1
|
Cyclosporine (0.05%) Combined with Diclofenac Sodium Eye Drops for the Treatment of Dry Eye Disease. J Ophthalmol 2022; 2022:2334077. [PMID: 36284825 PMCID: PMC9588351 DOI: 10.1155/2022/2334077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To assess the clinical efficacy of cyclosporine (0.05%) combined with diclofenac sodium eye drops (0.1%) in the treatment of dry eye disease. Methods A prospective analysis was performed on clinical information of 128 patients diagnosed with dry eye at the ophthalmic clinic of the General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army from August 2020 to August 2021. Specifically, patients were randomly divided into a control group and a study group. In addition to conventional treatment, patients in the control group were treated with cyclosporine (0.05%) eye drops; while in the study group, patients received cyclosporine (0.05%) combined with diclofenac sodium eye drops (0.1%). Subsequently, comparisons and analysis were performed before and after treatment between the two groups in the clinical symptom questionnaire score of dry eye disease, the corneal fluorescein staining (CFS) score, determination of tear film break-up time (BUT), Schirmer I test (SIT) score, and curative effect. Results After treatment, the clinical symptom scores and CFS scores were decreased while the BUT and SIT scores were increased in both groups; besides, compared with the control group, the clinical symptom scores and CFS scores were much lower while the BUT and SIT scores were higher in the study group. Moreover, the overall response rate in the study group (96.9%) was much better than that in the control group (79.7%); and the differences between the two groups were statistically significant (p < 0.05). Conclusion The combination of cyclosporine (0.05%) and diclofenac sodium eye drops (0.1%) based on conventional treatment can be applied to the clinical treatment of dry eye disease due to its good clinical effects on relieving dry eye symptoms.
Collapse
|
2
|
Navarro-Gil FJ, Huete-Toral F, Domínguez-Godínez CO, Carracedo G, Crooke A. Contact Lenses Loaded with Melatonin Analogs: A Promising Therapeutic Tool against Dry Eye Disease. J Clin Med 2022; 11:jcm11123483. [PMID: 35743553 PMCID: PMC9225312 DOI: 10.3390/jcm11123483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin analogs topically administered evoke a potent tear secretagogue effect in rabbits. This route of drug administration requires high drug concentration and frequent dosing due to its reduced ocular surface retention. Therefore, contact lenses (CLs) have emerged as an alternative drug-delivery system that prolongs drug retention in the cornea, improving its therapeutic performance. This study explores the in vitro ability of five commercially available hydrogel CLs to act as a delivery system for melatonin analogs and the in vivo secretagogue effect of melatonin analog-loaded CLs. We soaked CLs with melatonin or melatonin analog solutions (1 mM) for 12 h. Spectroscopic assays showed that IIK7-loaded CLs led to the inadequate delivery of this compound. Conventional hydrogel lenses loaded with agomelatine released more agomelatine than silicone ones (16–33% more). In contrast, the CLs of silicone materials are more effective as a delivery system of 5-MCA-NAT than CLs of conventional materials (24–29%). The adaptation of CLs loaded with agomelatine or 5-MCA-NAT in rabbits triggered a higher tear secretion than the corresponding eye drops (78% and 59% more, respectively). These data suggest that CLs preloaded with melatonin analogs could be an adequate strategy to combat aqueous tear deficient dry eye disease.
Collapse
Affiliation(s)
- Francisco Javier Navarro-Gil
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain; (C.O.D.-G.); (G.C.)
- Correspondence: (F.J.N.-G.); (A.C.); Tel.: +34-91-3946883 (F.J.N.-G); +34-91-3946859 (A.C.)
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain;
| | - Carmen Olalla Domínguez-Godínez
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain; (C.O.D.-G.); (G.C.)
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain; (C.O.D.-G.); (G.C.)
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain;
- Correspondence: (F.J.N.-G.); (A.C.); Tel.: +34-91-3946883 (F.J.N.-G); +34-91-3946859 (A.C.)
| |
Collapse
|
3
|
Qu D, Tian X, Ding L, Li Y, Zhou W. Impacts of Cyclosporin A on clinical pregnancy outcomes of patients with a history of unexplained transfer failure: a retrospective cohort study. Reprod Biol Endocrinol 2021; 19:44. [PMID: 33726772 PMCID: PMC7962312 DOI: 10.1186/s12958-021-00728-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/07/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A rapid development in assisted reproductive technology (ART) has led to a surge in its popularity among target couples. However, elucidation on the molecular mechanism and effective solutions for a common problem posed by ART, namely transfer failure, is still lacking. The new therapeutic potential of cyclosporin A (CsA), a typical immunosuppressant widely used in the treatment of rejection after organ transplantation, in recurrent pregnancy loss (RPL) patients may inspire some novel transfer failure therapies in the future. To further explore the clinical effects of CsA, this study investigated whether its application can improve clinical pregnancy outcomes in patients with a history of unexplained transfer failure in frozen-thawed embryo transfer (FET) cycles. METHODS Data from a retrospective cohort investigation (178 frozen-thawed embryo transfer cycles in 178 patients) were analysed using binary logistic regression to explore the relationship between CsA treatment and clinical pregnancy outcomes; the odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated as a measure of relevancy. Implantation rate was the main outcome measure. RESULTS There was no difference in the fine adjusted OR (95 % CI) of the implantation rate [1.251 (0.739-2.120)], clinical pregnancy rate [1.634 (0.772-3.458)], chemical pregnancy rate [1.402 (0.285-6.909)], take-home baby rate [0.872 (0.423-1.798)], multiple births rate [0.840 (0.197-3.590)], preterm birth [1.668 (0.377-7.373)], abnormal birth weight [1.834 (0.533-6.307)] or sex ratio [0.956 (0.339-2.698)] between the CsA-treated group and control group. No birth defects were observed in the present study. CONCLUSIONS Although CsA does not affect infant characteristics, it has no beneficial effects on the clinical pregnancy outcomes in patients with a history of unexplained transfer failure in FET cycles.
Collapse
Affiliation(s)
- Danni Qu
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Xiangming Tian
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Ling Ding
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Yuan Li
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| | - Wenhui Zhou
- grid.24696.3f0000 0004 0369 153XMedical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Liao L, Zhu XH. Advances in the treatment of rhegmatogenous retinal detachment. Int J Ophthalmol 2019; 12:660-667. [PMID: 31024823 PMCID: PMC6469565 DOI: 10.18240/ijo.2019.04.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/08/2018] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of rhegmatogenous retinal detachment depends on three factors, namely, retinal rupture, vitreous liquefaction and traction causing the retina to separate from the pigment epithelium, among which retinal rupture is the most important. Retinopathy is caused by a gap between the neurosensory retina and the retinal pigment epithelium, which severely damages the visual function of the patient. Therefore, early clinical discovery, prevention and selection of an appropriate treatment are important. This article reviews progress in the treatment of retinal detachment.
Collapse
Affiliation(s)
- Li Liao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiao-Hua Zhu
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
5
|
Li YJ, Luo LJ, Harroun SG, Wei SC, Unnikrishnan B, Chang HT, Huang YF, Lai JY, Huang CC. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. NANOSCALE 2019; 11:5580-5594. [PMID: 30860532 DOI: 10.1039/c9nr00376b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed a rapid and straightforward topical treatment method for dry eye disease (DED) using poly(catechin) capped-gold nanoparticles (Au@Poly-CH NPs) carrying amfenac [AF; a nonsteroidal anti-inflammatory drug (NSAID)] through effective attenuation of ocular surface tissue damage in dry eyes. A dual-targeted strategy based on ocular therapeutics was adopted to simultaneously block the cyclooxygenase enzymes-induced inflammation and reactive oxygen species (ROS)-induced oxidative stress, the primary two causes of DED. The self-assembled core-shell Au@Poly-CH NPs synthesized via a simple reaction between tetrachloroaurate(iii) and catechin possess a poly(catechin) shell (∼20 nm) on the surface of each Au NP (∼60 nm). The anti-oxidant and anti-inflammatory properties of AF/Au@Poly-CH NPs were evaluated by DCFH-DA and prostaglandin E2/VEGF assays, respectively. Our results demonstrate that Au@Poly-CH NPs not only act as an anti-oxidant to suppress ROS-mediated processes, but also serve as a drug carrier of AF for a synergistic effect on anti-inflammation. In vivo biocompatibility studies show good tolerability of AF/Au@Poly-CH NPs for potential use in the treatment of ocular surface pathologies. The dual-targeted therapeutic effects of AF/Au@Poly-CH NPs lead to rapid recovery from DED in a rabbit model. Au@Poly-CH NPs loaded with NSAIDs is a promising multifunctional nanocomposite for treating various inflammation- and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yu-Jia Li
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Taylor M, Ousler G, Torkildsen G, Walshe C, Fyfe MCT, Rowley A, Webber S, Sheppard JD, Duggal A. A phase 2 randomized, double-masked, placebo-controlled study of novel nonsystemic kinase inhibitor TOP1630 for the treatment of dry eye disease. Clin Ophthalmol 2019; 13:261-275. [PMID: 30858682 PMCID: PMC6387610 DOI: 10.2147/opth.s189039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the safety and efficacy of topical TOP1630, a novel nonsystemic kinase inhibitor, in dry eye disease (DED). Patients and methods A randomized, double-masked, parallel-group trial of 0.1% TOP1630 ophthalmic solution TID or placebo (vehicle without active drug) was conducted in DED subjects (n=61). Key eligibility criteria consistent with enrolling a moderate to severe DED population included >6 months DED history; OSDI© score ≥18; Schirmer’s test score ≤10 and ≥1 mm/5 minutes; tear film break-up time >1 and <7 seconds; and dry eye exacerbation in corneal staining and ocular discomfort in a Controlled Adverse Environment (CAE®). After a 7-day run-in period with placebo TID, eligible subjects were randomized to TOP1630 or placebo for 28 days. No supplemental artificial tears or rescue medication were allowed. Results TOP1630 was safe, well-tolerated, and efficacious in treating DED symptoms and signs. No serious adverse events (AEs) or withdrawals due to treatment emergent AEs occurred. Drop comfort scores showed TOP1630 to be comfortable and comparable with placebo. Significant symptom improvements were seen for TOP1630 vs placebo for ocular discomfort (P=0.02 post-CAE), grittiness/foreign body sensation (on four independent assessment scales, each P<0.05), worst DED symptom (diary, P=0.06), and ocular pain (VAS, P=0.03). Sign improvements were seen for total ocular surface (all regions), corneal sum, and conjunctival sum staining with TOP1630 compared with placebo (each P<0.05). Conclusion TOP1630 had placebo-like tolerability and produced improvements in multiple symptom and sign endpoints in both environmental and challenge settings. The emergent TOP1630 benefit–risk profile for DED treatment is highly favorable and supports further development.
Collapse
|
7
|
Barber L, Khodai O, Croley T, Lievens C, Montaquila S, Ziemanski J, McCart M, Lunacsek O, Burk C, Patel V. Dry eye symptoms and impact on vision-related function across International Task Force guidelines severity levels in the United States. BMC Ophthalmol 2018; 18:260. [PMID: 30268117 PMCID: PMC6162873 DOI: 10.1186/s12886-018-0919-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND International Task Force (ITF) guidelines established a grading scheme to support treatment of dry eye disease based on clinical signs and symptoms. The purpose of this study was to assess the impact of dry eye on vision-related function across ITF severity levels using the Ocular Surface Disease Index (OSDI) questionnaire. METHODS Non-interventional, cross-sectional study of prescription treatment-naïve dry eye patients seeking symptom relief at 10 ophthalmology and optometry practices. Clinicians assessed corneal and conjunctival staining, tear break-up time, Schirmer's test (type I with anesthesia), and best-corrected visual acuity. Patients completed the OSDI questionnaire and OSDI overall and domain (Symptoms, Visual Function, and Environmental Triggers) scores were compared across ITF guidelines severity levels (1-4). RESULTS Of 158 patients (mean age, 55 years) enrolled, 52 (33%) were ITF level 1, 54 (34%) ITF level 2, and 52 (33%) ITF levels 3/4 combined. No significant differences were observed in most baseline characteristics. Overall OSDI scores (mean [standard deviation]) were 26.5 [20.0] for ITF level 1, 33.8 [17.5] for ITF level 2, and 44.9 [26.1] for ITF level 3/4 cohorts (P < 0.0001). Component OSDI Symptoms, Visual Function, and Environmental Triggers domain scores all worsened with increasing ITF severity level (P ≤ 0.01). CONCLUSIONS Dry eye disease has significant deleterious impact on vision-related function across all ITF severity levels.
Collapse
Affiliation(s)
- Laurie Barber
- Little Rock Eye Clinic, 203 Executive Court, Suite A, Little Rock, AK 72205 USA
| | - Omid Khodai
- Mobile Medical Solutions, Inc., Foothill Ranch, CA USA
| | | | | | | | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Janine A Clayton
- From the Office of Research on Women's Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Kootala S, Filho L, Srivastava V, Linderberg V, Moussa A, David L, Trombotto S, Crouzier T. Reinforcing Mucus Barrier Properties with Low Molar Mass Chitosans. Biomacromolecules 2018; 19:872-882. [PMID: 29451983 DOI: 10.1021/acs.biomac.7b01670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases. Unfortunately, there are no effective strategies that reinforce the mucus barrier properties to recover or enhance its ability to protect the epithelium. Herein, we describe a mucus engineering approach that addresses this issue where we physically cross-link the mucus gel with low molar mass chitosan variants to reinforce its barrier functions. We tested the effect of these chitosans on mucus using in-lab purified porcine gastric mucins, which mimic the native properties of mucus, and on mucus-secreting HT29-MTX epithelial cell cultures. We found that the lowest molar mass chitosan variant (degree of polymerization of 8) diffuses deep into the mucus gels while physically cross-linking the mucin polymers, whereas the higher molar mass chitosan variants (degree of polymerization of 52 and 100) interact only superficially. The complexation resulted in a tighter mucin polymer mesh that slowed the diffusion of dextran polymers and of the cholera toxin B subunit protein through the mucus gels. These results uncover a new use for low molar mass mucoadhesive polymers such as chitosans as noncytotoxic mucosal barrier enhancers that could be valuable in the prevention and treatment of mucosal diseases.
Collapse
Affiliation(s)
- Sujit Kootala
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Luimar Filho
- Department of Engineering Sciences, Applied Materials Science , Uppsala University , 752 37 Uppsala , Sweden
| | - Vaibhav Srivastava
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Victoria Linderberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Amani Moussa
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Thomas Crouzier
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| |
Collapse
|
10
|
Rodríguez-Pomar C, Pintor J, Colligris B, Carracedo G. Therapeutic inhibitors for the treatment of dry eye syndrome. Expert Opin Pharmacother 2017; 18:1855-1865. [PMID: 29115899 DOI: 10.1080/14656566.2017.1403584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Dry eye disease (DED), defined as a multifactorial disease of tears and ocular surface, results in symptoms of discomfort, ocular irritation, visual disturbance and tear film instability. This syndrome is accompanied of ocular surface inflammation and it is produced by a deficient activity of the lacrimal functional unit. In addition, it is associated with systemic autoimmune diseases such as Sjögren´s Syndrome, rheumatoid arthritis, systemic lupus erythematosus and some drug administration. The treatment of dry eye disease is based on the typical signs and symptoms of dry eye, which are associated with hyperosmolarity, ocular surface inflammation, discomfort, visual disturbance, and tear film instability. Areas covered: This review is focused on synthetic drugs currently used in clinical practice, from phase III development onwards to treat the ocular surface signs and symptoms of dry eye disease. Expert opinion: The multifactorial disease and the lack of correlation between signs and symptoms imply that not all the pharmacological approaches will be successful for dry eye. The correct design of the clinical trials, with appropriate endpoints, and the type of dry eye under study are complicated but mandatory. The anti-inflammatory and secretagogues drugs are both the main compounds to currently treat the dry eye disease.
Collapse
Affiliation(s)
- Candela Rodríguez-Pomar
- a Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain.,b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Jesus Pintor
- b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Basilio Colligris
- b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Gonzalo Carracedo
- a Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain.,b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
11
|
Zhang X, M VJ, Qu Y, He X, Ou S, Bu J, Jia C, Wang J, Wu H, Liu Z, Li W. Dry Eye Management: Targeting the Ocular Surface Microenvironment. Int J Mol Sci 2017; 18:E1398. [PMID: 28661456 PMCID: PMC5535891 DOI: 10.3390/ijms18071398] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/24/2022] Open
Abstract
Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Vimalin Jeyalatha M
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Yangluowa Qu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Xin He
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Shangkun Ou
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Jinghua Bu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Changkai Jia
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Junqi Wang
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Han Wu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| |
Collapse
|
12
|
Portal C, Gouyer V, Gottrand F, Desseyn JL. Preclinical mouse model to monitor live Muc5b-producing conjunctival goblet cell density under pharmacological treatments. PLoS One 2017; 12:e0174764. [PMID: 28355261 PMCID: PMC5371386 DOI: 10.1371/journal.pone.0174764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
Purpose Modification of mucous cell density and gel-forming mucin production are established hallmarks of mucosal diseases. Our aim was to develop and validate a mouse model to study live goblet cell density in pathological situations and under pharmacological treatments. Methods We created a reporter mouse for the gel-forming mucin gene Muc5b. Muc5b-positive goblet cells were studied in the eye conjunctiva by immunohistochemistry and probe-based confocal laser endomicroscopy (pCLE) in living mice. Dry eye syndrome (DES) model was induced by topical application of benzalkonium chloride (BAK) and recombinant interleukine (rIL) 13 was administered to reverse the goblet cell loss in the DES model. Results Almost 50% of the total of conjunctival goblet cells are Muc5b+ in unchallenged mice. The decrease density of Muc5b+ conjunctival goblet cell population in the DES model reflects the whole conjunctival goblet cell loss. Ten days of BAK in one eye followed by 4 days without any treatment induced a −18.3% decrease in conjunctival goblet cell density. A four days of rIL13 application in the DES model restored the normal goblet cell density. Conclusion Muc5b is a biological marker of DES mouse models. We bring the proof of concept that our model is unique and allows a better understanding of the mechanisms that regulate gel-forming mucin production/secretion and mucous cell differentiation in the conjunctiva of living mice and can be used to test treatment compounds in mucosal disease models.
Collapse
Affiliation(s)
- Céline Portal
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
| | | | - Jean-Luc Desseyn
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
- * E-mail:
| |
Collapse
|
13
|
Labbé A, Baudouin C, Ismail D, Amrane M, Garrigue JS, Leonardi A, Figueiredo F, Van Setten G, Labetoulle M. Pan-European survey of the topical ocular use of cyclosporine A. J Fr Ophtalmol 2017; 40:187-195. [DOI: 10.1016/j.jfo.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 10/19/2022]
|
14
|
Nebbioso M, Fameli V, Gharbiya M, Sacchetti M, Zicari AM, Lambiase A. Investigational drugs in dry eye disease. Expert Opin Investig Drugs 2016; 25:1437-1446. [DOI: 10.1080/13543784.2016.1249564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Ambroziak AM, Szaflik J, Szaflik JP, Ambroziak M, Witkiewicz J, Skopiński P. Immunomodulation on the ocular surface: a review. Cent Eur J Immunol 2016; 41:195-208. [PMID: 27536206 PMCID: PMC4967654 DOI: 10.5114/ceji.2016.60995] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022] Open
Abstract
The increasing understanding of immune mechanisms changed our perception of the ocular surface, which is now considered a compartment of the common mucosal immune system. It offered the possibility to alter the physiological immune response on the ocular surface and effectively combat inflammation, which impairs stability of the tear film and causes tear hyperosmolarity, causing symptoms of dry eye disease. The paper provides an overview of ocular surface anatomy and physiology, explains the underlying mechanisms of dry eye disease and discusses novel and promising treatment modalities, such as cyclosporine A, biological therapies using autologous serum and various growth factors as well as experimental treatment methods which are currently being investigated.
Collapse
Affiliation(s)
- Anna M. Ambroziak
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Information Optics Department, Faculty of Physics, University of Warsaw, Poland
| | - Jerzy Szaflik
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
| | - Jacek P. Szaflik
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
| | | | | | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology Centre of Biostructure, Medical University of Warsaw, Poland
| |
Collapse
|
16
|
Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. BIOIMPACTS : BI 2016; 6:49-67. [PMID: 27340624 PMCID: PMC4916551 DOI: 10.15171/bi.2016.07] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/13/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular targeted therapy has enormously been advanced by implementation of new methods of drug delivery and targeting using implantable drug delivery systems (DDSs) or devices (DDDs), stimuli-responsive advanced biomaterials, multimodal nanomedicines, cell therapy modalities and medical bioMEMs. These technologies tackle several ocular diseases such as inflammation-based diseases (e.g., scleritis, keratitis, uveitis, iritis, conjunctivitis, chorioretinitis, choroiditis, retinitis, retinochoroiditis), ocular hypertension and neuropathy, age-related macular degeneration and mucopolysaccharidosis (MPS) due to accumulation of glycosaminoglycans (GAGs). Such therapies appear to provide ultimate treatments, even though much more effective, yet biocompatible, noninvasive therapies are needed to control some disabling ocular diseases/disorders. METHODS In the current study, we have reviewed and discussed recent advancements on ocular targeted therapies. RESULTS On the ground that the pharmacokinetic and pharmacodynamic analyses of ophthalmic drugs need special techniques, most of ocular DDSs/devices developments have been designed to localized therapy within the eye. Application of advanced DDSs such as Subconjunctival insert/implants (e.g., latanoprost implant, Gamunex-C), episcleral implant (e.g., LX201), cationic emulsions (e.g., Cationorm™, Vekacia™, Cyclokat™), intac/punctal plug DDSs (latanoprost punctal plug delivery system, L-PPDS), and intravitreal implants (I-vitaion™, NT-501, NT- 503, MicroPump, Thethadur, IB-20089 Verisome™, Cortiject, DE-102, Retisert™, Iluvein™ and Ozurdex™) have significantly improved the treatment of ocular diseases. However, most of these DDSs/devices are applied invasively and even need surgical procedures. Of these, use of de novo technologies such as advanced stimuli-responsive nanomaterials, multimodal nanosystems (NSs)/nanoconjugates (NCs), biomacromolecualr scaffolds, and bioengineered cell therapies need to be further advanced to get better compliance and higher clinical impacts. CONCLUSION Despite mankind successful battle on ocular diseases, our challenge will continue to battle the ocular disease that happen with aging. Yet, we need to understand the molecular aspects of eye diseases in a holistic way and develop ultimate treatment protocols preferably as non-invasive systems.
Collapse
Affiliation(s)
| | | | | | - Yadollah Omidi
- Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Human Serum Eye Drops in Eye Alterations: An Insight and a Critical Analysis. J Ophthalmol 2015; 2015:396410. [PMID: 26504592 PMCID: PMC4609447 DOI: 10.1155/2015/396410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Human serum contains a physiological plethora of bioactive elements naturally released by activated platelets which might have a significant effect on the regeneration of corneal layers by stimulating the cell growth. This mechanism supported the use of human serum eye drops in some ocular diseases associated with dystrophic changes and alterations of the tear film, such as persistent corneal epithelial defects and dry eye syndrome. We focused our effort on potential benefits and limitations of the use of human serum eye drops when conventional therapies failed. We reviewed the recent literature by reporting published studies from 2010 to 2014. Despite the limited evaluated study populations, most of the clinical studies have confirmed that serum eye drop therapy is effective in corneal healing by reducing ocular symptom, particularly during the short-term follow-up. In addition, three recent published studies have shown the efficacy of the serum eye drop therapy in comparison to traditional ones in intractable patients. Besides, reported ongoing clinical studies confirmed the open debate regarding the use of biologic tools for cornea regeneration. Results from these studies might open novel challenges and perspectives in the therapy of such refractory patients.
Collapse
|
18
|
Thode AR, Latkany RA. Current and Emerging Therapeutic Strategies for the Treatment of Meibomian Gland Dysfunction (MGD). Drugs 2015; 75:1177-85. [DOI: 10.1007/s40265-015-0432-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|