1
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Baumann V, Athanasiou AT, Faridani OR, Schwerdtfeger AR, Wallner B, Steinborn R. Identification of extremely GC-rich micro RNAs for RT-qPCR data normalization in human plasma. Front Genet 2023; 13:1058668. [PMID: 36685854 PMCID: PMC9846067 DOI: 10.3389/fgene.2022.1058668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed at extending the repertoire of high-quality miRNA normalizers for reverse transcription-quantitative PCR (RT-qPCR) of human plasma with special emphasis on the extremely guanine-cytosine-rich portion of the miRNome. For high-throughput selection of stable candidates, microarray technology was preferred over small-RNA sequencing (sRNA-seq) since the latter underrepresented miRNAs with a guanine-cytosine (GC) content of at least 75% (p = 0.0002, n = 2). miRNA abundances measured on the microarray were ranked for consistency and uniformity using nine normalization approaches. The eleven most stable sequences included miRNAs of moderate, but also extreme GC content (45%-65%: miR-320d, miR-425-5p, miR-185-5p, miR-486-5p; 80%-95%: miR-1915-3p, miR-3656-5p, miR-3665-5p, miR-3960-5p, miR-4488-5p, miR-4497 and miR-4787-5p). In contrast, the seven extremely GC-rich miRNAs were not found in the two plasma miRNomes screened by sRNA-seq. Stem-loop RT-qPCR was employed for stability verification in 32 plasma samples of healthy male Caucasians (age range: 18-55 years). In general, inter-individual variance of miRNA abundance was low or very low as indicated by coefficient of variation (CV) values of 0.6%-8.2%. miR-3665 and miR-1915-3p outperformed in this analysis (CVs: 0.6 and 2.4%, respectively). The eight most stable sequences included four extremely GC-rich miRNAs (miR-1915-3p, miR-3665, miR-4787-5p and miR-4497). The best-performing duo normalization factor (NF) for the condition of human plasma, miR-320d and miR-4787-5p, also included a GC-extreme miRNA. In summary, the identification of extremely guanine-cytosine-rich plasma normalizers will help to increase accuracy of PCR-based miRNA quantification, thus raise the potential that miRNAs become markers for psychological stress reactions or early and precise diagnosis of clinical phenotypes. The novel miRNAs might also be useful for orthologous contexts considering their conservation in related animal genomes.
Collapse
Affiliation(s)
- Volker Baumann
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | | | - Omid R. Faridani
- Garvan Institute of Medical Research, Sydney, NSW, Australia,Lowy Cancer Research Centre, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria,Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria,*Correspondence: Ralf Steinborn,
| |
Collapse
|
3
|
Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21249634. [PMID: 33348812 PMCID: PMC7766527 DOI: 10.3390/ijms21249634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication. In several bacterial pathogens, MVs have been described as a delivery system of ncRNAs that upon entry into the host cell, regulate their immune response. The aim of the present work is to review this recently described mode of host-pathogen communication and to foster further research on this topic envisaging their exploitation in the design of novel therapeutic and diagnostic strategies to fight bacterial infections.
Collapse
|
4
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 804] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
5
|
van Vliet EA, Puhakka N, Mills JD, Srivastava PK, Johnson MR, Roncon P, Das Gupta S, Karttunen J, Simonato M, Lukasiuk K, Gorter JA, Aronica E, Pitkänen A. Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia 2017; 58:2013-2024. [PMID: 28960286 DOI: 10.1111/epi.13915] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
The World Health Organization estimates that globally 2.4 million people are diagnosed with epilepsy each year. In nearly 30% of these cases, epilepsy cannot be properly controlled by antiepileptic drugs. More importantly, treatments to prevent or modify epileptogenesis do not exist. Therefore, novel therapies are urgently needed. In this respect, it is important to identify which patients will develop epilepsy and which individually tailored treatment is needed. However, currently, we have no tools to identify the patients at risk, and diagnosis of epileptogenesis remains as a major unmet medical need, which relates to lack of diagnostic biomarkers for epileptogenesis. As the epileptogenic process in humans is typically slow, the use of animal models is justified to speed up biomarker discovery. We aim to summarize recommendations for molecular biomarker research and propose a standardized procedure for biomarker discovery in rat models of epileptogenesis. The potential of many phylogenetically conserved circulating noncoding small RNAs, including microRNAs (miRNAs), as biomarkers has been explored in various brain diseases, including epilepsy. Recent studies show the feasibility of detecting miRNAs in blood in both experimental models and human epilepsy. However, the analysis of circulating miRNAs in rodent models is challenging, which relates both to the lack of standardized sampling protocols and to analysis of miRNAs. We will discuss the issues critical for preclinical plasma biomarker discovery, such as documentation, blood and brain tissue sampling and collection, plasma separation and storage, RNA extraction, quality control, and RNA detection. We propose a protocol for standardization of procedures for discovery of circulating miRNA biomarkers in rat models of epileptogenesis. Ultimately, we hope that the preclinical standardization will facilitate clinical biomarker discovery for epileptogenesis in man.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - James D Mills
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
| | - Paolo Roncon
- Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Karttunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michele Simonato
- Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.,University of Ferrara, Ferrara, Italy
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Abstract
Human blood contains a great variety of membrane-covered RNA carrying vesicles which are spherical or tubular particles enclosed by a phospholipid bilayer. Circulating vesicles are thought to mediate cell-to-cell communication and their RNA cargo can act as regulatory molecules. In this work, we separated blood plasma of healthy donors by centrifugation and determined that vesicles precipitated at 16,000 g were enriched with CD41a, marker of platelets. At 160,000 g, the pellets were enriched with CD3 marker of T cells. To characterize the RNA-content of the blood plasma sub fractions, we performed high throughput sequencing of the RNA pelleted within vesicles at 16,000 g and 160,000 g as well as RNA remaining in the vesicle-free supernatant. We found that blood plasma sub fractions contain not only extensive set of microRNAs but also fragments of other cellular RNAs: rRNAs, tRNAs, mRNAs, lncRNAs, small RNAs including RNAs encoded by mtDNAs. Our data indicate that a variety of blood plasma RNAs circulating within vesicles as well as of extra-vesicular RNAs are comparable to the variety of cellular RNA species.
Collapse
|
7
|
Savelyeva AV, Bariakin DN, Kuligina EV, Morozov VV, Richter VA, Semenov DV. Circular RNAs of human blood cells, plasma, and plasma subfractions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7404912. [PMID: 28127559 PMCID: PMC5239830 DOI: 10.1155/2017/7404912] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
Abstract
Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches.
Collapse
|
9
|
Simonov D, Swift S, Blenkiron C, Phillips AR. Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries (Craiova) 2016; 4:e70. [PMID: 32309589 PMCID: PMC7159825 DOI: 10.15190/d.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.
Collapse
Affiliation(s)
- Denis Simonov
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Department of Surgery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Perge P, Nagy Z, Decmann Á, Igaz I, Igaz P. Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol 2016; 14:391-401. [PMID: 27791594 DOI: 10.1080/15476286.2016.1251001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are short non-protein coding RNA molecules involved in the epigenetic regulation of gene expression. Recently, extracellular microRNAs have been described in body fluids that might enable epigenetic communication between distant tissues. Being highly conserved molecules, exogenous xeno-microRNAs from different species could affect gene expression in the host even in a cross-kingdom fashion. Several data underline the relevance of microRNA-mediated communication between virus and host, and there are some experimental data showing that plant- or animal-derived dietary microRNAs might have gene expression modulating activity in humans. Milk-derived microRNAs might be involved in the "epigenetic priming" of the baby. Exogenous microRNAs might be hypothesized to be implicated in disease pathogenesis, e.g. in tumors. Major questions remain to be addressed including the amount of xeno-microRNAs needed for biological action or routes for microRNA delivery. In this brief review, experimental data and hypotheses on the potential pathogenic inter-species relevance of microRNA are presented.
Collapse
Affiliation(s)
- Pál Perge
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Zoltán Nagy
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Ábel Decmann
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Ivan Igaz
- b Department of Gastroenterology , Szent Imre Teaching Hospital , Budapest , Hungary
| | - Peter Igaz
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| |
Collapse
|
11
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|
12
|
Fabris L, Calin GA. Circulating free xeno-microRNAs - The new kids on the block. Mol Oncol 2016; 10:503-8. [PMID: 26860056 DOI: 10.1016/j.molonc.2016.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
The role of circulating free microRNAs (cfmiRNAs) as promising tools for cancer screening, prognosis and monitoring of anticancer therapies has been widely studied in the past decades. cfmiRNAs have all the characteristics of the perfect biomarkers owing high stability under storage and handling conditions and being detectable not only in plasma, but in almost all body fluids. Moreover, their levels in plasma are likely to resemble ones in the primary tumor. Recently, viral and plant miRNAs have been found in plasma of healthy individuals through deep sequencing technique, and subsequently the same ones were deregulated in patients. Growing body of literature is recently focusing on understanding the potential cross-kingdom regulation of human mRNAs by miRNAs most likely absorbed with food ingestion. In this article we will review the literature concerning the xenomiRs detected in plasma and their role in influencing cancer onset and progression. XenomiRs could potentially be used not only as early screening tool, but also for patients' prognosis.
Collapse
Affiliation(s)
- Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Artificial Analogues of Circulating Box C/D RNAs Induce Strong Innate Immune Response and MicroRNA Activation in Human Adenocarcinoma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 924:121-125. [PMID: 27753032 DOI: 10.1007/978-3-319-42044-8_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fragments of small nucleolar RNAs (snoRNAs) were found among various non-coding RNAs (ncRNAs) circulating in human blood. Currently, the function of such cell-free sno-derived-RNAs is not clearly defined. This work is aimed at identifying regulatory pathways controlled by extracellular snoRNAs. In order to determine the molecular targets and pathways affected by artificial snoRNAs, we performed Illumina array analysis of MCF-7 human adenocarcinoma cells transfected with box C/D RNAs. The genes related to the innate immune response and apoptotic cascades were found to be activated in transfected cells compared with control cells. Intriguingly, the transfection of MCF-7 cells with artificial box C/D snoRNAs also increased the transcription of several microRNAs, such as mir-574, mir-599 and mir-21. Our data demonstrated that extracellular snoRNAs introduced into human cells may function as gene expression modulators, with activation of microRNA genes being one of the regulatory mechanisms.
Collapse
|
14
|
Fernandez-Mercado M, Manterola L, Larrea E, Goicoechea I, Arestin M, Armesto M, Otaegui D, Lawrie CH. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med 2015; 19:2307-23. [PMID: 26119132 PMCID: PMC4594673 DOI: 10.1111/jcmm.12625] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
The gold standard for cancer diagnosis remains the histological examination of affected tissue, obtained either by surgical excision, or radiologically guided biopsy. Such procedures however are expensive, not without risk to the patient, and require consistent evaluation by expert pathologists. Consequently, the search for non-invasive tools for the diagnosis and management of cancer has led to great interest in the field of circulating nucleic acids in plasma and serum. An additional benefit of blood-based testing is the ability to carry out screening and repeat sampling on patients undergoing therapy, or monitoring disease progression allowing for the development of a personalized approach to cancer patient management. Despite having been discovered over 60 years ago, the clear clinical potential of circulating nucleic acids, with the notable exception of prenatal diagnostic testing, has yet to translate into the clinic. The recent discovery of non-coding (nc) RNA (in particular micro(mi)RNAs) in the blood has provided fresh impetuous for the field. In this review, we discuss the potential of the circulating transcriptome (coding and ncRNA), as novel cancer biomarkers, the controversy surrounding their origin and biology, and most importantly the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
| | - Lorea Manterola
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - Erika Larrea
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - Ibai Goicoechea
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - María Arestin
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - María Armesto
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Research Institute, San Sebastian, Spain
| | - Charles H Lawrie
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Mi S, Zhang J, Zhang W, Huang RS. Circulating microRNAs as biomarkers for inflammatory diseases. Microrna 2015; 2:63-71. [PMID: 25019052 DOI: 10.2174/2211536611302010007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNA molecules with gene regulatory functions, have emerged to play a critical role in the pathogenesis of a variety of diseases. Current technological advances allow accurate, high throughput profiling of miRNA abundance in different tissues. More recently, extracellular, circulating miRNAs have begun to be demonstrated as highly stable, blood-based biomarkers for diseases. Understanding the interactions between circulating miRNAs and clinical phenotypes can enhance our knowledge of complex diseases and traits. On the other hand, given the advantages of utilizing blood-based biomarkers (e.g., convenience in collecting samples), circulating miRNAs as biomarkers may improve both disease diagnosis and management. Particularly, we reviewed recent progress in identifying circulating miRNAs as biomarkers for several common inflammatory diseases including asthma, inflammatory bowel disease, and rheumatoid arthritis. Current studies showed a promising future of using circulating miRNAs in the care of inflammatory diseases.
Collapse
Affiliation(s)
- Shuangli Mi
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jian Zhang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China ; Graduate university of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612, USA ; Institute of Human Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - R Stephanie Huang
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Abstract
OBJECTIVE To isolate microRNAs (miRNAs) from mesenteric lymph (ML) and peripheral blood and identify those that change with experimental acute pancreatitis (AP). To assess identified AP-associated miRNAs in patient plasma to evaluate them as clinical biomarkers of AP. BACKGROUND miRNAs, small non-protein-coding molecules that regulate gene expression, are present in many biological fluids. They are increasingly interesting as biomarkers of disease and as novel signaling molecules in pathogenesis. METHODS Affymetrix miRNA profiling was performed on ML collected from 3 groups of rats with either mild or moderate taurocholate-induced AP and sham controls. Quantitative reverse transcription-polymerase chain reaction was used to validate selected miRNAs in matched rat lymph and plasma and then measured in patients with mild or moderate AP and in healthy volunteers. RESULTS Eighty-five miRNAs were detectable in rat ML, and many were abundant in all animals irrespective of the presence of AP. Seven miRNAs, comprising miR-375, -217, -148a, -216a, -122, -214, and -138, were increased in ML from rats with AP (P < 0.01). Their abundance also altered with disease severity. miRNAs miR-217, -375, -122, and -148a were also increased in matched rat plasma samples by quantitative reverse transcription-polymerase chain reaction. In the clinical studies, plasma miR-216a was significantly increased in both mild and moderate AP. CONCLUSIONS This study is the first to demonstrate both the presence of circulating miRNAs in lymph and the alteration of specific miRNAs in AP. Furthermore, these miRNAs alter in rat and human AP plasma and have potential to be explored as novel biomarkers of pancreatitis.
Collapse
|
17
|
Coenen-Stass AML, Mäger I, Wood MJA. Extracellular microRNAs in Membrane Vesicles and Non-vesicular Carriers. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:31-53. [PMID: 26608198 DOI: 10.1007/978-3-0348-0955-9_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Great excitement has surrounded the finding that small RNAs are stable in various biofluids and carry specific signatures reflecting physiological and pathological states. In this chapter, we briefly describe the impact of this revolutionary discovery and introduce different subclasses of circulating microRNAs based on their mode of transport. Subsequently, we review the current state-of-the art knowledge on microRNA selection for export, secretion and possible uptake mechanisms and their potential function in circulation. Furthermore, we give an overview on the possible use of cell-free microRNAs as biomarkers and as therapeutic targets. Overall, we aim to highlight open questions and address some of the pitfalls of current extracellular RNA research.
Collapse
Affiliation(s)
- Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Mathew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
18
|
Beatty M, Guduric-Fuchs J, Brown E, Bridgett S, Chakravarthy U, Hogg RE, Simpson DA. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 2014; 15:933. [PMID: 25344700 PMCID: PMC4230795 DOI: 10.1186/1471-2164-15-933] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/16/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The human microbiome plays a significant role in maintaining normal physiology. Changes in its composition have been associated with bowel disease, metabolic disorders and atherosclerosis. Sequences of microbial origin have been observed within small RNA sequencing data obtained from blood samples. The aim of this study was to characterise the microbiome from which these sequences are derived. RESULTS Abundant non-human small RNA sequences were identified in plasma and plasma exosomal samples. Assembly of these short sequences into longer contigs was the pivotal novel step in ascertaining their origin by BLAST searches. Most reads mapped to rRNA sequences. The taxonomic profiles of the microbes detected were very consistent between individuals but distinct from microbiomes reported at other sites. The majority of bacterial reads were from the phylum Proteobacteria, whilst for 5 of 6 individuals over 90% of the more abundant fungal reads were from the phylum Ascomycota; of these over 90% were from the order Hypocreales. Many contigs were from plants, presumably of dietary origin. In addition, extremely abundant small RNAs derived from human Y RNAs were detected. CONCLUSIONS A characteristic profile of a subset of the human microbiome can be obtained by sequencing small RNAs present in the blood. The source and functions of these molecules remain to be determined, but the specific profiles are likely to reflect health status. The potential to provide biomarkers of diet and for the diagnosis and prognosis of human disease is immense.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David Arthur Simpson
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
19
|
Turchinovich A, Surowy H, Serva A, Zapatka M, Lichter P, Burwinkel B. Capture and Amplification by Tailing and Switching (CATS). An ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA. RNA Biol 2014; 11:817-28. [PMID: 24922482 PMCID: PMC4179956 DOI: 10.4161/rna.29304] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Massive parallel sequencing (MPS) technologies have paved the way into new areas of research including individualized medicine. However, sequencing of trace amounts of DNA or RNA still remains a major challenge, especially for degraded nucleic acids like circulating DNA. This together with high cost and time requirements impedes many important applications of MPS in medicine and fundamental science. We have established a fast, cheap and highly efficient protocol called ‘Capture and Amplification by Tailing and Switching’ (CATS) to directly generate ready-to-sequence libraries for MPS from nanogram and picogram quantities of both DNA and RNA. Furthermore, those DNA libraries are strand-specific, can be prepared within 2–3 h and do not require preliminary sample amplification steps. To exemplify the capacity of the technique, we have generated and sequenced DNA libraries from hundred-picogram amounts of circulating nucleic acids isolated from human blood plasma, one nanogram of mRNA-enriched total RNA from cultured cells and few nanograms of bisulfite-converted DNA. The approach for DNA library preparation from minimal and fragmented input described here will find broad application in diverse research areas such as translational medicine including therapy monitoring, prediction, prognosis and early detection of various human disorders and will permit high-throughput DNA sequencing from previously inaccessible material such as minute forensic and archeological samples.
Collapse
Affiliation(s)
- Andrey Turchinovich
- Molecular Epidemiology; German Cancer Research Center DKFZ; Heidelberg, Germany; Molecular Biology of Breast Cancer; University Women's Clinic; Heidelberg, Germany
| | - Harald Surowy
- Molecular Epidemiology; German Cancer Research Center DKFZ; Heidelberg, Germany; Molecular Biology of Breast Cancer; University Women's Clinic; Heidelberg, Germany
| | - Andrius Serva
- Molecular Genetics; German Cancer Research Center DKFZ; Heidelberg, Germany
| | - Marc Zapatka
- Molecular Genetics; German Cancer Research Center DKFZ; Heidelberg, Germany
| | - Peter Lichter
- Molecular Genetics; German Cancer Research Center DKFZ; Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology; German Cancer Research Center DKFZ; Heidelberg, Germany; Molecular Biology of Breast Cancer; University Women's Clinic; Heidelberg, Germany
| |
Collapse
|
20
|
Chevillet JR, Lee I, Briggs HA, He Y, Wang K. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 2014; 19:6080-105. [PMID: 24830712 PMCID: PMC6271291 DOI: 10.3390/molecules19056080] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
Cell-free circulating microRNAs (miRNAs) in the blood are good diagnostic biomarker candidates for various physiopathological conditions, including cancer, neurodegeneration, diabetes and other diseases. Since their discovery in 2008 as blood biomarkers, the field has expanded rapidly with a number of important findings. Despite the initial optimistic views of their potential for clinical application, there are currently no circulating miRNA-based diagnostics in use. In this article, we review the status of circulating miRNAs, examine different analytical approaches, and address some of the challenges and opportunities.
Collapse
Affiliation(s)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Hilary A Briggs
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY 10065, USA
| | - Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China.
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol 2013; 3:49. [PMID: 24032108 PMCID: PMC3764926 DOI: 10.3389/fcimb.2013.00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
There is a rapidly growing body of evidence that production of microvesicles (MVs) is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA, mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune surveillance, and transfer cargo between cells. These properties make MVs an essential player in intercellular communication. Increasing evidence supports the notion that MVs can also act as long-distance vehicles for RNA molecules and participate in metabolic synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV ability to carry on DNA and their general distribution makes them attractive candidates for horizontal gene transfer, particularly between multi-cellular organisms and their parasites; this suggests important implications for the co-evolution of parasites and their hosts. In this review, we provide current understanding of the roles played by MVs in intracellular pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection and host shifting.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Natasha.Barteneva@ childrens.harvard.edu
| | | | | |
Collapse
|
22
|
Etheridge A, Gomes CPC, Pereira RW, Galas D, Wang K. The complexity, function and applications of RNA in circulation. Front Genet 2013; 4:115. [PMID: 23785385 PMCID: PMC3684799 DOI: 10.3389/fgene.2013.00115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023] Open
Abstract
Blood carries a wide array of biomolecules, including nutrients, hormones, and molecules that are secreted by cells for specific biological functions. The recent finding of stable RNA of both endogenous and exogenous origin in circulation raises a number of questions and opens a broad, new field: exploring the origins, functions, and applications of these extracellular RNA molecules. These findings raise many important questions, including: what are the mechanisms of export and cellular uptake, what is the nature and source of their stability, what molecules do they interact with in the blood, and what are the possible biological functions of the circulating RNA? This review summarizes some key recent developments in circulating RNA research and discusses some of the open questions in the field.
Collapse
Affiliation(s)
- Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle WA, USA
| | | | | | | | | |
Collapse
|
23
|
Witwer KW, McAlexander MA, Queen SE, Adams RJ. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol 2013; 10:1080-6. [PMID: 23770773 PMCID: PMC3849155 DOI: 10.4161/rna.25246] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence that exogenous dietary miRNAs enter the bloodstream and tissues of ingesting animals has been accompanied by an indication that at least one plant miRNA, miR168, participates in “cross-kingdom” regulation of a mammalian transcript. If confirmed, these findings would support investigation of miRNA-based dietary interventions in disease. Here, blood was obtained pre- and post-prandially (1, 4, 12 h) from pigtailed macaques that received a miRNA-rich plant-based substance. Plant and endogenous miRNAs were measured by RT-qPCR. Although low-level amplification was observed for some plant miRNA assays, amplification was variable and possibly non-specific, as suggested by droplet digital PCR. A consistent response to dietary intake was not observed. While our results do not support general and consistent uptake of dietary plant miRNAs, additional studies are needed to establish whether or not plant or animal xenomiRs are transferred across the gut in sufficient quantity to regulate endogenous genes.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology; The Johns Hopkins University School of Medicine; Baltimore, ME USA
| | | | | | | |
Collapse
|
24
|
Metpally RPR, Nasser S, Malenica I, Courtright A, Carlson E, Ghaffari L, Villa S, Tembe W, Van Keuren-Jensen K. Comparison of Analysis Tools for miRNA High Throughput Sequencing Using Nerve Crush as a Model. Front Genet 2013; 4:20. [PMID: 23459507 PMCID: PMC3585423 DOI: 10.3389/fgene.2013.00020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sample preparation and analysis for next generation sequencing have made it possible to profile and discover new miRNAs in a high throughput manner. In the case of neurological disease and injury, these types of experiments have been more limited. Possibly because tissues such as the brain and spinal cord are inaccessible for direct sampling in living patients, and indirect sampling of blood and cerebrospinal fluid are affected by low amounts of RNA. We used a mouse model to examine changes in miRNA expression in response to acute nerve crush. We assayed miRNA from both muscle tissue and blood plasma. We examined how the depth of coverage (the number of mapped reads) changed the number of detectable miRNAs in each sample type. We also found that samples with very low starting amounts of RNA (mouse plasma) made high depth of mature miRNA coverage more difficult to obtain. Each tissue must be assessed independently for the depth of coverage required to adequately power detection of differential expression, weighed against the cost of sequencing that sample to the adequate depth. We explored the changes in total mapped reads and differential expression results generated by three different software packages: miRDeep2, miRNAKey, and miRExpress and two different analysis packages, DESeq and EdgeR. We also examine the accuracy of using miRDeep2 to predict novel miRNAs and subsequently detect them in the samples using qRT-PCR.
Collapse
Affiliation(s)
| | - Sara Nasser
- Neurogenomics, Translational Genomics Research InstitutePhoenix, AZ, USA
| | - Ivana Malenica
- Neurogenomics, Translational Genomics Research InstitutePhoenix, AZ, USA
| | - Amanda Courtright
- Neurogenomics, Translational Genomics Research InstitutePhoenix, AZ, USA
| | - Elizabeth Carlson
- Neurogenomics, Translational Genomics Research InstitutePhoenix, AZ, USA
| | - Layla Ghaffari
- Neurogenomics, Translational Genomics Research InstitutePhoenix, AZ, USA
| | - Stephen Villa
- Medical School, University of California San FranciscoSan Francisco, CA, USA
| | - Waibhav Tembe
- Collaborative Bioinformatics Center, Translational Genomics Research InstitutePhoenix, AZ, USA
| | | |
Collapse
|
25
|
Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, Wilmes P, Galas D. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One 2012; 7:e51009. [PMID: 23251414 PMCID: PMC3519536 DOI: 10.1371/journal.pone.0051009] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under invitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (KW); (DG); (PW)
| | - Hong Li
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Yue Yuan
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Alton Etheridge
- Institute for Systems Biology, Seattle, Washington, United States of America
- Pacific Northwest Diabetes Research, Seattle, Washington, United States of America
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - David Huang
- Institute for Systems Biology, Seattle, Washington, United States of America
- Pacific Northwest Diabetes Research, Seattle, Washington, United States of America
| | - Paul Wilmes
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Luxembourg City, Luxembourg
- * E-mail: (KW); (DG); (PW)
| | - David Galas
- Institute for Systems Biology, Seattle, Washington, United States of America
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Luxembourg City, Luxembourg
- Pacific Northwest Diabetes Research, Seattle, Washington, United States of America
- * E-mail: (KW); (DG); (PW)
| |
Collapse
|