1
|
Gong W, Huang D, Zhou T, Zhu X, Huang Y, Lv Y, Zhang Y, Liu Z, Zeng F, Wu S. Decoding Resistin Gene Polymorphisms: Implications for Lung Cancer Risk and Clinical Outcomes of Platinum-Based Chemotherapy. Biomedicines 2025; 13:291. [PMID: 40002704 PMCID: PMC11852191 DOI: 10.3390/biomedicines13020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Resistin (RETN), an inflammatory cytokine exhibiting multifaceted roles in cancer progression, has emerged as a plausible mediator between inflammation and oncogenesis. Prior research from our group has highlighted the pivotal role of resistin in carcinogenesis and its impact on drug responsiveness. The present study delves into the relationship between resistin expression and genetic polymorphisms with cancer risk and clinical outcomes among lung cancer patients undergoing platinum-based chemotherapy. Methods: Immunohistochemical analysis was conducted to assess resistin expression levels in 104 tumor tissues derived from lung adenocarcinoma patients. Additionally, 498 lung cancer patients and 213 healthy controls were recruited for this study, with 467 patients undergoing at least two cycles of platinum-based chemotherapy. Unconditional logistical regression analysis was employed to evaluate the associations between RETN polymorphisms and lung cancer risk, as well as clinical outcomes. Genotyping of RETN polymorphisms (rs1862513 and rs3745367) was performed using the Sequenom MassARRAY System. Results: The findings revealed a positive correlation between resistin expression in tumor tissues and metastasis (particularly distant metastasis) and overall survival in lung adenocarcinoma. However, RETN polymorphisms were not significantly associated with overall survival in lung cancer patients. No substantial association was observed between RETN polymorphisms and lung cancer risk, chemotherapy response, or toxicities, except for rs1862513, which showed a link with severe gastrointestinal toxicity. Meta-analysis results further confirmed the absence of a significant association between RETN polymorphisms and cancer risk. Conclusions: Despite the pivotal role of resistin in carcinogenesis, only the RETN rs1862513 polymorphism emerges as a potential biomarker for gastrointestinal toxicity in lung cancer patients undergoing platinum-based chemotherapy. However, these findings necessitate validation through well-designed studies with larger sample sizes.
Collapse
Affiliation(s)
- Weijing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Dandan Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Tao Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Xinxin Zhu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Yifei Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410017, China;
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (T.Z.); (Y.H.); (Y.L.); (Y.Z.)
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| |
Collapse
|
2
|
Wu Y, Zhuang J, Song Y, Gao X, Chu J, Han S. Advances in single-cell sequencing technology in microbiome research. Genes Dis 2024; 11:101129. [PMID: 38545125 PMCID: PMC10965480 DOI: 10.1016/j.gendis.2023.101129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 11/11/2024] Open
Abstract
With the rapid development of histological techniques and the widespread application of single-cell sequencing in eukaryotes, researchers desire to explore individual microbial genotypes and functional expression, which deepens our understanding of microorganisms. In this review, the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well. Moreover, the characteristics of the currently emerging microbial single-cell sequencing (Microbe-seq) technology were summarized, and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status. Despite its mature development, the Microbe-seq technology was still in the optimization stage. A retrospective study was conducted, aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technology.
Collapse
Affiliation(s)
- Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xinyi Gao
- Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| |
Collapse
|
3
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Pharmacogenomics Beyond Single Common Genetic Variants: The Way Forward. Annu Rev Pharmacol Toxicol 2024; 64:33-51. [PMID: 37506333 DOI: 10.1146/annurev-pharmtox-051921-091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Interindividual variability in genes encoding drug-metabolizing enzymes, transporters, receptors, and human leukocyte antigens has a major impact on a patient's response to drugs with regard to efficacy and safety. Enabled by both technological and conceptual advances, the field of pharmacogenomics is developing rapidly. Major progress in omics profiling methods has enabled novel genotypic and phenotypic characterization of patients and biobanks. These developments are paralleled by advances in machine learning, which have allowed us to parse the immense wealth of data and establish novel genetic markers and polygenic models for drug selection and dosing. Pharmacogenomics has recently become more widespread in clinical practice to personalize treatment and to develop new drugs tailored to specific patient populations. In this review, we provide an overview of the latest developments in the field and discuss the way forward, including how to address the missing heritability, develop novel polygenic models, and further improve the clinical implementation of pharmacogenomics.
Collapse
Affiliation(s)
- Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | - Yitian Zhou
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | | |
Collapse
|
4
|
Sundell J, Bienvenu E, Äbelö A, Ashton M. Effect of efavirenz-based ART on the pharmacokinetics of rifampicin and its primary metabolite in patients coinfected with TB and HIV. J Antimicrob Chemother 2021; 76:2950-2957. [PMID: 34337654 PMCID: PMC8521403 DOI: 10.1093/jac/dkab258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives To evaluate the effects of concomitant efavirenz-based ART and genetic polymorphism on the variability in rifampicin and 25-desacetylrifampicin pharmacokinetics. Patients and methods Plasma concentrations of rifampicin and 25-desacetylrifampicin from 63 patients coinfected with TB and HIV were analysed by LC-MS/MS followed by non-linear mixed-effects modelling. Patients were genotyped for SLCO1B1 (463 C>A, 388 A>G, 11187 G>A, rs4149015, 521 T>C and 1436 G>C) and SLCO1B3 (334 T>G). Results One-compartment disposition models described the observations adequately. The oral clearances of rifampicin and 25-desacetylrifampicin were 140% and 110% higher, respectively, in patients on concomitant efavirenz-based ART. Rifampicin bioavailability was also lower in patients on concomitant ART. Further, although not included in the final model, a lower relative bioavailability in carriers of WT SLCO1B3 334 T>G compared with carriers of mutations in the genotype was estimated. Conclusions The results presented indicate both pre-systemic and systemic induction by efavirenz-based ART affecting rifampicin pharmacokinetics. The described drug–drug interaction has a clinical impact on rifampicin exposure prior to steady state and may impact the early bactericidal activity in patients on efavirenz-based ART.
Collapse
Affiliation(s)
- Jesper Sundell
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emile Bienvenu
- Department of Pharmacy, School of Medicine and Pharmacy, University of Rwanda, Rwanda
| | - Angela Äbelö
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Ashton
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Zhu C, Li N, Cheng H, Ma Y. Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds. Biol Open 2021; 10:261767. [PMID: 33942864 PMCID: PMC8186729 DOI: 10.1242/bio.054932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Chinese indigenous sheep can be classified into three types based on tail morphology: fat-tailed, fat-rumped, and thin-tailed sheep, of which the typical breeds are large-tailed Han sheep, Altay sheep, and Tibetan sheep, respectively. To unravel the molecular genetic basis underlying the phenotypic differences among Chinese indigenous sheep with these three different tail types, we used ovine high-density 600K single nucleotide polymorphism (SNP) arrays to detect genome-wide associations, and performed general linear model analysis to identify candidate genes, using genotyping technology to validate the candidate genes. Tail type is an important economic trait in sheep. However, the candidate genes associated with tail type are not known. The objective of this study was to identify SNP markers, genes, and chromosomal regions related to tail traits. We performed a genome-wide association study (GWAS) using data from 40 large-tailed Han sheep, 40 Altay sheep (cases) and 40 Tibetan sheep (controls). A total of 31 significant (P<0.05) SNPs associated with tail-type traits were detected. For significant SNPs' loci, we determined their physical location and performed a screening of candidate genes within each region. By combining information from previously reported and annotated biological functional genes, we identified SPAG17, Tbx15, VRTN, NPC2, BMP2 and PDGFD as the most promising candidate genes for tail-type traits. Based on the above identified candidate genes for tail-type traits, BMP2 and PDGFD genes were selected to investigate the relationship between SNPs within the tails in the Altay and Tibetan populations. rs119 T>C in exon1 of the BMP2 gene and one SNP in exon4 (rs69 C>A) of the PDGFD gene were detected. rs119 was of the TT genotype in Altay sheep, while it was of the CC genotype in Tibetan sheep. On rs69 of the PDGFD gene, Altay sheep presented with the CC genotype; however, Tibetan sheep presented with the AA genotype.
Collapse
Affiliation(s)
- Caiye Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Heping Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Population Pharmacokinetics and Pharmacogenetics of Ethambutol in Adult Patients Coinfected with Tuberculosis and HIV. Antimicrob Agents Chemother 2020; 64:AAC.01583-19. [PMID: 31712201 DOI: 10.1128/aac.01583-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
This study aimed to characterize the population pharmacokinetics and pharmacogenetics of ethambutol in tuberculosis-HIV-coinfected adult patients. Ethambutol plasma concentrations, determined by liquid chromatography-tandem mass spectrometry, in 63 patients receiving ethambutol as part of rifampin-based fixed-dose combination therapy for tuberculosis were analyzed using nonlinear mixed-effects modeling. A one-compartment disposition model with first-order elimination and four transit compartments prior to first-order absorption was found to adequately describe the concentration-time profiles of ethambutol in plasma. Body weight was implemented as an allometric function on the clearance and volume parameters. Estimates of oral clearance and volume of distribution were 77.4 liters/h and 76.2 liters, respectively. A G/A mutation with regard to CYP1A2 2159 G>A was associated with a 50% reduction in relative bioavailability. Simulations revealed that doses of 30 mg/kg of body weight and 50 mg/kg for G/G and G/A carriers, respectively, would result in clinically adequate exposure. The results presented here suggest that CYP1A2 polymorphism affects ethambutol exposure in this population and that current treatment guidelines may result in underexposure in patients coinfected with tuberculosis and HIV. Based on simulations, a dose increase from15 to 20 mg/kg to 30 mg/kg is suggested. However, the 50-mg/kg dose required to reach therapeutic exposure in G/A carriers may be inappropriate due to the dose-dependent toxicity of ethambutol. Additional studies are required to further investigate CYP450 polymorphism effects on ethambutol pharmacokinetics.
Collapse
|
7
|
Liu Y, Liao H, Liu Y, Guo J, Sun Y, Fu X, Xiao D, Cai J, Lan L, Xie P, Zha L. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China. Electrophoresis 2017; 38:1154-1162. [PMID: 28168762 DOI: 10.1002/elps.201600379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/21/2017] [Accepted: 01/31/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Yanfang Liu
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Huidan Liao
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Ying Liu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital; Central South University; Changsha P.R. China
| | - Juanjuan Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital; Central South University; Changsha P.R. China
| | - Yi Sun
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Xiaoliang Fu
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Ding Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital; Central South University; Changsha P.R. China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Lingmei Lan
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Pingli Xie
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| |
Collapse
|
8
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
9
|
A New Panel of SNP Markers for the Individual Identification of North American Pumas. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2015. [DOI: 10.3996/112014-jfwm-080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Pumas Puma concolor are one of the most studied terrestrial carnivores because of their widespread distribution, substantial ecological impacts, and conflicts with humans. Over the past decade, managing pumas has involved extensive efforts including the use of genetic methods. Microsatellites have been the most commonly used genetic markers; however, technical artifacts and little overlap of frequently used loci render large-scale comparison of puma genetic data across studies challenging. Therefore, a panel of genetic markers that can produce consistent genotypes across studies without the need for extensive calibrations is essential for range-wide genetic management of puma populations. Here, we describe the development of PumaPlex, a high-throughput assay to genotype 25 single nucleotide polymorphisms in pumas. We validated PumaPlex in 748 North American pumas Puma concolor couguar, and demonstrated its ability to generate reproducible genotypes and accurately identify individuals. Furthermore, in a test using fecal deoxyribonucleic acid (DNA) samples, we found that PumaPlex produced significantly more genotypes with fewer errors than 12 microsatellite loci, 8 of which are commonly used. Our results demonstrate that PumaPlex is a valuable tool for the genetic monitoring and management of North American puma populations. Given the analytical simplicity, reproducibility, and high-throughput capability of single nucleotide polymorphisms, PumaPlex provides a standard panel of markers that promotes the comparison of genotypes across studies and independent of the genotyping technology used.
Collapse
|
10
|
Cho YT, Su H, Wu WJ, Wu DC, Hou MF, Kuo CH, Shiea J. Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem 2015; 69:209-54. [PMID: 25934363 DOI: 10.1016/bs.acc.2015.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometric techniques frequently used in clinical diagnosis, such as gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, ambient ionization mass spectrometry, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF/MS), are discussed. Due to its ability to rapidly detect large biomolecules in trace amounts, MALDI-TOF/MS is an ideal tool for characterizing disease biomarkers in biologic samples. Clinical applications of MS for the identification and characterization of microorganisms, DNA fragments, tissues, and biofluids are introduced. Approaches for using MALDI-TOF/MS to detect various disease biomarkers including peptides, proteins, and lipids in biological fluids are further discussed. Finally, various sample pretreatment methods which improve the detection efficiency of disease biomarkers are introduced.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Donfack J, Wiley A. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification. Forensic Sci Int Genet 2015; 16:112-120. [PMID: 25594487 DOI: 10.1016/j.fsigen.2014.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20pg input phosphoglycerate kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework.
Collapse
Affiliation(s)
- Joseph Donfack
- Counterterrorism and Forensic Science Research Unit, Federal Bureau of Investigation Laboratory Division, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | - Anissa Wiley
- Counterterrorism and Forensic Science Research Unit, Visiting Scientist Program, Federal Bureau of Investigation Laboratory Division, Quantico, VA 22135, USA
| |
Collapse
|
12
|
Mocking RJT, Lok A, Assies J, Koeter MWJ, Visser I, Ruhé HG, Bockting CLH, Schene AH. Ala54Thr fatty acid-binding protein 2 (FABP2) polymorphism in recurrent depression: associations with fatty acid concentrations and waist circumference. PLoS One 2013; 8:e82980. [PMID: 24340071 PMCID: PMC3858331 DOI: 10.1371/journal.pone.0082980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Fatty acid (FA)-alterations may mediate the mutual association between Major Depressive Disorder (MDD) and cardiovascular disease (CVD). However, etiology of observed FA-alterations in MDD and CVD remains largely unclear. An interesting candidate may be a mutation in the fatty acid–binding protein 2 (FABP2)-gene, because it regulates dietary FA-uptake. Therefore, we aimed to test the hypotheses that in MDD-patients the FABP2 Ala54Thr-polymorphism would be (I) more prevalent than in sex- and age-matched controls, (II) associated with observed alterations in FA-metabolism, and (III) associated with CVD-risk factor waist circumference. Methods We measured concentrations of 29 different erythrocyte FAs, FABP2-genotype, and waist circumference in recurrent MDD-patients and matched never-depressed controls. Results FABP2-genotype distribution did not significantly differ between the 137 MDD-patients and 73 matched controls. However, patients with the Ala54Thr-polymorphism had (I) higher concentrations of especially eicosadienoic acid (C20:2ω6; P=.009) and other 20-carbon FAs, and associated (II) lower waist circumference (P=.019). In addition, FABP2-genotype effects on waist circumference in patients seemed (I) mediated by its effect on C20:2ω6, and (II) different from controls. Conclusions Although Ala54Thr-polymorphism distribution was not associated with recurrent MDD, our results indicate that FABP2 may play a role in the explanation of observed FA-alterations in MDD. For Ala54Thr-polymorphism patients, potentially adaptive conversion of increased bioavailable dietary precursors into eicosadienoic acid instead of arachidonic acid might be related to a low waist circumference. Because this is the first investigation of these associations, replication is warranted, preferably by nutrigenetic studies applying lipidomics and detailed dietary assessment.
Collapse
Affiliation(s)
- Roel J. T. Mocking
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Anja Lok
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna Assies
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten W. J. Koeter
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ieke Visser
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Henricus G. Ruhé
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Program for Mood and Anxiety Disorders, University Center for Psychiatry UMCG, University of Groningen, Groningen, The Netherlands
| | - Claudi L. H. Bockting
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Aart H. Schene
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Ganova-Raeva LM, Khudyakov YE. Application of mass spectrometry to molecular diagnostics of viral infections. Expert Rev Mol Diagn 2013; 13:377-88. [PMID: 23638820 DOI: 10.1586/erm.13.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mass spectrometry (MS) has found numerous applications in life sciences. It has high accuracy, sensitivity and wide dynamic range in addition to medium- to high-throughput capabilities. These features make MS a superior platform for analysis of various biomolecules including proteins, lipids, nucleic acids and carbohydrates. Until recently, MS was applied for protein detection and characterization. During the last decade, however, MS has successfully been used for molecular diagnostics of microbial and viral infections with the most notable applications being identification of pathogens, genomic sequencing, mutation detection, DNA methylation analysis, tracking of transmissions, and characterization of genetic heterogeneity. These new developments vastly expand the MS application from experimental research to public health and clinical fields. Matching of molecular techniques with specific requirements of the major MS platforms has produced powerful technologies for molecular diagnostics, which will further benefit from coupling with computational tools for extracting clinical information from MS-derived data.
Collapse
Affiliation(s)
- Lilia M Ganova-Raeva
- Centers for Disease Control and Prevention, Division of Viral Hepatitis, 1600 Clifton Rd. NE, MS A-33, Atlanta, GA 30329, USA.
| | | |
Collapse
|
14
|
Interaction between the MTHFR C677T polymorphism and traumatic childhood events predicts depression. Transl Psychiatry 2013; 3:e288. [PMID: 23900311 PMCID: PMC3731792 DOI: 10.1038/tp.2013.60] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Childhood trauma is associated with the onset and recurrence of major depressive disorder (MDD). The thermolabile T variant of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism (rs1801133) is associated with a limited (oxidative) stress defense. Therefore, C677T MTHFR could be a potential predictor for depressive symptomatology and MDD recurrence in the context of traumatic stress during early life. We investigated the interaction between the C677T MTHFR variant and exposure to traumatic childhood events (TCEs) on MDD recurrence during a 5.5-year follow-up in a discovery sample of 124 patients with recurrent MDD and, in an independent replication sample, on depressive symptomatology in 665 healthy individuals from the general population. In the discovery sample, Cox regression analysis revealed a significant interaction between MTHFR genotype and TCEs on MDD recurrence (P=0.017). Over the 5.5-year follow-up period, median time to recurrence was 191 days for T-allele carrying patients who experienced TCEs (T+ and TCE+); 461 days for T- and TCE+ patients; 773 days for T+ and TCE- patients and 866 days for T- and TCE- patients. In the replication sample, a significant interaction was present between the MTHFR genotype and TCEs on depressive symptomatology (P=0.002). Our results show that the effects of TCEs on the prospectively assessed recurrence of MDD and self-reported depressive symptoms in the general population depend on the MTHFR genotype. In conclusion, T-allele carriers may be at an increased risk for depressive symptoms or MDD recurrence after exposure to childhood trauma.
Collapse
|
15
|
Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 2013; 26:103-14. [PMID: 23297261 DOI: 10.1128/cmr.00058-12] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied as an identification procedure in clinical microbiology and has been widely used in routine laboratory practice because of its economical and diagnostic benefits. The range of applications of MALDI-TOF MS has been growing constantly, from rapid species identification to labor-intensive proteomic studies of bacterial physiology. The purpose of this review is to summarize the contribution of the studies already performed with MALDI-TOF MS concerning antibiotic resistance and to analyze future perspectives in this field. We believe that current research should continue in four main directions, including the detection of antibiotic modifications by degrading enzymes, the detection of resistance mechanism determinants through proteomic studies of multiresistant bacteria, and the analysis of modifications of target sites, such as ribosomal methylation. The quantification of antibiotics is suggested as a new approach to study influx and efflux in bacterial cells. The results of the presented studies demonstrate that MALDI-TOF MS is a relevant tool for the detection of antibiotic resistance and opens new avenues for both clinical and experimental microbiology.
Collapse
|
16
|
Zhu J, Palla M, Ronca S, Warpner R, Ju J, Lin Q. A MEMS-Based Approach to Single Nucleotide Polymorphism Genotyping. SENSORS AND ACTUATORS. A, PHYSICAL 2013; 195:175-182. [PMID: 24729659 PMCID: PMC3979494 DOI: 10.1016/j.sna.2012.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genotyping of single nucleotide polymorphisms (SNPs) allows diagnosis of human genetic disorders associated with single base mutations. Conventional SNP genotyping methods are capable of providing either accurate or high-throughput detection, but are still labor-, time-, and resource-intensive. Microfluidics has been applied to SNP detection to provide fast, low-cost, and automated alternatives, although these applications are still limited by either accuracy or throughput issues. To address this challenge, we present a MEMS-based SNP genotyping approach that uses solid-phase-based reactions in a single microchamber on a temperature control chip. Polymerase chain reaction (PCR), allele specific single base extension (SBE), and desalting on microbeads are performed in the microchamber, which is coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the SBE product. Experimental results from genotyping of the SNP on exon 1 of the HBB gene, which causes sickle cell anemia, demonstrate the potential of the device for rapid, accurate, multiplexed and high-throughput detection of SNPs.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
| | - Mirkó Palla
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
- Department of Chemical Engineering, Columbia University,
New York, NY, USA
| | - Stefano Ronca
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
- Department of Mechanical and Industrial Engineering,
University of Brescia, Brescia, BS, Italy
| | - Ronald Warpner
- Department of Obstetrics and Gynecology, Columbia
University, New York, NY, USA
| | - Jingyue Ju
- Department of Chemical Engineering, Columbia University,
New York, NY, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
| |
Collapse
|
17
|
Chen JY, Xu H, Shi P, Culbertson A, Meslin EM. Ethics and Privacy Considerations for Systems Biology Applications in Predictive and Personalized Medicine. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Integrative analysis and modeling of the omics data using systems biology have led to growing interests in the development of predictive and personalized medicine. Personalized medicine enables future physicians to prescribe the right drug to the right patient at the right dosage, by helping them link each patient’s genotype to their specific disease conditions. This chapter shares technological, ethical, and social perspectives on emerging personalized medicine applications. First, it examines the history and research trends of pharmacogenomics, systems biology, and personalized medicine. Next, it presents bioethical concerns that arise from dealing with the increasing accumulation of biological samples in many biobanking projects today. Lastly, the chapter describes growing concerns over patient privacy when large amount of individuals’ genetic data and clinical data are managed electronically and accessible online.
Collapse
Affiliation(s)
- Jake Y. Chen
- Indiana Center for Systems Biology and Personalized Medicine, USA, Indiana University, USA & Purdue University, USA
| | - Heng Xu
- The Pennsylvania State University, USA
| | - Pan Shi
- The Pennsylvania State University, USA
| | | | - Eric M. Meslin
- Indiana University Center for Bioethics, USA & Indiana University, USA
| |
Collapse
|
18
|
Chung CM, Wang RY, Fann CSJ, Chen JW, Jong YS, Jou YS, Yang HC, Kang CS, Chen CC, Chang HC, Pan WH. Fine-mapping angiotensin-converting enzyme gene: separate QTLs identified for hypertension and for ACE activity. PLoS One 2013; 8:e56119. [PMID: 23469169 PMCID: PMC3587614 DOI: 10.1371/journal.pone.0056119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/04/2013] [Indexed: 11/23/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) has been implicated in multiple biological system, particularly cardiovascular diseases. However, findings associating ACE insertion/deletion polymorphism with hypertension or other related traits are inconsistent. Therefore, in a two-stage approach, we aimed to fine-map ACE in order to narrow-down the function-specific locations. We genotyped 31 single nucleotide polymorphisms (SNPs) of ACE from 1168 individuals from 305 young-onset (age ≤40) hypertension pedigrees, and found four linkage disequilibrium (LD) blocks. A tag-SNP, rs1800764 on LD block 2, upstream of and near the ACE promoter, was significantly associated with young-onset hypertension (p = 0.04). Tag-SNPs on all LD blocks were significantly associated with ACE activity (p-value: 10–16 to <10–33). The two regions most associated with ACE activity were found between exon13 and intron18 and between intron 20 and 3′UTR, as revealed by measured haplotype analysis. These two major QTLs of ACE activity and the moderate effect variant upstream of ACE promoter for young-onset hypertension were replicated by another independent association study with 842 subjects.
Collapse
Affiliation(s)
- Chia-Min Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Division of Preventive Medicine and Health Service Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ruey-Yun Wang
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Wen Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Shiun Jong
- Department of Cardiology, Tao-Yuan General Hospital Department of Health, Tao-Yuan, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Sen Kang
- Department of Cardiology, Min-Sheng Hospital, Taoyuan, Taiwan
| | | | | | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Division of Preventive Medicine and Health Service Research, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Cho YT, Su H, Huang TL, Chen HC, Wu WJ, Wu PC, Wu DC, Shiea J. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry for clinical diagnosis. Clin Chim Acta 2013; 415:266-75. [DOI: 10.1016/j.cca.2012.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 01/01/2023]
|
20
|
Song YX, Zhou X, Wang ZN, Gao P, Li AL, Liang JW, Zhu JL, Xu YY, Xu HM. The association between individual SNPs or haplotypes of matrix metalloproteinase 1 and gastric cancer susceptibility, progression and prognosis. PLoS One 2012; 7:e38002. [PMID: 22655095 PMCID: PMC3360011 DOI: 10.1371/journal.pone.0038002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/29/2012] [Indexed: 11/23/2022] Open
Abstract
Background The single nucleotide polymorphisms (SNPs) in matrix metalloproteinase 1(MMP-1)play important roles in some cancers. This study examined the associations between individual SNPs or haplotypes in MMP-1 and susceptibility, clinicopathological parameters and prognosis of gastric cancer in a large sample of the Han population in northern China. Methods In this case–controlled study, there were 404 patients with gastric cancer and 404 healthy controls. Seven SNPs were genotyped using the MALDI-TOF MS system. Then, SPSS software, Haploview 4.2 software, Haplo.states software and THEsias software were used to estimate the association between individual SNPs or haplotypes of MMP-1 and gastric cancer susceptibility, progression and prognosis. Results Among seven SNPs, there were no individual SNPs correlated to gastric cancer risk. Moreover, only the rs470206 genotype had a correlation with histologic grades, and the patients with GA/AA had well cell differentiation compared to the patients with genotype GG (OR=0.573; 95%CI: 0.353–0.929; P=0.023). Then, we constructed a four-marker haplotype block that contained 4 common haplotypes: TCCG, GCCG, TTCG and TTTA. However, all four common haplotypes had no correlation with gastric cancer risk and we did not find any relationship between these haplotypes and clinicopathological parameters in gastric cancer. Furthermore, neither individual SNPs nor haplotypes had an association with the survival of patients with gastric cancer. Conclusions This study evaluated polymorphisms of the MMP-1 gene in gastric cancer with a MALDI-TOF MS method in a large northern Chinese case-controlled cohort. Our results indicated that these seven SNPs of MMP-1 might not be useful as significant markers to predict gastric cancer susceptibility, progression or prognosis, at least in the Han population in northern China.
Collapse
Affiliation(s)
- Yong-Xi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Zhou
- Department of Gynecology and Obstetrics, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
- * E-mail:
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ai-Lin Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ji-Wang Liang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jin-Liang Zhu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ying-Ying Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hui-Mian Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
21
|
Exploring of tri-allelic SNPs using Pyrosequencing and the SNaPshot methods for forensic application. Electrophoresis 2012; 33:841-8. [DOI: 10.1002/elps.201100508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Zha L, Yun L, Chen P, Luo H, Yan J, Hou Y. Exploring of tri-allelic SNPs using Pyrosequencing and the SNaPshot methods for forensic application. Electrophoresis 2012. [DOI: 10.1002/elps.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lagabaiyila Zha
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Libing Yun
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Pengyu Chen
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Haibo Luo
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Jing Yan
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Yiping Hou
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| |
Collapse
|
23
|
Li AL, Song YX, Wang ZN, Gao P, Miao Y, Zhu JL, Yue ZY, Xu HM. Polymorphisms and a haplotype in heparanase gene associations with the progression and prognosis of gastric cancer in a northern Chinese population. PLoS One 2012; 7:e30277. [PMID: 22276173 PMCID: PMC3262795 DOI: 10.1371/journal.pone.0030277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Background Human heparanase plays an important role in cancer development and single nucleotide polymorphisms (SNPs) in the heparanase gene (HPSE) have been shown to be correlated with gastric cancer. The present study examined the associations between individual SNPs or haplotypes in HPSE and susceptibility, clinicopathological parameters and prognosis of gastric cancer in a large sample of the Han population in northern China. Methodology/Principal Findings Genomic DNA was extracted from formalin-fixed, paraffin-embedded normal gastric tissue samples from 404 patients and from blood from 404 healthy controls. Six SNPs were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A chi-square (χ2) test and unconditional logistic regression were used to analyze the risk of gastric cancer; a Log-rank test and Cox proportional hazards model were used to produce survival analysis and a Kaplan-Meier method was used to map survival curves. The mean genotyping success rates were more than 99% in both groups. Haplotype CA in the block composed of rs11099592 and rs4693608 had a greater distribution in the group of Borrmann types 3 and 4 (P = 0.037), the group of a greater number of lymph node metastases (N3 vs N0 group, P = 0.046), and moreover was correlated to poor survival (CG vs CA: HR = 0.645, 95%CI: 0.421–0.989, P = 0.044). In addition, genotypes rs4693608 AA and rs4364254 TT were associated with poor survival (P = 0.030, HR = 1.527, 95%CI: 1.042–2.238 for rs4693608 AA; P = 0.013, HR = 1.546, 95%CI: 1.096–2.181 for rs4364254 TT). There were no correlations between individual SNPs or haplotypes and gastric cancer risk. Conclusions/Significance A functional haplotype in HPSE was found, which included the important SNP rs4693608. SNPs in HPSE play an important role in gastric cancer progression and survival, and perhaps may be a molecular marker for prognosis and treatment values.
Collapse
Affiliation(s)
- Ai-Lin Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
- * E-mail:
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Miao
- Department of Pathology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jin-Liang Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Yue
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hui-Mian Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
24
|
Li L, Zhao S, Liu Y, Li C, Lin Y, Zhang S. Linkage disequilibrium analysis of 67 SNP loci on X chromosome. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2011. [DOI: 10.1016/j.fsigss.2011.09.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Zhang X, Kong X, Fan W, Du X. Iminodiacetic acid-functionalized gold nanoparticles for optical sensing of myoglobin via Cu2+ coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6504-6510. [PMID: 21488608 DOI: 10.1021/la200177e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel gold nanoparticle (AuNP)-based optical sensing system has been developed for the detection of myoglobin (Mb), which is of significant importance for early disease diagnosis. Two thiol molecules containing an iminodiacetic acid moiety (IDA) were synthesized. This detection is based on the Mb-induced aggregation of IDA-functionalized AuNPs resulting from the structures of Mb sandwiched between the functionalized AuNPs via Cu(2+) bridges in the coordination interactions of IDA-Cu(2+)-histidine residues available on the Mb surface, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, dynamic light scattering, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The induction aggregation resulted in a red shift in plasmon resonance band of the AuNPs concomitant with a change in solution color from red to purple. The qualitative and quantitative detections of Mb can be achieved by colorimetric observations and UV-vis spectral measurements, respectively. The selectivity of protein assay with the functionalized AuNPs was further investigated, and it is found that the optical sensing of histidine-rich proteins is closely related to number and distribution of surface histidine residues as well as size of proteins.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), and School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, PR China
| | | | | | | |
Collapse
|
26
|
Meyer K, Ueland PM. Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for multiplex genotyping. Adv Clin Chem 2011; 53:1-29. [PMID: 21404912 DOI: 10.1016/b978-0-12-385855-9.00001-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After completion of the human genome project, the focus of geneticists has shifted to elucidation of gene function and genetic diversity to understand the mechanisms of complex diseases or variation of patient response in drug treatment. In the past decade, many different genotyping techniques have been described for the detection of single-nucleotide polymorphisms (SNPs) and other common polymorphic variants. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is among the most powerful and widely used genotyping technologies. The method offers great flexibility in assay design and enables highly accurate genotyping at high sample throughput. Different strategies for allele discrimination and quantification have been combined with MALDI (hybridization, ligation, cleavage, and primer extension). Approaches based on primer extension have become the most popular applications. This combination enables rapid and reliable multiplexing of SNPs and other common variants, and makes MALDI-TOF-MS well suited for large-scale studies in fine-mapping and verification of genome-wide scans. In contrast to standard genotyping, more demanding approaches have enabled genotyping of DNA pools, molecular haplotyping or the detection of free circulating DNA for prenatal or cancer diagnostics. In addition, MALDI can also be used in novel applications as DNA methylation analysis, expression profiling, and resequencing. This review gives an introduction to multiplex genotyping by MALDI-MS and will focus on the latest developments of this technology.
Collapse
|
27
|
Shi Y, Xiang P, Li L, Shen M. Analysis of 50 SNPs in CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2 by MALDI-TOF mass spectrometry in Chinese Han population. Forensic Sci Int 2010; 207:183-7. [PMID: 21071160 DOI: 10.1016/j.forsciint.2010.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/14/2010] [Accepted: 10/02/2010] [Indexed: 10/18/2022]
Abstract
One of the major challenges in the near future is the identification of genes that affect the metabolism of different drugs. Large scale association studies that utilise single nucleotide polymorphisms (SNPs) have been considered a valuable tool for this purpose. CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2 were found to be involved in the majority of hepatically cleared drugs. To determine the allele frequencies of some SNPs that may have great potential value in forensic science, we screened 50 SNPs in these 5 CYP genes in Chinese Han people using an accurate, high-throughput, cost-effective method. Primers were designed using the MassARRAY Assay Design software. Genomic DNA was prepared from blood samples obtained from individuals of Chinese Han origin. Multiplex PCR was performed to amplify the relevant gene fragments, and the polymorphisms were analysed by allele-specific primer extension followed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). A panel of genomic DNA samples previously genotyped by other methods were analysed simultaneously for quality control, and the results demonstrated that this assay was 100% accurate. A total of 17 of the analysed SNPs were polymorphic. Of these 17 SNPs, 8 (rs16947, rs28371725, rs1800754, rs4244285, rs4986893, rs12248560, rs3758580, rs2242480) had an allele frequency that was significantly different between this Chinese Han population and Caucasians (p<0.01). In addition, the frequencies of two of these SNPs (rs1800754, rs3758581) in our Chinese Han population differed significantly from the existing Chinese frequency data (p<0.01). The described method thus provides reliable results and enables the genotyping of up to thousands of samples by taking advantage of the high-throughput MALDI-TOF technology. The results herein are now included as a supplement to the P450 database.
Collapse
Affiliation(s)
- Yan Shi
- Department of Forensic Science, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | |
Collapse
|
28
|
Iovannisci D, Illek B, Fischer H. Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T. ACTA ACUST UNITED AC 2010; 136:35-46. [PMID: 20548053 PMCID: PMC2894549 DOI: 10.1085/jgp.200910379] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Airways secrete considerable amounts of acid. In this study, we investigated the identity and the pH-dependent function of the apical H(+) channel in the airway epithelium. In pH stat recordings of confluent JME airway epithelia in Ussing chambers, Zn-sensitive acid secretion was activated at a mucosal threshold pH of approximately 7, above which it increased pH-dependently at a rate of 339 +/- 34 nmol x h(-1) x cm(-2) per pH unit. Similarly, H(+) currents measured in JME cells in patch clamp recordings were readily blocked by Zn and activated by an alkaline outside pH. Small interfering RNA-mediated knockdown of HVCN1 mRNA expression in JME cells resulted in a loss of H(+) currents in patch clamp recordings. Cloning of the open reading frame of HVCN1 from primary human airway epithelia resulted in a wild-type clone and a clone characterized by two sequential base exchanges (452T>C and 453G>A) resulting in a novel missense mutation, M91T HVCN1. Out of 95 human genomic DNA samples that were tested, we found one HVCN1 allele that was heterozygous for the M91T mutation. The activation of acid secretion in epithelia that natively expressed M91T HVCN1 required approximately 0.5 pH units more alkaline mucosal pH values compared with wild-type epithelia. Similarly, activation of H(+) currents across recombinantly expressed M91T HVCN1 required significantly larger pH gradients compared with wild-type HVCN1. This study provides both functional and molecular indications that the HVCN1 H(+) channel mediates pH-regulated acid secretion by the airway epithelium. These data indicate that apical HVCN1 represents a mechanism to acidify an alkaline airway surface liquid.
Collapse
Affiliation(s)
- David Iovannisci
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | |
Collapse
|
29
|
Wu HF, Kailasa SK, Shastri L. Electrostatically self-assembled azides on zinc sulfide nanoparticles as multifunctional nanoprobes for peptide and protein analysis in MALDI-TOF MS. Talanta 2010; 82:540-7. [PMID: 20602933 DOI: 10.1016/j.talanta.2010.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/06/2010] [Accepted: 05/08/2010] [Indexed: 11/15/2022]
Abstract
A simple method to synthesize electrostatically self-assembled azides on zinc sulfide nanoparticles (ZnS-N(3) NPs) was described and then it was further applied as a multifunctional nanoprobe such as enriching, desalting, accelerating and separation-/washing free nanoprobes for rapid analysis of peptides and proteins and microwave assisted tryptic digested proteins in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ZnS-N(3) NPs were characterized by UV-vis, FT-IR, SEM and TEM spectroscopy. The ZnS-N(3) NPs can effectively enrich signal intensities for 2-10 times for various peptides and proteins including HW6, insulin, ubiquitin, cytochrome c, lysozyme, myoglobin and bovine serum albumin (BSA) in MALDI-TOF MS. Furthermore, we also demonstrated that the ZnS-N(3) NPs can serve as accelerating probes for microwave assisted tryptic digestion of proteins in MALDI-TOF MS. The applicability of the present method on complex sample analysis such as milk proteins from cow milk and ubiquitin and ubiquitin like proteins from oyster mushroom were also demonstrated.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
30
|
The association between delirium and the apolipoprotein E epsilon 4 allele: new study results and a meta-analysis. Am J Geriatr Psychiatry 2009; 17:856-62. [PMID: 19910874 DOI: 10.1097/jgp.0b013e3181ab8c84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine a possible association between Apolipoprotein E (APOE)sigma4-allele and delirium in a large cohort and combining these current data with former studies in a meta-analysis. DESIGN Combination of a new prospective cohort study and meta-analysis. SETTING Medical department and orthopedic/traumatology department of University hospital from 2003 to 2007. PARTICIPANTS A total of 656 patients aged 65 years and older acutely admitted with a medical diagnosis or after hip fracture. MEASUREMENTS Confusion Assessment Method for delirium, Informant Questionnaire on Cognitive Decline-short form for predelirium global cognitive impairment, and Katz Index of Activities of Daily Living for functionality. APOE was genotyped by mass spectrometer. A meta-analysis was performed combining the current data with published studies analyzing the association between the APOE sigma4-allele and the delirium. RESULTS : The 49% of the 76 surgical patients and 35% of the 580 medical patients experienced delirium. Delirious patients were significantly older (82 versus 77 years) and had more frequently functional (66% versus 26%) and cognitive impairment (86% versus 29%) than nondelirious patients. The odds ratio (OR) for delirium adjusted for age, cognitive, and functional impairment of sigma4 carriers compared with non-sigma4 carriers was 1.7 (95% confidence interval [CI]: 1.1-2.6). Four studies were added to the meta-analysis, which included 1,099 patients in total. The OR for delirium in the meta-analysis was 1.6 (95% CI: 0.9-2.7) of sigma4 carriers compared with non-sigma4 carriers. CONCLUSIONS This study and meta-analysis suggest an association between delirium and the APOE sigma4 allele.
Collapse
|
31
|
Hall TA, Sannes-Lowery KA, McCurdy LD, Fisher C, Anderson T, Henthorne A, Gioeni L, Budowle B, Hofstadler SA. Base Composition Profiling of Human Mitochondrial DNA Using Polymerase Chain Reaction and Direct Automated Electrospray Ionization Mass Spectrometry. Anal Chem 2009; 81:7515-26. [DOI: 10.1021/ac901222y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas A. Hall
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Kristin A. Sannes-Lowery
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Leslie D. McCurdy
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Constance Fisher
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Theodore Anderson
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Almira Henthorne
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Lora Gioeni
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Bruce Budowle
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Steven A. Hofstadler
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
32
|
Klubin AV, Rogov SI, Momynaliev KT. A new method for estimating the C → T transition rate in methylation sites of Helicobacter pylori. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Philibert RA, Zadorozhnyaya O, Beach SRH, Brody GH. Comparison of the genotyping results using DNA obtained from blood and saliva. Psychiatr Genet 2008; 18:275-81. [PMID: 19018232 PMCID: PMC2648613 DOI: 10.1097/ypg.0b013e3283060f81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM Traditionally, large scale genotyping projects have used DNA derived from whole-blood or lymphoblast cell lines. But over the past several years, a number of investigators have begun to use DNA prepared from saliva for genotyping studies, particularly for use in behavioral genetic studies. However, the comparability of DNA from these two sources has not been rigorously analyzed by unbiased sources. OBJECTIVE In this communication, we compare the single nucleotide polymorphism genotyping results from DNA derived from whole-blood samples obtained from 474 participants from the Iowa Adoption Studies with that of saliva samples prepared from 555 members of the Strong African-American Families project. RESULTS We found that DNA prepared from whole-blood performed significantly better than that prepared from saliva. Genotyping success was significantly associated with the concentration of human DNA in the saliva sample as determined by quantitative PCR, but not with the total amount of DNA as determined by UV spectroscopy. CONCLUSION We conclude that investigators contemplating the choice of source materials of DNA for genotyping studies will need to balance the ease and economy of saliva-based DNA collection methods with the higher yields and rates of genotyping calls associated with DNA prepared from whole-blood.
Collapse
Affiliation(s)
- Robert A Philibert
- Department of Psychiatry, The University of Iowa, Iowa City, IA, 52242-1000, USA.
| | | | | | | |
Collapse
|
34
|
On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 2008; 391:135-49. [DOI: 10.1007/s00216-008-1929-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
35
|
Selinski S, Ickstadt K. Cluster analysis of genetic and epidemiological data in molecular epidemiology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:835-844. [PMID: 18569582 DOI: 10.1080/15287390801985828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Current molecular epidemiological studies of complex diseases include a large number of genetic and epidemiological variables. Clustering approaches are a useful tool to detect patterns in data sets and generate hypothesis regarding potential relationships in complex data situations. In this article similarity coefficients are presented for a hierarchical cluster analysis of single-nucleotide polymorphisms (SNPs) and epidemiological data to gain insight into the relationship of variables and detect potential differences between diseased and control individuals in case-control studies. This approach was applied to two subsets of data from the GENICA study of sporadic breast cancer, a molecular epidemiological population-based case-control study conducted in the greater Bonn region between 2000 and 2004. Separate cluster analyses for cases and controls using flexible matching coefficients for SNPs, Pearson's corrected coefficient of contingency for categorical epidemiological variables, and Spearman's correlation coefficient for quantitative epidemiological variables as measures of similarity revealed small subgroups of SNPs usually of the same gene, as well as clusters of genetic and of epidemiological variables with minor differences between cases and controls. In addition to recent and well-known findings, the joint cluster analysis of SNPs and epidemiological variables provides further insight into the relationship of these variables.
Collapse
Affiliation(s)
- Silvia Selinski
- Fakultät Statistik, Collaborative Research Centre 475, Technische Universität Dortmund, Dortmund, Germany
| | | |
Collapse
|
36
|
Isler JA, Vesterqvist OE, Burczynski ME. Analytical validation of genotyping assays in the biomarker laboratory. Pharmacogenomics 2007; 8:353-68. [PMID: 17391073 DOI: 10.2217/14622416.8.4.353] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-throughput, whole-genome association studies conducted in various diseases and therapeutic settings are identifying an increasing number of single nucleotide polymorphisms that may predict patient responses and ultimately guide therapeutic decision-making. In order to confirm the candidate genetic markers emerging from these studies, there is a commensurate need for pharmacogenomic laboratories to design and analytically validate targeted genotyping assays capable of rapidly querying the identified individual single nucleotide polymorphisms of interest in large confirmatory clinical studies. In recent years, a number of increasingly complex technologies have been applied to the qualitative and semi-quantitative analysis of polymorphisms and mutations in DNA. The different approaches available for targeted DNA sequence analysis are characterized by various pros and cons that often present technology-specific challenges to the analytical validation of these assays prior to their use in clinical studies. Several key principles in the analytical validation of genotyping assays--including assay specificity, sensitivity, reproducibility and accuracy--are covered in this review article, with specific attention paid to three major end point detection technologies currently employed in targeted genotyping analysis: matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Pyrosequencing and Taqman-based allelic discrimination. Thorough assessment of the performance of genotyping assays during analytical validation, and careful use of quality controls during sample analysis, will help strengthen the quality of pharmacogenomic data used to ultimately confirm the validity of exploratory biomarkers in DNA.
Collapse
Affiliation(s)
- Jennifer A Isler
- Wyeth Research, Biomarker Laboratory, Clinical Translational Medicine, 500 Arcola Road, Collegeville, PA 19426, USA
| | | | | |
Collapse
|
37
|
van Munster BC, Korevaar JC, de Rooij SE, Levi M, Zwinderman AH. The association between delirium and the apolipoprotein E epsilon4 allele in the elderly. Psychiatr Genet 2007; 17:261-6. [PMID: 17728664 DOI: 10.1097/ypg.0b013e3280c8efd4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE As not all patients with similar risk factors and eliciting conditions develop delirium; it may be hypothesized that genetic variation may play a role in the risk of delirium. On the basis of the relationship between dementia, respectively reduced cholinergic activity, and the APOE epsilon4-allele, and the similarities between dementia and delirium in reduced cholinergic activity, the APOE epsilon4-allele is a rational candidate-gene for delirium. This study examined the association between APOE epsilon4-allele and delirium in elderly patients. METHODS Acutely admitted patients to the Department of Medicine of 65 years and over were included during a 27-month time period. Delirium was scored by the confusion assessment method. Cognitive impairment was diagnosed by Mini Mental State Examination and informant questionnaire on cognitive decline. Genotyping was done with matrix-assisted laser-desorption/ionization time-of flight mass spectrometry. RESULTS Of 415 included patients, a random sample of 264 patients was genotyped for APOE. The patients who met the criteria for delirium (35%) were significantly older and more frequently had preexisting functional and cognitive impairment. APOE genotype was borderline significantly associated with cognitive impairment in patients below 75 years (P=0.057). The odds ratio for carriers of an APOE epsilon4-allele compared with patients without an APOE epsilon4-allele for developing delirium was 1.17 (95% confidence interval (CI): 0.49-2.78) in the cognitively intact patients and 0.42 (95% CI: 0.14-1.30) in the cognitively impaired patients. No relation existed between the total number of APOE epsilon4-alleles and the different delirium subtypes (P=0.12). CONCLUSIONS We found no convincing evidence that carriers of the APOE epsilon4-allele have a higher risk of delirium.
Collapse
Affiliation(s)
- Barbara C van Munster
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Huang Q, Hu Q, Li Q. Identification of 8 Foodborne Pathogens by Multicolor Combinational Probe Coding Technology in a Single Real-Time PCR. Clin Chem 2007; 53:1741-8. [PMID: 17693526 DOI: 10.1373/clinchem.2007.087502] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Real-time PCR assays have been widely used for detecting foodborne pathogens but have been much less frequently applied in species identification, mainly because of the low number of species they can distinguish in 1 reaction. The present study used a new probe coding/labeling strategy, termed multicolor combinational probe coding (MCPC), to increase the number of targets that can be distinguished in a single real-time PCR for rapid and reliable species identification.
Methods: With MCPC, 8 pairs of species-specific tagged primers, 1 pair of universal primers, and 8 unilabeled or mix-labeled molecular beacon probes were included in a single reaction tube. Real-time PCR was performed, and the identity of each of the 8 pathogens was determined by amplification profile comparison. The method was validated via blind assessment of 118 bacterial strains, including clinical isolates and isolates from food products.
Results: The blind test with 118 samples gave no false-positive or -negative results for the target genes. The template DNA suitable for MCPC analysis was simply prepared by heating lysis, and the total PCR analysis was finished within 2.5 h, excluding template preparation.
Conclusions: MCPC is suitable for rapid and reliable identification of foodborne pathogens at the species level.
Collapse
Affiliation(s)
- Qiuying Huang
- Molecular Diagnostics Laboratory, Department of Biomedical Sciences, Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | | | | |
Collapse
|
39
|
Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12:707-47. [PMID: 17549063 DOI: 10.1038/sj.mp.4002009] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The last decade of research into the pharmacogenetics of antipsychotics has seen the development of genetic tests to determine the patients' metabolic status and the first attempts at personalization of antipsychotic treatment. The most significant results are the association between drug metabolic polymorphisms, mainly in cytochrome P450 genes, with variations in drug metabolic rates and side effects. Patients with genetically determined CYP2D6 poor metabolizer (PMs) status may require lower doses of antipsychotic. Alternatively, CYP2D6 ultrarapid matabolizers (UMs) will need increased drug dosage to obtain therapeutic response. Additionally, polymorphisms in dopamine and serotonin receptor genes are repeatedly found associated with response phenotypes, probably reflecting the strong affinities that most antipsychotics display for these receptors. In particular, there is important evidence suggesting association between dopamine 2 receptor (D2) polymorphisms (Taq I and -141-C Ins/Del) and a dopamine 3 receptor (D3) polymorphism (Ser9Gly) with antipsychotic response and drug-induced tardive dyskinesia. Additionally, there is accumulating evidence indicating the influence of a 5-HT2C polymorphism (-759-T/C) in antipsychotic-induced weight gain. Application of this knowledge to clinical practice is slowly gathering pace, with pretreatment determination of individual's drug metabolic rates, via CYP genotyping, leading the field. Genetic determination of patients' metabolic status is expected to bring clinical benefits by helping to adjust therapeutic doses and reduce adverse reactions. Genetic tests for the pretreatment prediction of antipsychotic response, although still in its infancy, have obvious implications for the selection and improvement of antipsychotic treatment. These developments can be considered as successes, but the objectives of bringing pharmacogenetic and pharmacogenomic research in psychiatric clinical practice are far from being realized. Further development of genetic tests is required before the concept of tailored treatment can be applied to psychopharmatherapy. This review aims to summarize the key findings from the last decade of research in the field. Current knowledge on genetic prediction of drug metabolic status, general response and drug-induced side effects will be reviewed and future pharmacogenomic and epigenetic research will be discussed.
Collapse
Affiliation(s)
- M J Arranz
- Clinical Neuropharmocology, Division of Psychological Medicine, Institute of Psychiatry - King's College, London, UK.
| | | |
Collapse
|
40
|
Hammond N, Koumi P, Langley GJ, Lowe A, Brown T. Rapid mass spectrometric identification of human genomic polymorphisms using multiplexed photocleavable mass-tagged probes and solid phase capture. Org Biomol Chem 2007; 5:1878-85. [PMID: 17551636 DOI: 10.1039/b704587e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mass spectrometric approach for rapid and simultaneous detection of several single nucleotide polymorphisms (SNPs) is reported. Oligonucleotide single base extension (SBE) primers, labelled at the 5'-end with photocleavable, quaternised and brominated peptidic mass tags, are extended by a mixture of the four dideoxynucleotides of which one is biotinylated. The 3'-biotinylated extension products are captured by streptavidin-coated solid phase magnetic beads, whilst non-biotinylated extension products and unreacted primers are washed away. Quaternised and brominated mass tags, cleaved from captured extension products during analysis by matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF) MS, are detected at pmol levels. This method is applied to the analysis of mitochondrial DNA polymorphisms for the purpose of human identification.
Collapse
Affiliation(s)
- Naomi Hammond
- School of Chemistry, University of Southampton, Southampton, UK.
| | | | | | | | | |
Collapse
|
41
|
Oberacher H, Niederstätter H, Pitterl F, Parson W. Profiling 627 mitochondrial nucleotides via the analysis of a 23-plex polymerase chain reaction by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Anal Chem 2007; 78:7816-27. [PMID: 17105176 DOI: 10.1021/ac061210i] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a rapid and informative mitochondrial DNA profiling system, which has high forensic impact. The assay is based on the analysis of a 23-plex PCR by ion-pair reversed-phase high-performance liquid chromatography online hyphenated to electrospray ionization time-of-flight mass spectrometry (ICEMS). In a single 25-min run, an overall number of 627 nucleotide positions were screened. The vast majority of observed sequence variations were explainable by alterations of the allelic states of the 23 target SNPs, which were selected on their ability to increase forensic discrimination within West Eurasian populations. Within an Austrian population sample comprising 90 unrelated men, 14 different, nontarget SNP-related sequence variations--13 base substitutions and 1 deletion--were detected by ICEMS and confirmed by sequencing. All amplified sequences were located outside of the routinely sequenced hypervariable segments (HVS-I and HVS-II) of the noncoding control region. Accordingly, the genetic information obtained by the 23-plex PCR-ICEMS assay could be combined with HVS-I/HVS-II sequencing results to one highly discriminating mtDNA profile, which covered approximately 7.5% of the total mtDNA genome. With the 23-plex PCR-ICEMS assay, DNA mixtures were detected and the allelic ratios were accurately quantified. The observed robustness and sensitivity underlined the practical applicability of the assay in forensic science, which was proven by typing eight representative casework samples.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
42
|
Blievernicht JK, Schaeffeler E, Klein K, Eichelbaum M, Schwab M, Zanger UM. MALDI-TOF Mass Spectrometry for Multiplex Genotyping of CYP2B6 Single-Nucleotide Polymorphisms. Clin Chem 2007; 53:24-33. [PMID: 17082249 DOI: 10.1373/clinchem.2006.074856] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractBackground: CYP2B6 is a highly variable and polymorphic cytochrome P450 (CYP) enzyme involved in the biotransformation of an increasing number of drugs, including cyclophosphamide, bupropion, and the nonnucleosidic reverse transcriptase inhibitor efavirenz. Several nonsynonymous and promoter single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene are associated with altered hepatic expression and function, which affect drug plasma concentrations.Methods: We used multiplex PCR to amplify relevant gene fragments while avoiding amplification of the CYP2B7P1 pseudogene. Polymorphic sites were analyzed by allele-specific primer extension followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Method evaluation was performed on a panel of 287 genomic DNA samples previously genotyped by other methods.Results: Five multiplex assays were developed, comprising the following 15 SNPs: −82T→C (*22); 86G→C (R29T, *17); 136A→G (M46V, *11); 296G→A (G99E, *12); 415A→G (K139E, *8, *13); 419G→A (R140Q, *14); 516G→T (Q172H, *6, *7, *9, *13, *19, *20), 547G→A (V183I); 769G→A (D257N); 785A→G (K262R, *4, *6, *7, *13, *16, *19, *20); 983T→C (I328T, *16, *18); 1006C→T (R336C, *19); 1172T→A (I391N, *15); 1282C→A (P428T, *21); 1459C→T (R487C, *5, *7). In 9 DNA samples showing discrepant genotypes, correctness of the MALDI-TOF MS result was confirmed by direct sequencing.Conclusions: This genotyping method enabled sensitive, specific, accurate, and comprehensive determination of 15 relevant SNPs of CYP2B6. The assay design allows analysis of SNP subsets, incorporation of additional SNPs, and performance of high-throughput genotyping.
Collapse
Affiliation(s)
- Julia K Blievernicht
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Sims AM, Barnardo M, Herzberg I, Bradbury L, Calin A, Wordsworth BP, Darke C, Brown MA. Non-B27 MHC associations of ankylosing spondylitis. Genes Immun 2006; 8:115-23. [PMID: 17167495 DOI: 10.1038/sj.gene.6364362] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ankylosing spondylitis (AS) has been associated with human leukocyte antigen (HLA)-B27 for over 30 years; however, the mechanism of action has remained elusive. Although many studies have reported associations between AS and other genes in the major histocompatibility complex (MHC) in AS, no conclusive results have emerged. To investigate the contribution of non-B27 MHC genes to AS, a large cohort of AS families and controls were B27 typed and genotyped across the region. Interrogation of the data identified a region of 270 kb, lying from 31 952 649 to 32 221 738 base pairs from the p-telomere of chromosome 6 and containing 23 genes, which is likely to include genes involved with susceptibility to AS.
Collapse
Affiliation(s)
- A-M Sims
- Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Oberacher H, Niederstätter H, Parson W. Liquid chromatography-electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Legal Med 2006; 121:57-67. [PMID: 16955300 DOI: 10.1007/s00414-006-0117-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
We demonstrate the applicability of ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry (ICEMS) for the simultaneous characterization of length and nucleotide polymorphisms. Two sections within the first (HVS-I) and second (HVS-II) hypervariable segments of the mitochondrial (mt)DNA control region were selected as targets, both containing poly-cytosine (C) tracts, which display length heteroplasmy at a substantial frequency in the population. The two mtDNA sections were simultaneously amplified and analyzed by ICEMS in 90 maternally unrelated mother-offspring pairs from Austria. The findings were confirmed by direct sequencing of the polymerase chain reaction products. For the detailed characterization of present-length heteroplasmic variants, the results retrieved through ICEMS were more informative compared with those derived from direct sequencing. Hence, ICEMS represents an interesting option for successful application in forensic science.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Müllerstrasse 44, 6020, Innsbruck, Austria
| | | | | |
Collapse
|
45
|
Yang HC, Liang YJ, Huang MC, Li LH, Lin CH, Wu JY, Chen YT, Fann C. A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments. Nucleic Acids Res 2006; 34:e106. [PMID: 16931491 PMCID: PMC1616968 DOI: 10.1093/nar/gkl446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/05/2006] [Accepted: 06/09/2006] [Indexed: 01/27/2023] Open
Abstract
Microarray-based pooled DNA methods overcome the cost bottleneck of simultaneously genotyping more than 100 000 markers for numerous study individuals. The success of such methods relies on the proper adjustment of preferential amplification/hybridization to ensure accurate and reliable allele frequency estimation. We performed a hybridization-based genome-wide single nucleotide polymorphisms (SNPs) genotyping analysis to dissect preferential amplification/hybridization. The majority of SNPs had less than 2-fold signal amplification or suppression, and the lognormal distributions adequately modeled preferential amplification/hybridization across the human genome. Comparative analyses suggested that the distributions of preferential amplification/hybridization differed among genotypes and the GC content. Patterns among different ethnic populations were similar; nevertheless, there were striking differences for a small proportion of SNPs, and a slight ethnic heterogeneity was observed. To fulfill appropriate and gratuitous adjustments, databases of preferential amplification/hybridization for African Americans, Caucasians and Asians were constructed based on the Affymetrix GeneChip Human Mapping 100 K Set. The robustness of allele frequency estimation using this database was validated by a pooled DNA experiment. This study provides a genome-wide investigation of preferential amplification/hybridization and suggests guidance for the reliable use of the database. Our results constitute an objective foundation for theoretical development of preferential amplification/hybridization and provide important information for future pooled DNA analyses.
Collapse
Affiliation(s)
- H.-C. Yang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Y.-J. Liang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - M.-C. Huang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - L.-H. Li
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - C.-H. Lin
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - J.-Y. Wu
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Y.-T. Chen
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - C.S.J. Fann
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| |
Collapse
|
46
|
Hiratsuka M, Ebisawa A, Sakuyama K, Matsubara Y, Kure S, Soya Y, Konno Y, Sasaki T, Kishiba A, Mizugaki M. Competitive allele-specific short oligonucleotide hybridization (CASSOH) with enzyme-linked immunosorbent assay (ELISA) for the detection of pharmacogenetic single nucleotide polymorphisms (SNPs). JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2006; 67:87-94. [PMID: 16546261 DOI: 10.1016/j.jbbm.2006.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 12/21/2005] [Accepted: 01/19/2006] [Indexed: 05/07/2023]
Abstract
Individualization of drug therapy through genetic testing would maximize the effectiveness of medication and minimize its risks. Recent progress in genetic testing technologies has been remarkable, and they have been applied for the analysis of genetic polymorphisms that regulate drug responses. Clinical application of genetic information to individual health care requires simple and rapid identification of nucleotide changes in clinical settings. We previously reported a novel DNA diagnostic method for detecting single nucleotide polymorphisms (SNPs) using competitive allele-specific short oligonucleotide hybridization (CASSOH) with an immunochromatographic strip. We have developed the method further in order to incorporate an enzyme-linked immunosorbent assay (ELISA) into the final detection step; this enables multiple SNP detection. Special ELISA chips have been fabricated so that disposal of buffer waste is not required and handling procedures are minimized. This method (CASSOH-ELISA) has been successfully applied for the detection of clinically important SNPs in drug metabolism, such as N-acetyltransferase 2, NAT2*6 (590G>A) and NAT*7 (857G>A), and mitochondrial DNA (1555A>G). It would also facilitate point-of-care genetic testing for potentially diverse clinical applications.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The rapid expansion of methods for measuring biological data ranging from DNA sequence variations to mRNA expression and protein abundance presents the opportunity to utilize multiple types of information jointly in the study of human health and disease. Organisms are complex systems that integrate inputs at myriad levels to arrive at an observable phenotype. Therefore, it is essential that questions concerning the etiology of phenotypes as complex as common human diseases take the systemic nature of biology into account, and integrate the information provided by each data type in a manner analogous to the operation of the body itself. While limited in scope, the initial forays into the joint analysis of multiple data types have yielded interesting results that would not have been reached had only one type of data been considered. These early successes, along with the aforementioned theoretical appeal of data integration, provide impetus for the development of methods for the parallel, high-throughput analysis of multiple data types. The idea that the integrated analysis of multiple data types will improve the identification of biomarkers of clinical endpoints, such as disease susceptibility, is presented as a working hypothesis.
Collapse
Affiliation(s)
- David M Reif
- Center for Human Genetics Research, Vanderbilt University Medical School, 519 Light Hall, Nashville, TN 37232-0700, USA.
| | | | | |
Collapse
|
48
|
Kirsten H, Dienst S, Emmrich F, Ahnert P. CalcDalton: a tool for multiplex genotyping primer design for single-base extension reactions using cleavable primers. Biotechniques 2006; 40:158, 160, 162. [PMID: 16526404 DOI: 10.2144/000112115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
|
50
|
Oberacher H, Niederstätter H, Casetta B, Parson W. Detection of DNA Sequence Variations in Homo- and Heterozygous Samples via Molecular Mass Measurements by Electrospray Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2005; 77:4999-5008. [PMID: 16053315 DOI: 10.1021/ac050399f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of ion-pair reversed-phase high-performance liquid chromatography on-line hyphenated to electrospray ionization time-of-flight mass spectrometry for the characterization of polymerase chain reaction (PCR) amplified nucleic acids was evaluated. For that purpose, a "SNP toolbox" was constructed by cloning and PCR-mediated site-directed in vitro mutagenesis at nucleotide position (ntp) 16,519 of a sequence-verified fragment of the human mitochondrial genome (ntps 15,900-599). Confirmatory sequencing demonstrated that within the sequences of the clones one and the same base was mutated to all other bases. Using these clones or equimolar mixtures of these clones as PCR templates, 51-401-bp-long amplicons were generated, which were used to determine the upper size limits of PCR products for the unequivocal detection of sequence variations in homo- and heterozygous samples. Based on the high mass spectrometric performance of the applied time-of-flight mass spectrometer, the unequivocal genotyping of all kinds of single base exchanges in PCR amplicons from heterozygous samples with lengths up to 254 base pairs (bp) was demonstrated. Considering homozygous samples, the successful genotyping of single base substitutions in up to 401-bp-long PCR products was possible. Consequently, the described hyphenated technique represents one of the most powerful mass spectrometric genotyping assays available today.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|