod (20 mg or 75 mg) on Day 1, repeated single-dose acumapimod (20 mg or 75 mg) on Days 1 and 6, oral prednisone 40 mg (10 days), or placebo. Primary outcome: improvement in forced expiratory volume in 1 s (FEV1) versus placebo at Day 5 (single doses) and Day 10 (repeated doses). N = 183 patients were randomized; 169 (92%) patients completed the study. Although the primary endpoint (FEV1 at Day 10) was not met (p = 0.082), there was a significant improvement in FEV1 with acumapimod repeat-dose 75 mg versus placebo at Day 8 (p = 0.022) which, though not a prespecified endpoint, was part of an overall trend. Differences at lower doses did not achieve significance. Mean change in FEV1 AUC from baseline to Day 14 in the 75 mg repeat-dose group was significantly higher versus placebo (p = 0.02), prednisone (p = 0.01), and 20 mg single-dose groups (p = 0.015) (post-hoc analysis). EXACT-PRO showed numerical differences versus placebo that did not reach significance. Acumapimod was well tolerated. In conclusion, repeated single-dose acumapimod showed a clinically relevant improvement in FEV1 over placebo at Day 8, along with consistent numerical differences in EXACT-PRO. These data can be used to determine dose regimens for a proof-of-clinical-concept trial.
Collapse
Affiliation(s)
- Irina R Strâmbu
- National Institute of Pneumology "Marius Nasta", Bucharest, Romania
| | | | | | | | | |
Collapse
|
26
|
Oliva J, Galasinski S, Richey A, Campbell AE, Meyers MJ, Modi N, Zhong JW, Tawil R, Tapscott SJ, Sverdrup FM. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2019; 370:219-230. [PMID: 31189728 PMCID: PMC6652132 DOI: 10.1124/jpet.119.259663] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the β-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38β suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38β isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.
Collapse
Affiliation(s)
- Jonathan Oliva
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Scott Galasinski
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amelia Richey
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amy E Campbell
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Marvin J Meyers
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Neal Modi
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Jun Wen Zhong
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Rabi Tawil
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Stephen J Tapscott
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Francis M Sverdrup
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| |
Collapse
|
27
|
Zhang X, Yan F, Tang K, Chen Q, Guo J, Zhu W, He S, Banadyga L, Qiu X, Guo Y. Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Res 2019; 167:68-77. [PMID: 30953674 PMCID: PMC7111477 DOI: 10.1016/j.antiviral.2019.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/31/2022]
Abstract
Lassa virus (LASV) causes Lassa hemorrhagic fever in humans and poses a significant threat to public health in West Africa. Current therapeutic treatments for Lassa fever are limited, making the development of novel countermeasures an urgent priority. In this study, we identified losmapimod, a p38 mitogen-activated protein kinase (MAPK) inhibitor, from 102 screened compounds as an inhibitor of LASV infection. Losmapimod exerted its inhibitory effect against LASV after p38 MAPK down-regulation, and, interestingly, had no effect on other arenaviruses capable of causing viral hemorrhagic fever. Mechanistic studies showed that losmapimod inhibited LASV entry by affecting the stable signal peptide (SSP)-GP2 subunit interface of the LASV glycoprotein, thereby blocking pH-dependent viral fusion. As an aryl heteroaryl bis-carboxyamide derivative, losmapimod represents a novel chemical scaffold with anti-LASV activity, and it provides a new lead structure for the future development of LASV fusion inhibitors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feihu Yan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China
| | - Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiamei Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Egbert M, Whitty A, Keserű GM, Vajda S. Why Some Targets Benefit from beyond Rule of Five Drugs. J Med Chem 2019; 62:10005-10025. [PMID: 31188592 DOI: 10.1021/acs.jmedchem.8b01732] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Beyond rule-of-five (bRo5) compounds are increasingly used in drug discovery. Here we analyze 37 target proteins that have bRo5 drugs or clinical candidates. Targets can benefit from bRo5 drugs if they have "complex" hot spot structure with four or more hots spots, including some strong ones. Complex I targets show positive correlation between binding affinity and molecular weight. These targets are conventionally druggable, but reaching additional hot spots enables improved pharmaceutical properties. Complex II targets, mostly protein kinases, also have strong hot spots but show no correlation between affinity and ligand molecular weight, and the primary motivation for creating larger drugs is to increase selectivity. Each target considered as complex III has some specific reason for requiring bRo5 drugs. Finally, targets with "simple" hot spot structure, i.e., three or fewer weak hot spots, must use larger compounds that interact with surfaces beyond the hot spot region to achieve acceptable affinity.
Collapse
Affiliation(s)
- Megan Egbert
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Adrian Whitty
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - György M Keserű
- Medicinal Chemistry Research Group , Research Center for Natural Sciences , Magyar Tudósok krt. 2 , H-1117 Budapest , Hungary
| | - Sandor Vajda
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
29
|
Bartolini D, Bührmann M, Barreca ML, Manfroni G, Cecchetti V, Rauh D, Galli F. Co-crystal structure determination and cellular evaluation of 1,4-dihydropyrazolo[4,3-c] [1,2] benzothiazine 5,5-dioxide p38α MAPK inhibitors. Biochem Biophys Res Commun 2019; 511:579-586. [DOI: 10.1016/j.bbrc.2019.02.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
|
30
|
Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, Andreoli de Jesus TP, Dureja H, Chellappan DK, Gupta G, Wadhwa R, Collet T, Hansbro PM, Dua K, Satija S. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 2019; 304:10-19. [PMID: 30849336 DOI: 10.1016/j.cbi.2019.02.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/10/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022]
Abstract
Macrophages are considered as the most flexible cells of the hematopoietic system that are distributed in the tissues to act against pathogens and foreign particles. Macrophages are essential in maintaining homeostatic tissue processes, repair and immunity. Also, play important role in cytokine secretion and signal transduction of the infection so as to develop acquired immunity. Accounting to their involvement in pathogenesis, macrophages present a therapeutic target for the treatment of inflammatory respiratory diseases. This review focuses on novel drug delivery systems (NDDS) including nanoparticles, liposomes, dendrimers, microspheres etc that can target alveolar macrophage associated with inflammation, intracellular infection and lung cancer. The physiochemical properties and functional moieties of the NDDS attributes to enhanced macrophage targeting and uptake. The NDDS are promising for sustained drug delivery, reduced therapeutic dose, improved patient compliance and reduce drug toxicity. Further, the review also discuss about modified NDDS for specificity to the target and molecular targeting via anti-microbial peptides, kinases, NRF-2 and phosphodiesterase.
Collapse
Affiliation(s)
- Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Deeksha
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District-123031, Haryana, India
| | - Harjeet Singh
- National Medicinal Plants Board, Ministry of AYUSH, New Delhi, India
| | | | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Ridhima Wadhwa
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi-110021, India
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane 4059, Queensland, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050 , Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050 , Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India.
| |
Collapse
|
31
|
Ti H, Zhou Y, Liang X, Li R, Ding K, Zhao X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J Med Chem 2019; 62:5944-5978. [PMID: 30682248 DOI: 10.1021/acs.jmedchem.8b01520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a very common and frequently fatal airway disease. Current therapies for COPD depend mainly on long-acting bronchodilators, which cannot target the pathogenic mechanisms of chronic inflammation in COPD. New pharmaceutical therapies for the inflammatory processes of COPD are urgently needed. Several anti-inflammatory targets have been identified based on increased understanding of the pathogenesis of COPD, which raises new hopes for targeted treatment of this fatal respiratory disease. In this review, we discuss the recent advances in bioactive low-molecular-weight drugs (LMWDs) for the treatment of COPD and, in addition to the first-line drug bronchodilators, focus particularly on low-molecular-weight anti-inflammatory agents, including modulators of inflammatory mediators, inflammasome inhibitors, protease inhibitors, antioxidants, PDE4 inhibitors, kinase inhibitors, and other agents. We also provide new insights into targeted COPD treatments using LMWDs, particularly small-molecule agents.
Collapse
Affiliation(s)
- Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Yang Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH) , AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Xue Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,School of Life Sciences , The Chinese University of Hong Kong , Shatin, N.T. , Hong Kong SAR 999077 , P. R. China
| |
Collapse
|
32
|
Pehrson R, Hegelund-Myrbäck T, Cunoosamy D, Asimus S, Jansson P, Patel N, Borde A, Lundin S. AZD7624, an Inhaled p38 Inhibitor, Demonstrates Local Lung Inhibition of LPS-Induced TNF α with Minimal Systemic Exposure. J Pharmacol Exp Ther 2018; 365:567-572. [PMID: 29549158 DOI: 10.1124/jpet.117.246132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 03/08/2025] Open
Abstract
Inhaled drugs generally aim to drive a local pharmacological effect in lung, at the same time minimizing systemic exposure, in order to obtain efficacy in lung disease without unwanted systemic effects. Here, we demonstrate that inhaled delivery of a p38 inhibitor (AZD7624) can provide superior pharmacokinetic exposure and superior pharmacodynamic lung effects. In rats, inhaled AZD7624 had a five times higher dose-adjusted lung exposure compared with intravenous dosing. In healthy volunteers, lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) in sputum has been shown to be significantly reduced (85%) by means of inhaled AZD7624. Here, we demonstrate that this effect is associated with a mean unbound plasma concentration, gained from in vitro and ex vivo LPS-challenge protocols, significantly below potencies obtained for AZD7624, suggesting that lung exposure is probably much higher than systemic exposure. This assessment was made for the unbound potency (pIC50u), e.g., the potency remaining after adjustment for plasma protein binding and blood plasma ratio. Hence, the unbound potency of AZD7624 to inhibit LPS-induced TNFα in human mononuclear cells, in whole blood as well as in alveolar macrophages in vitro, was 8.4, 8.7 (full inhibition), and 9.0 (partial inhibition), respectively. The pIC50u in whole blood ex vivo was 8.8, showing good in vitro/in vivo potency correlations. Thus, a mean unbound AZD7624 plasma concentration of 0.3 nmol/l, which was associated with a decrease in LPS-induced sputum TNFα by 85%, is much lower than the pIC50u. This demonstrates that AZD7624 can achieve significant local lung pharmacodynamic effects with concomitant sub-pharmacological systemic exposure.
Collapse
|
33
|
Nayak AP, Deshpande DA, Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res 2018; 7. [PMID: 29904584 PMCID: PMC5981194 DOI: 10.12688/f1000research.14581.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling (AR) is a progressive pathological feature of the obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). The pathology manifests itself in the form of significant, progressive, and (to date) seemingly irreversible changes to distinct respiratory structural compartments. Consequently, AR correlates with disease severity and the gradual decline in pulmonary function associated with asthma and COPD. Although current asthma/COPD drugs manage airway contraction and inflammation, none of these effectively prevent or reverse features of AR. In this review, we provide a brief overview of the features and putative mechanisms affecting AR. We further discuss recently proposed strategies with promise for deterring or treating AR.
Collapse
Affiliation(s)
- Ajay P Nayak
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Raymond B Penn
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
34
|
Lo CY, Huang HY, He JR, Huang TT, Heh CC, Sheng TF, Chung KF, Kuo HP, Wang CH. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline. Int J Chron Obstruct Pulmon Dis 2018; 13:1135-1144. [PMID: 29692608 PMCID: PMC5903494 DOI: 10.2147/copd.s161257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Airway hyperresponsiveness (AHR) is associated with airway inflammation and a rapid decline in lung function and is a predictor of future risk of COPD among smokers. Alveolar macrophages (AMs) from patients with COPD release a greater amount of matrix metalloproteinase (MMP)-9. We hypothesized that the imbalance between MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1) is related to AHR in smokers. Patients and methods Healthy smokers with AHR (AHR + S) or smokers without AHR (AHR − S; divided according to a methacholine challenge test) and nonsmokers without AHR (AHR − NS) were enrolled. Spirometry was performed during enrollment and repeated after 5 years. Initially, AMs recovered from bronchoalveolar lavage (BAL) fluid were cultured in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), MAPK kinase (MEK) 1/2 (the MEK of extracellular signal-regulated kinase [ERK] inhibitor, PD98059), or medium alone for 24 h. The release of MMP-9 and TIMP-1 in culture supernatants was measured by enzyme-linked immunosorbent assay. Results A greater reduction in forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC), FEV1 (as a percentage of the predicted value [%pred]), and maximal mid-expiratory flow (MMEF) was observed among AHR + S in the 5-year period. There was a higher proportion of neutrophils and a lower proportion of AMs in BAL fluid recovered from AHR + S. Compared to AMs from AHR − NS and AHR − S, AMs from nonsmokers with AHR (AHR + NS) released more MMP-9 and less TIMP-1, with an increase in MMP-9/TIMP-1 ratios. The MMP-9/TIMP-1 ratio in smokers was positively correlated with the annual decline in FEV1%pred, FVC%pred, and MMEF%pred. Both SB203580 and PD98059 significantly reduced MMP-9, but not TIMP-1, from AMs of smokers. Conclusion AMs of AHR + NS produce excessive MMP-9 over TIMP-1, which may be a predictor of the development of airway obstruction. Inhibition of p38 MAPK and ERK suppresses the generation of MMP-9 by AMs from smokers.
Collapse
Affiliation(s)
- Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Jung-Ru He
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Tzu-Ting Huang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chih-Chen Heh
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Te-Fang Sheng
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan
| |
Collapse
|
35
|
Abrahams A, Mouchet N, Gouault N, Lohézic Le Dévéhat F, Le Roch M, Rouaud I, Gilot D, Galibert MD. Integrating targeted gene expression and a skin model system to identify functional inhibitors of the UV activated p38 MAP kinase. Photochem Photobiol Sci 2018; 15:1468-1475. [PMID: 27748490 DOI: 10.1039/c6pp00283h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stress-activated p38α MAP Kinase is an integral and critical component of the UV-induced inflammatory response. Despite the advances in recent years in the development of p38 kinase inhibitors, validation of these compounds in the diseased models remains limited. Based on the pharmacological profile of p38α inhibitor lead compound, SB203580, we synthesized a series of pyrrole-derivatives. Using UV-irradiated human skin punch-biopsies and cell cultures, we identified and validated the inhibitory activity of the derivatives by quantitatively measuring their effect on the expression of p38α target genes using real-time PCR. This approach not only identified pyrrole-2 as a unique derivative of this series that specifically inhibited the UV-activated p38α kinase, but also documented the skin permeation, bioavailability and reversible properties of this derivative in a 3D structure. The successful skin permeation of pyrrole-2 and its impact on AREG, COX-2 and MMP-9 gene expression demonstrates its potential use in modulating inflammatory processes in the skin. This study underscored the importance of using adapted biological models to identify accurate bioactive compounds.
Collapse
Affiliation(s)
- Amaal Abrahams
- CNRS UMR6290, Institut de Génétique et Développement de Rennes, France. and University of Rennes1, France and University of Cape Town, Department of Human Biology, Cape Town, South Africa
| | - Nicolas Mouchet
- CNRS UMR6290, Institut de Génétique et Développement de Rennes, France. and University of Rennes1, France
| | - Nicolas Gouault
- University of Rennes1, France and CNRS UMR6226, Sciences Chimiques de Rennes, France
| | | | - Myriam Le Roch
- University of Rennes1, France and CNRS UMR6226, Sciences Chimiques de Rennes, France
| | - Isabelle Rouaud
- University of Rennes1, France and CNRS UMR6226, Sciences Chimiques de Rennes, France
| | - David Gilot
- CNRS UMR6290, Institut de Génétique et Développement de Rennes, France. and University of Rennes1, France
| | - Marie-Dominique Galibert
- CNRS UMR6290, Institut de Génétique et Développement de Rennes, France. and University of Rennes1, France and CHU-Pontchaillou, Rennes, France
| |
Collapse
|
36
|
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195:159-166. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nicholas J Gross
- 1 University Medical Research LLC, St. Francis Hospital, Hartford, Connecticut; and
| | - Peter J Barnes
- 2 Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Limoge M, Safina A, Truskinovsky AM, Aljahdali I, Zonneville J, Gruevski A, Arteaga CL, Bakin AV. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors. Oncotarget 2017; 8:61969-61981. [PMID: 28977919 PMCID: PMC5617479 DOI: 10.18632/oncotarget.18755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.
Collapse
Affiliation(s)
- Michelle Limoge
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Ieman Aljahdali
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Aleksandar Gruevski
- State University of New York at Buffalo, Department of Biological Sciences, Buffalo, New York, USA
| | - Carlos L. Arteaga
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrei V. Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
38
|
Zhu S, Luo H, Liu H, Ha Y, Mays ER, Lawrence RE, Winkelmann E, Barrett AD, Smith SB, Wang M, Wang T, Zhang W. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Res 2017; 145:70-81. [PMID: 28739278 DOI: 10.1016/j.antiviral.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
Zika virus (ZIKV) infection has been associated with ocular abnormalities such as chorioretinal atrophy, optic nerve abnormalities, posterior uveitis and idiopathic maculopathy. Yet our knowledge about ZIKV infection in retinal cells and its potential contribution to retinal pathology is still very limited. Here we found that primary Müller cells, the principal glial cells in the retina, expressed a high level of ZIKV entry cofactor AXL gene and were highly permissive to ZIKV infection. In addition, ZIKV-infected Müller cells exhibited a pro-inflammatory phenotype and produced many inflammatory and growth factors. While a number of inflammatory signaling pathways such as ERK, p38MAPK, NF-κB, JAK/STAT3 and endoplasmic reticulum stress were activated after ZIKV infection, inhibition of p38MAPK after ZIKV infection most effectively blocked ZIKV-induced inflammatory and growth molecules. In comparison to ZIKV, Dengue virus (DENV), another Flavivirus infected Müller cells more efficiently but induced much lower pro-inflammatory responses. These data suggest that Müller cells play an important role in ZIKV-induced ocular pathology by induction of inflammatory and growth factors in which the p38MAPK pathway has a central role. Blocking p38MAPK may provide a novel approach to control ZIKV-induced ocular inflammation.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Elizabeth R Mays
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ryan E Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Evandro Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan D Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Min Wang
- FutraTech Inc., San Diego, CA, 92121, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA; Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
39
|
Lakshmi SP, Reddy AT, Reddy RC. Emerging pharmaceutical therapies for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2141-2156. [PMID: 28790817 PMCID: PMC5531723 DOI: 10.2147/copd.s121416] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun 2017; 85:20-31. [PMID: 28676205 DOI: 10.1016/j.jaut.2017.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022]
Abstract
Cytokines are small, secreted proteins associated with the maintenance of immune homeostasis but also implicated with the pathogenesis of several autoimmune and inflammatory diseases. Biologic agents blocking cytokines or their receptors have revolutionized the treatment of such pathologies. Nonetheless, some patients fail to respond to these drugs or do not achieve complete remission. The signal transduction originating from membrane-bound cytokine receptors is an intricate network of events that lead to gene expression and ultimately regulate cellular functionality. Our understanding of the intracellular actions that molecules such as interleukins, interferons (IFNs) and tumor necrosis factor (TNF) set into motion has greatly increased in the past few years, making it possible to interfere with cytokines' signaling cascades. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), the mitogen activated protein kinase (MAPK) and the Phosphatidylinositol-3'-kinases (PI3K) pathways have all been intensively studied and key steps as well as molecules have been identified. These research efforts have led to the development of a new generation of small molecule inhibitors. Drugs capable of blocking JAK enzymatic activity or interfering with the proteasome-mediated degradation of intermediates in the NF-kB pathway have already entered the clinical arena confirming the validity of this approach. In this review, we have recapitulated the biochemical events downstream of cytokine receptors and discussed some of the drugs which have already been successfully utilized in the clinic. Moreover, we have highlighted some of the new molecules that are currently being developed for the treatment of immune-mediated pathologies and malignancies.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA.
| | - Nathalia Gazaniga
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| | - Laura Vian
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| | - Yasuko Furumoto
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| |
Collapse
|
41
|
Singh RK, Diwan M, Dastidar SG, Najmi AK. Differential effect of p38 and MK2 kinase inhibitors on the inflammatory and toxicity biomarkers in vitro. Hum Exp Toxicol 2017. [PMID: 28629242 DOI: 10.1177/0960327117715901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Many inflammatory responses including chemotaxis, production of nitric oxide, and modulation of pro-inflammatory cytokines in immunological cells are mediated by p38MAPK. Due to its pivotal role, p38MAPK has been extensively explored as a molecular target for inhibition of chronic inflammation; however, it has not been successful so far due to serious toxicity issues. Among several downstream substrates of p38, mitogen-activated protein kinase-activated protein kinase 2 (MK2) has been reported to be a direct and essential downstream component in regulation of innate immune and inflammatory responses. Thus, in this study, we aimed to understand relative molecular differences between p38 and MK2 kinase inhibition in terms of a comparative anti-inflammatory potential along with molecular regulation of toxicity biomarkers such as Phospho c-Jun N-Terminal Kinase (pJNK), caspase-3, and hepatic enzyme levels in relevant human cells in vitro. RESULTS Both p38 and MK2 inhibitors attenuated lipopolysaccharide-induced pro-inflammatory biomarkers expression. In addition, both these kinase inhibitors inhibited release of Th1 and Th17 cytokines in phytohemagglutinin-induced cells with MK2 inhibitor showing a better potency for inhibition of Th1 cytokine release, interferon-γ. In the mechanistic differentiation studies, p38 inhibitors displayed an increase in pJNK and caspase-3 activity in U937 cells and elevation in aspartate transaminase enzyme in HepG2 cells, whereas MK2 inhibitor did not show such adverse toxic effects. CONCLUSION Taken together, inhibition of MK2 kinase can be a relatively preferred strategy as an anti-inflammatory therapy over direct inhibition of p38 kinase in p38MAPK pathway.
Collapse
Affiliation(s)
- R K Singh
- 1 Department of Pharmacology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India.,2 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - M Diwan
- 1 Department of Pharmacology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - S G Dastidar
- 1 Department of Pharmacology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - A K Najmi
- 2 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| |
Collapse
|
42
|
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017; 25:91-104. [PMID: 27956716 PMCID: PMC5340533 DOI: 10.4062/biomolther.2016.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription factor-κB activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Yong Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
43
|
New Anti-inflammatory Drugs for COPD: Is There a Possibility of Developing Drugs That Can Fundamentally Suppress Inflammation? RESPIRATORY DISEASE SERIES: DIAGNOSTIC TOOLS AND DISEASE MANAGEMENTS 2017. [DOI: 10.1007/978-981-10-0839-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Cappelli A, Nannicini C, Chelini A, Paolino M, Giuliani G, Anzini M, Giordani A, Sabatini C, Caselli G, Mennuni L, Makovec F, Giorgi G, Vomero S, Menziani MC. Phenylindenone isomers as divergent modulators of p38α MAP kinase. Bioorg Med Chem Lett 2016; 26:5160-5163. [DOI: 10.1016/j.bmcl.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 11/29/2022]
|
45
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
46
|
Affiliation(s)
- Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Jalaj Gupta
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Current address: Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60596 Frankfurt, Germany
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
47
|
Affiliation(s)
- Matthew C T Fyfe
- Topivert Limited, Imperial College Incubator, London, United Kingdom
| |
Collapse
|
48
|
Patnaik A, Haluska P, Tolcher AW, Erlichman C, Papadopoulos KP, Lensing JL, Beeram M, Molina JR, Rasco DW, Arcos RR, Kelly CS, Wijayawardana SR, Zhang X, Stancato LF, Bell R, Shi P, Kulanthaivel P, Pitou C, Mulle LB, Farrington DL, Chan EM, Goetz MP. A First-in-Human Phase I Study of the Oral p38 MAPK Inhibitor, Ralimetinib (LY2228820 Dimesylate), in Patients with Advanced Cancer. Clin Cancer Res 2015; 22:1095-102. [PMID: 26581242 DOI: 10.1158/1078-0432.ccr-15-1718] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE p38 MAPK regulates the production of cytokines in the tumor microenvironment and enables cancer cells to survive despite oncogenic stress, radiotherapy, chemotherapy, and targeted therapies. Ralimetinib (LY2228820 dimesylate) is a selective small-molecule inhibitor of p38 MAPK. This phase I study aimed to evaluate the safety and tolerability of ralimetinib, as a single agent and in combination with tamoxifen, when administered orally to patients with advanced cancer. EXPERIMENTAL DESIGN The study design consisted of a dose-escalation phase performed in a 3+3 design (Part A; n = 54), two dose-confirmation phases [Part B at 420 mg (n = 18) and Part C at 300 mg (n = 8)], and a tumor-specific expansion phase in combination with tamoxifen for women with hormone receptor-positive metastatic breast cancer refractory to aromatase inhibitors (Part D; n = 9). Ralimetinib was administered orally every 12 hours on days 1 to 14 of a 28-day cycle. RESULTS Eighty-nine patients received ralimetinib at 11 dose levels (10, 20, 40, 65, 90, 120, 160, 200, 300, 420, and 560 mg). Plasma exposure of ralimetinib (Cmax and AUC) increased in a dose-dependent manner. After a single dose, ralimetinib inhibited p38 MAPK-induced phosphorylation of MAPKAP-K2 in peripheral blood mononuclear cells. The most common adverse events, possibly drug-related, included rash, fatigue, nausea, constipation, pruritus, and vomiting. The recommended phase II dose was 300 mg every 12 hours as monotherapy or in combination with tamoxifen. Although no patients achieved a complete response or partial response,19 patients (21.3%) achieved stable disease with a median duration of 3.7 months, with 9 of these patients on study for ≥ 6 cycles. CONCLUSIONS Ralimetinib demonstrated acceptable safety, tolerability, and pharmacokinetics for patients with advanced cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Robert Bell
- Eli Lilly and Company, Indianapolis, Indiana
| | - Peipei Shi
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Celine Pitou
- Eli Lilly and Company, Guildford, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Fiore M, Forli S, Manetti F. Targeting Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts To Lead Small Molecule Inhibitors to Clinical Trials. J Med Chem 2015; 59:3609-34. [PMID: 26502061 DOI: 10.1021/acs.jmedchem.5b01457] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The p38/MAPK-activated kinase 2 (MK2) pathway is involved in a series of pathological conditions (inflammation diseases and metastasis) and in the resistance mechanism to antitumor agents. None of the p38 inhibitors entered advanced clinical trials because of their unwanted systemic side effects. For this reason, MK2 was identified as an alternative target to block the pathway but avoiding the side effects of p38 inhibition. However, ATP-competitive MK2 inhibitors suffered from low solubility, poor cell permeability, and scarce kinase selectivity. Fortunately, non-ATP-competitive inhibitors of MK2 have been already discovered that allowed circumventing the selectivity issue. These compounds showed the additional advantage to be effective at lower concentrations in comparison to the ATP-competitive inhibitors. Therefore, although the significant difficulties encountered during the development of these inhibitors, MK2 is still considered as an attractive target to treat inflammation and related diseases to prevent tumor metastasis and to increase tumor sensitivity to chemotherapeutics.
Collapse
Affiliation(s)
- Mario Fiore
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
50
|
Barjaktarevic IZ, Arredondo AF, Cooper CB. Positioning new pharmacotherapies for COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:1427-42. [PMID: 26244017 PMCID: PMC4521666 DOI: 10.2147/copd.s83758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COPD imposes considerable worldwide burden in terms of morbidity and mortality. In recognition of this, there is now extensive focus on early diagnosis, secondary prevention, and optimizing medical management of the disease. While established guidelines recognize different grades of disease severity and offer a structured basis for disease management based on symptoms and risk, it is becoming increasingly evident that COPD is a condition characterized by many phenotypes and its control in a single patient may require clinicians to have access to a broader spectrum of pharmacotherapies. This review summarizes recent developments in COPD management and compares established pharmacotherapy with new and emerging pharmacotherapies including long-acting muscarinic antagonists, long-acting β-2 sympathomimetic agonists, and fixed-dose combinations of long-acting muscarinic antagonists and long-acting β-2 sympathomimetic agonists as well as inhaled cortiocosteroids, phosphodiesterase inhibitors, and targeted anti-inflammatory drugs. We also review the available oral medications and new agents with novel mechanisms of action in early stages of development. With several new pharmacological agents intended for the management of COPD, it is our goal to familiarize potential prescribers with evidence relating to the efficacy and safety of new medications and to suggest circumstances in which these therapies could be most useful.
Collapse
Affiliation(s)
- Igor Z Barjaktarevic
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony F Arredondo
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher B Cooper
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA ; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|