1
|
Tamura R, Miyoshi H, Yoshida K, Okano H, Toda M. Recent progress in the research of suicide gene therapy for malignant glioma. Neurosurg Rev 2019; 44:29-49. [PMID: 31781985 DOI: 10.1007/s10143-019-01203-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Malignant glioma, which is characterized by diffuse infiltration into the normal brain parenchyma, is the most aggressive primary brain tumor with dismal prognosis. Over the past 40 years, the median survival has only slightly improved. Therefore, new therapeutic modalities must be developed. In the 1990s, suicide gene therapy began attracting attention for the treatment of malignant glioma. Some clinical trials used a viral vector for suicide gene transduction; however, it was found that viral vectors cannot cover the large invaded area of glioma cells. Interest in this therapy was recently revived because some types of stem cells possess a tumor-tropic migratory capacity, which can be used as cellular delivery vehicles. Immortalized, clonal neural stem cell (NSC) line has been used for patients with recurrent high-grade glioma, which showed safety and efficacy. Embryonic and induced pluripotent stem cells may be considered as sources of NSC because NSC is difficult to harvest, and ethical issues have been raised. Mesenchymal stem cells are alternative candidates for cellular vehicle and are easily harvested from the bone marrow. In addition, a new type of nonlytic, amphotropic retroviral replicating vector encoding suicide gene has shown efficacy in patients with recurrent high-grade glioma in a clinical trial. This replicating viral capacity is another possible candidate as delivery vehicle to tackle gliomas. Herein, we review the concept of suicide gene therapy, as well as recent progress in preclinical and clinical studies in this field.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, Palumbo P, Lombardi F, Cimini A, Cifone MG, Crovace A, Galzio R. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon 2019; 5:e02818. [PMID: 31844735 PMCID: PMC6889232 DOI: 10.1016/j.heliyon.2019.e02818] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Examination of the current trends and future perspectives of the cell-based therapies in neurosurgery. METHODS A PubMed/MEDLINE-based systematic review has been performed combining the main Medical Subject Headings (MeSH) regarding the cell- and tissue-based therapies with the "Brain", "Spinal Cord", "Spine" and "Skull" MeSH terms. Only articles in English published in the last 10 years and pertinent to neurosurgery have been selected. RESULTS A total of 1,173 relevant articles have been chosen. Somatic cells and gene-modification technologies have undergone the greatest development. Immunotherapies and gene therapies have been tested for the cure of glioblastoma, stem cells mainly for brain and spinal cord traumatic injuries. Stem cells have also found a rationale in the treatment of the cranial and spinal bony defects, and of the intervertebral disc degeneration, as well.Most of the completed or ongoing trials concerning the cell-based therapies in neurosurgery are on phase 2. Future perspectives involve the need to overcome issues related to immunogenicity, oncogenicity and routes for administration. Refinement and improvement of vector design and delivery are required within the gene therapies. CONCLUSION The last decade has been characterised by a progressive evolution of neurosurgery from a purely mechanical phase to a new biological one. This trend has followed the rapid and parallel development of translational medicine and nanotechnologies.The introduction of new technologies, the optimisation of the already existing ones, and the reduction of costs are among the main challenges of the foreseeable future.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| | - Alberto Maria Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Mattia Del Maestro
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Samer K. Elbabaa
- Pediatric Neurosurgery, Pediatric Neuroscience Center of Excellence, Arnold Palmer Hospital for Children, 1222 S. Orange Avenue, 2nd Floor, MP 154, Orlando, FL, 32806, USA
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Annamaria Cimini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Renato Galzio
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| |
Collapse
|
3
|
Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH. Human gene therapy approaches for the treatment of Parkinson's disease: An overview of current and completed clinical trials. Parkinsonism Relat Disord 2019; 66:16-24. [DOI: 10.1016/j.parkreldis.2019.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
|
4
|
Hitti FL, Gonzalez-Alegre P, Lucas TH. Gene Therapy for Neurologic Disease: A Neurosurgical Review. World Neurosurg 2019; 121:261-273. [DOI: 10.1016/j.wneu.2018.09.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023]
|
5
|
Current status of local therapy in malignant gliomas--a clinical review of three selected approaches. Pharmacol Ther 2013; 139:341-58. [PMID: 23694764 DOI: 10.1016/j.pharmthera.2013.05.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/12/2013] [Indexed: 12/21/2022]
Abstract
Malignant gliomas are the most frequently occurring, devastating primary brain tumors, and are coupled with a poor survival rate. Despite the fact that complete neurosurgical resection of these tumors is impossible in consideration of their infiltrating nature, surgical resection followed by adjuvant therapeutics, including radiation therapy and chemotherapy, is still the current standard therapy. Systemic chemotherapy is restricted by the blood-brain barrier, while methods of local delivery, such as with drug-impregnated wafers, convection-enhanced drug delivery, or direct perilesional injections, present attractive ways to circumvent these barriers. These methods are promising ways for direct delivery of either standard chemotherapeutic or new anti-cancer agents. Several clinical trials showed controversial results relating to the influence of a local delivery of chemotherapy on the survival of patients with both recurrent and newly diagnosed malignant gliomas. Our article will review the development of the drug-impregnated release, as well as convection-enhanced delivery and the direct injection into brain tissue, which has been used predominantly in gene-therapy trials. Further, it will focus on the use of convection-enhanced delivery in the treatment of patients with malignant gliomas, placing special emphasis on potential shortcomings in past clinical trials. Although there is a strong need for new or additional therapeutic strategies in the treatment of malignant gliomas, and although local delivery of chemotherapy in those tumors might be a powerful tool, local therapy is used only sporadically nowadays. Thus, we have to learn from our mistakes in the past and we strongly encourage future developments in this field.
Collapse
|
6
|
Safdar S, Taite LJ. Targeted diazeniumdiolates: Localized nitric oxide release from glioma-specific peptides and proteins. Int J Pharm 2012; 422:264-70. [DOI: 10.1016/j.ijpharm.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 11/26/2022]
|
7
|
Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 2009; 3:259-69. [PMID: 19338403 DOI: 10.3171/2008.11.peds08281] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diffuse intrinsic pontine gliomas constitute ~ 60-75% of tumors found within the pediatric brainstem. These malignant lesions present with rapidly progressive symptoms such as cranial nerve, long tract, or cerebellar dysfunctions. Magnetic resonance imaging is usually sufficient to establish the diagnosis and obviates the need for surgical biopsy in most cases. The prognosis of the disease is dismal, and the median survival is < 12 months. Resection is not a viable option. Standard therapy involves radiotherapy, which produces transient neurological improvement with a progression-free survival benefit, but provides no improvement in overall survival. Clinical trials have been conducted to assess the efficacy of chemotherapeutic and biological agents in the treatment of diffuse pontine gliomas. In this review, the authors discuss recent studies in which systemic therapy was administered prior to, concomitantly with, or after radiotherapy. For future perspective, the discussion includes a rationale for stereotactic biopsies as well as possible therapeutic options of local chemotherapy in these lesions.
Collapse
Affiliation(s)
- James L Frazier
- Departments of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
8
|
Balani P, Boulaire J, Zhao Y, Zeng J, Lin J, Wang S. High mobility group box2 promoter-controlled suicide gene expression enables targeted glioblastoma treatment. Mol Ther 2009; 17:1003-11. [PMID: 19240692 DOI: 10.1038/mt.2009.22] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Achievement of specific tumor cell targeting remains a challenge for glioma gene therapy. We observed that the human high mobility group box2 (HMGB2) gene had a low level of expression in normal human brain tissues, but was significantly upregulated in glioblastoma tissues. With progressive truncation of a 5'-upstream sequence of the HMGB2 gene, we identified a 0.5-kb fragment displaying a high transcriptional activity in glioblastoma cells, but a low activity in normal brain cells. To test the feasibility of using the HMGB2 promoter sequence in targeted cancer therapy, we constructed a baculoviral vector expressing the herpes simplex virus thymidine kinase (HSVtk) gene driven by the HMGB2 promoter. Transduction with the viral vector induced cell death in glioblastoma cell lines in the presence of ganciclovir (GCV), but did not affect the survival of human astrocytes and neurons. In a mouse xenograft model, intratumor injection of the baculoviral vector suppressed the growth of human glioblastoma cells and prolonged the survival of tumor-bearing mice. Our results suggest that the novel 5' sequence of HMGB2 gene has a potential to be used as an efficient, tumor-selective promoter in targeted vectors for glioblastoma gene therapy.
Collapse
Affiliation(s)
- Poonam Balani
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | | | | | | | | |
Collapse
|
9
|
Morokoff AP, Novak U. Targeted therapy for malignant gliomas. J Clin Neurosci 2008; 11:807-18. [PMID: 15519855 DOI: 10.1016/j.jocn.2004.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 03/01/2004] [Indexed: 12/31/2022]
Abstract
The identification of markers that are associated with tumour but not normal tissue has allowed the development of highly-specific targeted therapies. Monoclonal antibodies, either alone or linked to radioisotopes or toxins, have provided a powerful tool for research, as well as the basis for promising therapeutic agents with less side effects than standard radiotherapy or chemotherapy. A new class of drugs, the tyrosine kinase inhibitors, which interfere with the function of key molecules in cancer-promoting pathways, have had a dramatic effect in haematological malignancy and are being trialled in solid tumours, including glioma. Although the problem of achieving specific, high-level delivery of these various agents to tumours in the brain remains a major issue, encouraging early results with some targeted agents support the attractive theoretical principles of this new paradigm. Further work to identify new molecular targets and to develop agents exploiting them, is needed, as well as confirmation of their safety and efficacy by clinical trials.
Collapse
Affiliation(s)
- Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
10
|
Lam-Himlin D, Espey MG, Perry G, Smith MA, Castellani RJ. Malignant glioma progression and nitric oxide. Neurochem Int 2006; 49:764-8. [PMID: 16971023 DOI: 10.1016/j.neuint.2006.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/29/2006] [Accepted: 07/05/2006] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme, the most common of the malignant gliomas, carries a dismal prognosis in spite of the most aggressive therapy and recent advances in molecular pathways of glioma progression. Although it has received relatively little attention in the setting of malignant gliomas, nitric oxide metabolism may be intimately associated with the disease process. Interestingly, nitric oxide has both physiological roles (e.g., neurotransmitter-like activity, stimulation of cyclic GMP), and pathophysiological roles (e.g., neoplastic transformation, tumor neovascularization, induction of apoptosis, free radical damage). Moreover, whether nitric oxide is neuroprotective or neurotoxic in a given disease state, or whether it enhances or diminishes chemotherapeutic efficacy in malignant neoplasia, is unresolved. This review discusses the multifaceted activity of nitric oxide with particular reference to malignant gliomas.
Collapse
Affiliation(s)
- Dora Lam-Himlin
- Department of Pathology, University of Maryland, 22 South Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
11
|
Messerli SM, Prabhakar S, Tang Y, Mahmood U, Giovannini M, Weissleder R, Bronson R, Martuza R, Rabkin S, Breakefield XO. Treatment of Schwannomas with an Oncolytic Recombinant Herpes Simplex Virus in Murine Models of Neurofibromatosis Type 2. Hum Gene Ther 2006; 17:20-30. [PMID: 16409122 DOI: 10.1089/hum.2006.17.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy for schwannomas was evaluated in two mouse models of neurofibromatosis type 2 (NF2): (1) a transgenic model in which mice express a dominant mutant form of merlin and spontaneously develop schwannomas, and (2) a xenograft model in which human schwannoma tissue is implanted subcutaneously into immune- compromised mice. In both models, schwannoma volumes were monitored by magnetic resonance imaging (MRI) and showed strong gadolinium enhancement typical of these tumors in humans. Both types of tumor were positive for the Schwann cell marker S100, and highly infectable with herpes simplex virus (HSV) vectors. Schwannomas were injected with an oncolytic HSV-1 recombinant virus vector, G47Delta, which has deletions in genes for ribonucleotide reductase (ICP6), gamma34.5, and ICP47. In the NF2 transgenic model, schwannomas were reduced by more than half their original size by 10 days after infection. In the case of subcutaneous schwannoma xenografts, reduction in size after infection occurred more slowly, with a mean reduction of onethird by 42 days after treatment. Schwannomas injected with control vehicles continued to grow slowly over time in both schwannoma models. These studies demonstrate the ability of an oncolytic recombinant HSV vector to reduce the volume of schwannoma tumors in NF2 tumor models in mice and extend the possible therapeutic applications of oncolytic vectors for benign tumors to reduce mass while minimizing nerve damage.
Collapse
Affiliation(s)
- Shanta M Messerli
- Molecular Neurogenetics Unit, Department of Neurology, Harvard Medical School, and Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Messerli SM, Prabhakar S, Tang Y, Mahmood U, Weissleder R, Bronson R, Martuza R, Rabkin S, Breakefield XO. Treatment of Schwannomas with an Oncolytic Recombinant Herpes Simplex Virus in Murine Models of Neurofibromatosis Type 2. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Abstract
Significant advances have been made in the last 20 years in understanding the basic biology of the normal nervous system and in elucidating molecular and cellular mechanisms underlying neurological disease. This progress has generated, for the first time, a realistic possibility of treating what have historically been common and tragically untreatable diseases of the nervous system. In particular, therapeutic delivery of genes to the degenerating, injured or developmentally-deficient nervous system offers the potential to prevent cell death, induce new growth and restore function. Clinical trials of gene therapy are beginning to move forward in several neurological disorders. We have thereby begun the transition to molecular-based medicine which has the potential to alter the landscape and prognosis of neurological disease.
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences-0626, University of California, San Diego, La Jolla, CA 92093-0626, USA.
| |
Collapse
|
14
|
Dunn IF, Black PM. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003; 52:1411-22; discussion 1422-4. [PMID: 12762886 DOI: 10.1227/01.neu.0000064808.27512.cf] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 02/12/2003] [Indexed: 11/19/2022] Open
Abstract
Malignant gliomas are among the most challenging of all cancers to treat successfully, being characterized not only by aggressive proliferation and expansion but also by inexorable tumor invasion into distant brain tissue. Although considerable progress has been made in the treatment of these tumors with combinations of surgery, radiotherapy, and chemotherapy, these efforts have not been curative. Neurosurgeons as oncologists have increasingly turned their attention to therapies on a molecular scale. Of particular interest to neurosurgeons is the ability to deliver therapy locally to the tumor site or to take advantage of existing immunological mediators, enhancing drug concentrations or therapeutic cell numbers while bypassing the blood-brain barrier to maximize efficacy and minimize systemic toxicity. Exciting local-therapy approaches have been proposed for these devastating tumors. In this review, we discuss the potential applications of bioreactors, neural stem cells, immunotherapies, biodegradable polymers, and convection-enhanced drug delivery in the treatment of malignant gliomas. These approaches are at different stages of readiness for application in clinical neurosurgery, and their eventual effects on the morbidity and mortality rates of gliomas among human patients are difficult to ascertain from successes in animal models. Nevertheless, we are entering an exciting era of "nanoneurosurgery," in which molecular therapies such as those discussed here may routinely complement existing surgical, radiological, and chemotherapeutic approaches to the treatment of neuro-oncological disease. The potential to deploy any of a number of eloquently devised molecular therapies may provide renewed hope for neurosurgeons treating malignant gliomas.
Collapse
Affiliation(s)
- Ian F Dunn
- Brain Tumor Laboratories and Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
15
|
Abstract
Malignant gliomas remain amongst the most difficult cancer to treat. Viral-based gene therapies have been employed for the last decade in preclinical and clinical modes as a novel treatment modality. In this review, such therapies are summarized. The overwhelming majority of clinical studies point one to conclude that methodologies that will increase tumor infection/transduction will lead to enhanced therapeutic results.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-oncology Laboratory, Neurosurgery Service, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
16
|
Abstract
PURPOSE Brain tumors were the first human malignancy to be targeted by therapeutic transfer of nucleic acids into somatic cells, a process also known as gene therapy. Malignant brain tumor cells in the adult brain have some unique biologic features, such as high mitotic activity on an essentially postmitotic background and virtually no tumor spread outside of the central nervous system. Brain tumors seem therefore to offer major advantages in the design of tumor-selective gene therapy strategies, and the role of gene therapy in malignant glioma has been investigated since the late 1980s, initially in numerous laboratory studies and later on in clinical trials. DESIGN Retrovirus has been one of the earliest recombinant virus vectors used in brain tumors. Experiments in cell culture and in animal models have demonstrated the feasibility of retrovirus-mediated transduction and subsequent killing of glioma cells by toxic transgenes. Phase I and II clinical studies in patients with recurrent malignant glioma have shown a favorable safety profile and some efficacy of retrovirus-mediated gene therapy. However, the only prospective, randomized, phase III clinical study of retrovirus gene therapy in primary malignant glioma failed to demonstrate significant extension of progression-free or overall survival. Adenovirus- and herpes simplex virus type 1-based vectors have been actively investigated along with retrovirus, but their clinical use is still limited, mostly because of safety concerns. To increase efficacy, novel generations of therapeutic adenovirus and herpes simplex virus type 1 rely more on genetically engineered and tumor-selective lytic properties and less on the actual transfer of therapeutic genes. CONCLUSIONS The failure of most clinical gene therapy protocols to produce a significant and unequivocal benefitto brain tumor patients seems to be mainly due to the low tumor cell transduction rates observed in vivo, but it may also depend on the respective physical delivery strategy of the vector. Standard radiologic criteria for assessing the efficacy of clinical treatments may also not be fully applicable to the specific metabolic changes and blood-brain barrier permeability phenomena caused in brain tumors by virus-mediated gene therapy. Clinical trials in malignant glioma have nevertheless produced a substantial amount of data and have contributed to the continuous improvement of vector systems, delivery methods, and clinical protocols.
Collapse
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Liverpool L9 7LJ, UK.
| | | |
Collapse
|
17
|
Messerli SM, Tang Y, Giovannini M, Bronson R, Weissleder R, Breakefield XO. Detection of spontaneous schwannomas by MRI in a transgenic murine model of neurofibromatosis type 2. Neoplasia 2002; 4:501-9. [PMID: 12407444 PMCID: PMC1503664 DOI: 10.1038/sj.neo.7900265] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 04/15/2002] [Indexed: 11/08/2022]
Abstract
Spontaneous schwannomas were detected by magnetic resonance imaging (MRI) in a transgenic murine model of neurofibromatosis type 2 (NF2) expressing a dominant mutant form of merlin under the Schwann cell-specific P0 promoter. Approximately 85% of the investigated mice showed putative tumors by 24 months of age. Specifically, 21% of the mice showed tumors in the intercostal muscles, 14% in the limb muscles, 7% in the spinal cord and spinal ganglia, 7% in the external ear, 14% in the muscle of the abdominal region, and 7% in the intestine; 66% of the female mice had uterine tumors. Multiple tumors were detected by MRI in 21% of mice. The tumors were isointense with muscle by T1-weighted MRI, showed strong enhancement following administration of gadolinium-DTPA, and were markedly hyperintense by T2-weighted MRI, all hallmarks of the clinical manifestation. Hematoxylin and eosin staining and immunohistochemistry indicated that the tumors consisted of schwannomas and Schwann cell hyperplasias. The lesions stained positively for S-100 protein and a marker antigen for the mutated transgenic NF2 protein, confirming that the imaged tumors and areas of hyperplasia were of Schwann cell origin and expressed the mutated NF2 protein. Tumors were highly infectable with a recombinant herpes simplex virus type 1 vector, hrR3, which contains the reporter gene, lacZ. The ability to develop schwannoma growth with a noninvasive imaging technique will allow assessment of therapeutic interventions.
Collapse
Affiliation(s)
- S M Messerli
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Preclinical neuroscience has advanced rapidly over the past two decades. New approaches for treating neurological disease, including gene-based therapies, nervous-system growth factors, stem cells, novel vaccines, and modulation of the immune system, offer the potential to prevent cell loss and degeneration in the brain, rather than attempting to compensate for loss after it has occurred. I will review one of these prospective therapies: growth-factor gene therapy for Alzheimer's disease, an approach that is currently the subject of a phase I clinical trial. Other disease targets for gene therapy will also be discussed, including Parkinson's disease, Huntington's disease, inborn errors of metabolism, and cancer. The progress of gene-therapy clinical trials is aiding the transition to molecular and gene-targeted therapeutic approaches which have the potential to improve dramatically the prognosis of neurological disease.
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences, University of California at San Diego, and the Veterans Administration Medical Center-San Diego, La Jolla 92093, USA.
| |
Collapse
|