1
|
Yu C, Dong L, Lv Y, Shi X, Zhang R, Zhou W, Wu H, Li H, Li Y, Li Z, Luo D, Wei WB. Nanotherapy for Neural Retinal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409854. [PMID: 39807033 DOI: 10.1002/advs.202409854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers. Nanotechnology applications in ophthalmology have shown great potential in addressing the issue of drug delivery to the eye. Moreover, nanotechnology-based therapeutics can have profound clinical impacts on retinopathy, particularly retinal regeneration, thereby improving patient outcomes. Continuous advancements in nanotechnology are being applied to regenerate lost or damaged eye tissues and to treat vision loss and blindness caused by various retinal degenerative diseases. These approaches can be categorized into three main strategies: i) nanoparticles for delivering drugs, genes, and other essential substances; ii) nanoscaffolds for providing biocompatible support; and iii) nanocomposites for enhancing the functionality of primary or stem cells. The aim of this comprehensive review is to present the current understanding of nanotechnology-based therapeutics for retinal regeneration, with a focus on the perspective functions of nanomaterials.
Collapse
Affiliation(s)
- Chuyao Yu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xuhan Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruiheng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wenda Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haotian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Heyan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yitong Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
2
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
3
|
Ranch K, Chawnani D, Jani H, Acharya D, Patel CA, Jacob S, Babu RJ, Tiwari AK, Al-Tabakha MM, Boddu SHS. An update on the latest strategies in retinal drug delivery. Expert Opin Drug Deliv 2024; 21:695-712. [PMID: 38787783 DOI: 10.1080/17425247.2024.2358886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Retinal drug delivery has witnessed significant advancements in recent years, mainly driven by the prevalence of retinal diseases and the need for more efficient and patient-friendly treatment strategies. AREAS COVERED Advancements in nanotechnology have introduced novel drug delivery platforms to improve bioavailability and provide controlled/targeted delivery to specific retinal layers. This review highlights various treatment options for retinal diseases. Additionally, diverse strategies aimed at enhancing delivery of small molecules and antibodies to the posterior segment such as implants, polymeric nanoparticles, liposomes, niosomes, microneedles, iontophoresis and mixed micelles were emphasized. A comprehensive overview of the special technologies currently under clinical trials or already in the clinic was provided. EXPERT OPINION Ideally, drug delivery system for treating retinal diseases should be less invasive in nature and exhibit sustained release up to several months. Though topical administration in the form of eye drops offers better patient compliance, its clinical utility is limited by nature of the drug. There is a wide range of delivery platforms available, however, it is not easy to modify any single platform to accommodate all types of drugs. Coordinated efforts between ophthalmologists and drug delivery scientists are necessary while developing therapeutic compounds, right from their inception.
Collapse
Affiliation(s)
- Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Disha Chawnani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Harshilkumar Jani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Devarshi Acharya
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Chirag Amrutlal Patel
- Department of Pharmacology & Pharmacy practices, L. M. College of Pharmacy, Ahmedabad, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates UAE
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Moawia M Al-Tabakha
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sai H S Boddu
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
4
|
Kumar P, Kumar B, Gihar S, Kumar D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydr Res 2024; 538:109070. [PMID: 38460462 DOI: 10.1016/j.carres.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
This review explores the realm of structural modifications and broad spectrum of their potential applications, with a special focus on the synthesis of xanthan gum derivatives through graft copolymerization methods. It delves into the creation of these derivatives by attaching functional groups (-OH and -COOH) to xanthan gum, utilizing a variety of initiators for grafting, and examining their diverse applications, especially in the areas of food packaging, pharmaceuticals, wastewater treatment, and antimicrobial activities. Xanthan gum is a biocompatible, biodegradable, less toxic, bioactive, and cost-effective natural polymer derived from Xanthomonas species. The native properties of xanthan gum can be improved by cross-linking, grafting, curing, blending, and various modification techniques. Grafted xanthan gum has excellent biodegradability, metal binding, dye adsorption, immunological properties, and wound healing ability. Owing to its remarkable properties, such as biocompatibility and its ability to form gels resembling the extracellular matrix of tissues, modified xanthan gum finds extensive utility across biomedicine, engineering, and the food industry. Furthermore, the review also covers various modified derivatives of xanthan gum that exhibit excellent biodegradability, metal binding, dye adsorption, immunological properties, and wound healing abilities. These applications could serve as important resources for a wide range of industries in future product development.
Collapse
Affiliation(s)
- Pramendra Kumar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India.
| | - Brijesh Kumar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India
| | - Sachin Gihar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India
| | - Deepak Kumar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India
| |
Collapse
|
5
|
Liu Y, Lin Y, Lin Y, Lin C, Lan G, Su Y, Hu F, Chang K, Chen V, Yeh Y, Chen T, Yu J. Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308635. [PMID: 38233151 PMCID: PMC10953571 DOI: 10.1002/advs.202308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.
Collapse
Affiliation(s)
- Yi‐Chen Liu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Ke Lin
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | - Yu‐Ting Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Wei Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Guan‐Yu Lan
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yu‐Chia Su
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Fung‐Rong Hu
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
| | - Kai‐Hsiang Chang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Vincent Chen
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Cheun Yeh
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ta‐Ching Chen
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
- Center of Frontier MedicineNational Taiwan University HospitalTaipei100225Taiwan
| | - Jiashing Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
6
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Zeng S, Chen Y, Zhou F, Zhang T, Fan X, Chrzanowski W, Gillies MC, Zhu L. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv Drug Deliv Rev 2023; 199:114965. [PMID: 37315899 DOI: 10.1016/j.addr.2023.114965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
The delivery of cures for retinal diseases remains problematic. There are four main challenges: passing through multiple barriers of the eye, the delivery to particular retinal cell types, the capability to carry different forms of therapeutic cargo and long-term therapeutic efficacy. Lipid-based nanoparticles (LBNPs) are potent to overcome these challenges due to their unique merits: amphiphilic nanoarchitectures to pass biological barriers, vary modifications with specific affinity to target cell types, flexible capacity for large and mixed types of cargos and slow-release formulations for long-term treatment. We have reviewed the latest research on the applications of LBNPs for treating retinal diseases and categorized them by different payloads. Furthermore, we identified technical barriers and discussed possible future development for LBNPs to expand the therapeutic potential in treating retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yingying Chen
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Mark C Gillies
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R. Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering. Exp Biol Med (Maywood) 2023; 248:1425-1436. [PMID: 37873757 PMCID: PMC10657592 DOI: 10.1177/15353702231199466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
Collapse
Affiliation(s)
| | - Norhafiza Razali
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Amy Suzana Abu Bakar
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Noor Fahitah Abu Hanipah
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University (IMU), 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
12
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Kuepfer L, Fuellen G, Stahnke T. Quantitative systems pharmacology of the eye: Tools and data for ocular QSP. CPT Pharmacometrics Syst Pharmacol 2023; 12:288-299. [PMID: 36708082 PMCID: PMC10014063 DOI: 10.1002/psp4.12918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Good eyesight belongs to the most-valued attributes of health, and diseases of the eye are a significant healthcare burden. Case numbers are expected to further increase in the next decades due to an aging society. The development of drugs in ophthalmology, however, is difficult due to limited accessibility of the eye, in terms of drug administration and in terms of sampling of tissues for drug pharmacokinetics (PKs) and pharmacodynamics (PDs). Ocular quantitative systems pharmacology models provide the opportunity to describe the distribution of drugs in the eye as well as the resulting drug-response in specific segments of the eye. In particular, ocular physiologically-based PK (PBPK) models are necessary to describe drug concentration levels in different regions of the eye. Further, ocular effect models using molecular data from specific cellular systems are needed to develop dose-response correlations. We here describe the current status of PK/PBPK as well as PD models for the eyes and discuss cellular systems, data repositories, as well as animal models in ophthalmology. The application of the various concepts is highlighted for the development of new treatments for postoperative fibrosis after glaucoma surgery.
Collapse
Affiliation(s)
- Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, Rostock, Germany
| | - Thomas Stahnke
- Institute for ImplantTechnology and Biomaterials e.V., Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
15
|
Seong S, Vijayan V, Kim JH, Kim K, Kim I, Cherukula K, Park IK, Kim N. Nano-formulations for bone-specific delivery of siRNA for CrkII silencing-induced regulation of bone formation and resorption to maximize therapeutic potential for bone-related diseases. Biomater Sci 2023; 11:2581-2589. [PMID: 36794531 DOI: 10.1039/d2bm02038f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CrkII, a member of the adaptor protein family, is known to participate in bone homeostasis via the regulation of osteoclasts and osteoblasts. Therefore, silencing CrkII would beneficially impact the bone microenvironment. In this study, CrkII siRNA encapsulated by a bone-targeting peptide (AspSerSer)6-liposome was evaluated for its therapeutic applications using a receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model. (AspSerSer)6-liposome-siCrkII maintained its gene-silencing ability in both osteoclasts and osteoblasts in vitro and significantly reduced osteoclast formation while increasing osteoblast differentiation in vitro. Fluorescence image analyses showed that the (AspSerSer)6-liposome-siCrkII was present largely in bone, where it remained present for up to 24 hours and was cleared by 48 hours, even when systemically administrated. Importantly, microcomputed-tomography revealed that bone loss induced by RANKL administration was recovered by systemic administration of (AspSerSer)6-liposome-siCrkII. Collectively, the findings of this study suggest that (AspSerSer)6-liposome-siCrkII is a promising therapeutic strategy for the development of treatments for bone diseases, as it overcomes the adverse effects derived from ubiquitous expression via bone-specific delivery of siRNA.
Collapse
Affiliation(s)
- Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea. .,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea. .,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Kondareddy Cherukula
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea. .,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
16
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
17
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
18
|
Bahuon F, Darcos V, Patel S, Marin Z, Coudane J, Schwach G, Nottelet B. Polyester-Polydopamine Copolymers for Intravitreal Drug Delivery: Role of Polydopamine Drug-Binding Properties in Extending Drug Release. Biomacromolecules 2022; 23:4388-4400. [PMID: 36170117 DOI: 10.1021/acs.biomac.2c00843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work reports on a novel polyester copolymer containing poly(dopamine), a synthetic analogue of natural melanin, evaluated in a sustained-release drug delivery system for ocular intravitreal administration of drugs. More specifically, a graft copolymer of poly(ε-caprolactone)-graft-poly(dopamine) (PCL-g-PDA) has been synthesized and was shown to further extend the drug release benefits of state-of-the-art biodegradable intravitreal implants composed of poly(lactide) and poly(lactide-co-glycolide). The innovative biomaterial combines the documented drug-binding properties of melanin naturally present in the eye, with the established ocular tolerability and biodegradation of polyester implants. The PCL-g-PDA copolymer was obtained by a two-step modification of PCL with a final PDA content of around 2-3 wt % and was fully characterized by size exclusion chromatography, NMR, and diffusion ordered NMR spectroscopy. The thermoplastic nature of PCL-g-PDA allowed its simple processing by hot-melt compression molding to prepare small implants. The properties of unmodified PCL and PCL-g-PDA implants were studied and compared in terms of thermal properties (differential scanning calorimetry), thermal stability (thermogravimetry analysis), degradability, and in vitro cytotoxicity. PCL and PCL-g-PDA implants exhibited similar degradation properties in vitro and were both stable under physiological conditions over 110 days. Likewise, both materials were non-cytotoxic toward L929 and ARPE-19 cells. The drug loading and in vitro release properties of the new materials were investigated with dexamethasone (DEX) and ciprofloxacin hydrochloride (CIP) as representative drugs featuring low and high melanin-binding affinities, respectively. In comparison to unmodified PCL, PCL-g-PDA implants showed a significant extension of drug release, most likely because of specific drug-catechol interaction with the PDA moieties of the copolymer. The present study confirms the advantages of designing PDA-containing polyesters as a class of biodegradable and biocompatible thermoplastics that can modulate and remarkably extend the drug release kinetics thanks to their unique drug-binding properties, especially, but not limited to, for ocular applications.
Collapse
Affiliation(s)
- Floriane Bahuon
- IBMM (UMR5247), Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Vincent Darcos
- IBMM (UMR5247), Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Sulabh Patel
- Pharmaceutical Development, PTD Biologics Europe, F.Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Zana Marin
- Pharmaceutical Development, PTD Biologics Europe, F.Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Jean Coudane
- IBMM (UMR5247), Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Grégoire Schwach
- Pharmaceutical Development, PTD Biologics Europe, F.Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Benjamin Nottelet
- IBMM (UMR5247), Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
19
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
20
|
Wang J, Tao Z, Deng H, Cui Y, Xu Z, Lyu Q, Zhao J. Therapeutic implications of nanodrug and tissue engineering for retinal pigment epithelium-related diseases. NANOSCALE 2022; 14:5657-5677. [PMID: 35352082 DOI: 10.1039/d1nr08337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The retinal pigment epithelium (RPE), as a single layer of cells that performs multiple functions posteriorly in the eye, is a promising target site for the prevention and treatment of several clinical diseases, including proliferative diabetic retinopathy, age-related macular degeneration, chorionic neovascularization, and retinitis pigmentosa. In recent decades, several nanodrug delivery platforms and tissue-engineered RPE have been widely developed to treat RPE-related diseases. This work summarizes the recent advances in nanoplatforms and tissue engineering scaffolds developed in these fields. The diseases associated with pathological RPE and their common therapy strategies are first introduced. Then, the recent progress made with a variety of drug delivery systems is presented, with an emphasis on the modification strategies of nanomaterials for targeted delivery. Tissue engineering-mediated RPE transplantation for treating these diseases is subsequently described. Finally, the clinical translation challenges in these fields are discussed in depth. This article will offer readers a better understanding of emerging nanotechnology and tissue engineering related to the treatment of RPE-related diseases and could facilitate their widespread use in experiments in vivo and in clinical applications.
Collapse
Affiliation(s)
- Jiao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Zhengyang Tao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Hongwei Deng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Zhirong Xu
- Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Qinghua Lyu
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
21
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
22
|
Stable Atropine Loaded Film As a Potential Ocular Delivery System For Treatment Of Myopia. Pharm Res 2021; 38:1931-1946. [PMID: 34773183 DOI: 10.1007/s11095-021-03135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The objective of the present study was to prepare stable and high bioavailability ocular atropine loaded films (ATR-films) as potential ocular drug delivery systems for the treatment of myopia. METHODS ATR-films were prepared by the solvent casting method and the physical properties of films were evaluated including thickness, water content, light transparency, disintegration time, and mechanical properties. FT-IR, DSC, XRD, TGA, AFM, and Raman spectroscopy were performed to characterize the film. The stability test was conducted under different conditions, such as high humidity, high temperature, and strong light. The pharmacokinetic study and irritation assessment were conducted in rabbits. The efficacy of ATR-films was evaluated by refraction and ocular biometry in myopia guinea pigs. RESULT After optimizing the formulation, the resulting ATR-film was flexible and transparent with lower water content (8.43% ± 1.25). As expected, the ATR-film was stable and hydrolysate was not detected, while the content of hydrolysate in ATR eye drops can reach up to 8.1867% (limit: < 0.2%) in the stability study. The safety assessment both in vitro and in vivo confirmed that the ATR-film was biocompatible. Moreover, the bioavailability (conjunctiva 3.21-fold, cornea 2.87-fold, retina 1.35-fold, sclera 2.05-fold) was greatly improved compared with the ATR eye drops in vivo pharmacokinetic study. The pharmacodynamic study results showed that the ATR-film can slow the progress of form-deprivation myopia (~ 100 ± 0.81D), indicating that it has a certain therapeutic effect on form-deprivation myopia. CONCLUSION The ATR-film with good stability and high bioavailability will have great potential for the treatment of myopia.
Collapse
|
23
|
Laradji A, Karakocak BB, Kolesnikov AV, Kefalov VJ, Ravi N. Hyaluronic Acid-Based Gold Nanoparticles for the Topical Delivery of Therapeutics to the Retina and the Retinal Pigment Epithelium. Polymers (Basel) 2021; 13:3324. [PMID: 34641139 PMCID: PMC8512139 DOI: 10.3390/polym13193324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The ocular immune privilege is a phenomenon brought about by anatomical and physiological barriers to shield the eye from immune and inflammation responses. While this phenomenon is beneficial for eyes protection, it is, at the same time, a hindrance for drug delivery to the posterior segment of the eye to treat retinal diseases. Some ocular barriers can be bypassed by intravitreal injections, but these are associated with several side effects and patient noncompliance, especially when frequent injections are required. As an alternative, applying drugs as an eye drop is preferred due to the safety and ease. This study investigated the possible use of topically-applied hyaluronic acid-coated gold nanoparticles as drug delivery vehicles to the back of the eye. The coated gold nanoparticles were topically applied to mouse eyes, and results were compared to topically applied uncoated gold nanoparticles and phosphate-buffered saline (PBS) solution. Retina sections from these mice were then analyzed using fluorescence microscopy, inductively coupled plasma mass spectrometry (ICP-MS), and transmission electron microscopy (TEM). All characterization techniques used in this study suggest that hyaluronic acid-coated gold nanoparticles have higher distribution in the posterior segment of the eye than uncoated gold nanoparticles. Electroretinogram (ERG) analysis revealed that the visual function of mice receiving the coated gold nanoparticles was not affected, and these nanoparticles can, therefore, be applied safely. Together, our results suggest that hyaluronic acid-coated gold nanoparticles constitute potential drug delivery vehicles to the retina when applied noninvasively as an eye drop.
Collapse
Affiliation(s)
- Amine Laradji
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Bedia B. Karakocak
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Alexander V. Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; (A.V.K.); (V.J.K.)
| | - Vladimir J. Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; (A.V.K.); (V.J.K.)
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Xu J, Tao J, Wang J. Design and Application in Delivery System of Intranasal Antidepressants. Front Bioeng Biotechnol 2020; 8:626882. [PMID: 33409272 PMCID: PMC7779764 DOI: 10.3389/fbioe.2020.626882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the major reasons why depressed patients fail their treatment course is the existence of the blood-brain barrier (BBB), which prevents drugs from being delivered to the central nervous system (CNS). In recent years, nasal drug delivery has achieved better systemic bioavailability and activity in low doses in antidepressant treatment. In this review, we focused on the latest strategies for delivery carriers (or formation) of intranasal antidepressants. We began this review with an overview of the nasal drug delivery systems, including nasal drug delivery route, absorption mechanism, advantages, and limitations in the nasal drug delivery route. Next, we introduced the development of nasal drug delivery devices, such as powder devices, liquid-based devices, and so on. Finally, intranasal delivery carriers of antidepressants in clinical studies, including nanogels, nanostructured lipid, liposomes nanoparticles, nanoemulsions/microemulsion, were summarized. Moreover, challenges and future perspectives on recent progress of intranasal delivery carriers in antidepressant treatments were discussed.
Collapse
Affiliation(s)
- Jingying Xu
- School of Marxism, Yanshan University, Qinhuangdao, China
- Mental Health Service Center, Yanshan University, Qinhuangdao, China
| | - Jiangang Tao
- School of Marxism, Yanshan University, Qinhuangdao, China
- Mental Health Service Center, Yanshan University, Qinhuangdao, China
| | - Jidong Wang
- Applied Chemistry Key Laboratory of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, China
| |
Collapse
|
25
|
Prieto E, Cardiel MJ, Vispe E, Idoipe M, Garcia-Martin E, Fraile JM, Polo V, Mayoral JA, Pablo LE, Rodrigo MJ. Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. ACTA ACUST UNITED AC 2020; 15:065021. [PMID: 32647098 DOI: 10.1088/1748-605x/aba445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a novel nanoformulation for sustained-release delivery of dexamethasone (DEX) to the ocular posterior segment using a Laponite (LAP) carrier-DEX/LAP 1:10 w w-1 formulation; 10 mg ml-1. In vivo ocular feasibility and pharmacokinetics after intravitreal (IV) and suprachoroidal (SC) administration in rabbit eyes are compared against IV administration of a DEX solution (1 mg ml-1). Thirty rabbit eyes were injected with the DEX/LAP formulation (15 suprachoroid/15 intravitreous). Ophthalmological signs were monitored at day 1 and at weeks 1-4-12-24 post-administration. Three eyes per sample time point were used to quantify DEX concentration using high-performance liquid chromatography-mass spectrometry. The ocular tissues' pharmacokinetic parameters (lens, vitreous humour, choroid-retina unit and sclera) were studied. DEX/LAP was well tolerated under both administration methods. Peak intraocular DEX levels from the DEX/LAP were detected in the vitreous humour after both deliveries soon after administration. The vitreous area under the curve was significantly greater after both DEX/LAP deliveries (IV: 205 968.47; SC: 11 442.22 ng g-1 d-1) than after IV administration of the DEX solution (317.17 ng g-1 d-1). Intravitreal DEX/LAP delivery extended higher vitreous DEX levels up to week 24 (466.32 ± 311.15 ng g-1). With SC delivery, DEX levels were detectable in the choroid-retina unit (12.04 ± 20.85 ng g-1) and sclera (25.46 ± 44.09 ng g-1) up to week 24. This study demonstrated the intraocular feasibility of both SC and IV administration of the DEX/LAP formulation. The LAP increased the intraocular retention time of DEX when compared with conventional solutions. DEX/LAP could be considered a biocompatible and useful sustained-release formulation for treating posterior-pole eye diseases.
Collapse
Affiliation(s)
- Esther Prieto
- Ophthalmology Department, Miguel Servet University Hospital, Paseo Isabel la Católica 1-3, E-50009, Zaragoza, Spain. Aragon Institute for Health Research (IIS Aragon), GIMSO research group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, Zaragoza E-50009, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Supe S, Upadhya A, Singh K. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review. Exp Eye Res 2020; 202:108329. [PMID: 33198953 DOI: 10.1016/j.exer.2020.108329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.
Collapse
Affiliation(s)
- Shibani Supe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, 400056, Maharashtra, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, 400056, Maharashtra, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
27
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
28
|
Pugalendhi A, Ranganathan R, Venkatapathy N, Narendran K, Shah PK. Design and development of model eye for retina laser by using additive manufacturing. Proc Inst Mech Eng H 2020; 235:89-98. [PMID: 32988319 DOI: 10.1177/0954411920960548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgical skill of the surgeon can be improved by surgical simulation. Especially in ophthalmology, it is impossible to use real human/non-human primate eyes for ophthalmology surgery practice. However, surgical practice is most important for ophthalmologist. The retina laser surgery is one of the ophthalmology surgeries and it requires more surgical practice for surgeons to use the laser beam precisely to coagulate and fuse small areas of tissue. Dealing with the prospect of vision reduction or vision loss presents a peculiar problem and that can be highly stressful and frustrating for both doctors and patients. In this regard, training for indirect ophthalmoscopy and retinal photocoagulation is undergone using model eyes instead of real eyes. Properties and functioning of an existing model eye are huge and they differ from real human eye such as casings are completely rigid and focusing of retinal fundus is not completely covered. Therefore, this research concentrates to develop a model eye that assimilates close to the human eye by focussing on the maximum viewing area that is not done at the moment. Finally, the design and development of re-engineered model eye for retina laser is fabricated by additive manufacturing. Compared to existing plastic model eye, viewing area and viewing angle of the re-engineered model eye is increased by 16.66% and 6.14%, respectively. Due to design modifications and elimination of the insert, it can be reduced by 18.99% and 13.95% of height and weight of the top casing respectively. Developed re-engineered model eye will improve the surgical and diagnostic skill of the surgeon and increase their confidence and proficiency. It also augments the effective use of essential ophthalmic instruments. Additionally, it can reduce the surgical error and meet the existing demand of actual eyes for surgical practices.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Tamil Nadu, India
| | | | - Kalpana Narendran
- Department of Ophthalmology, Aravind Eye Hospital, Coimbatore, Tamil Nadu, India
| | - Parag K Shah
- Department of Ophthalmology, Aravind Eye Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
29
|
A drug delivery analysis of large molecules in ocular vitreous chamber: Dependency on saccadic movements after intravitreal injection. Med Eng Phys 2020; 82:49-57. [PMID: 32709265 DOI: 10.1016/j.medengphy.2020.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study is to investigate the effect of vitreous sloshing induced by saccades on the intravitreal delivery of large molecule drugs. The vitreous body was considered in its age-related liquefaction condition. Fluid dynamics and large molecule distribution were described by the coupling of mass conservation's and Fick's laws with continuity and momentum equations for a Newtonian incompressible fluid in a 3D unsteady analysis. Two injection sites were analyzed, in both the mixing effect of a 50° periodic saccade leads to uniform drug distribution in 30 s of simulation, the initial bolus site being left after 3 s of simulation. In absence of saccadic movements, the dominant transport contribution is the diffusive one and large molecules hardly reach their uniform distribution inside the vitreous cavity. A model describing the intravitreal distribution of large molecules in presence of saccades was developed, improving the understanding of drug transport mechanism after an intravitreal injection and highlighting how advection contribution enhances its distribution in the vitreous chamber.
Collapse
|
30
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
31
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
32
|
Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol 2020; 35:4-24. [PMID: 32298491 DOI: 10.1111/fcp.12561] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) and glaucoma are global ocular diseases with high blindness rate. RNA interference (RNAi) is being increasingly used in the treatment of these disorders with siRNA drugs, bevasiranib, AGN211745 and PF-04523655 for AMD, and SYL040012 and QPI-1007 for glaucoma. Administration routes and vectors of gene drugs affect their therapeutic effect. Compared with the non-viral vectors, viral vectors have limited payload capacity and potential immunogenicity. This review summarizes the progress of the ocular siRNA gene-silencing therapy by focusing on siRNA drugs for AMD and glaucoma already used in clinical research, the main routes of drug delivery and the non-viral vectors for siRNA drugs.
Collapse
Affiliation(s)
- Jinjin Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Xinru Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Yue Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Shuhan Li
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Jing Chen
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| |
Collapse
|
33
|
Abstract
PURPOSE To compare the neuroprotective properties of retinalamin administered in different ways among open-angle glaucoma patients with compensated intraocular pressure. MATERIAL AND METHODS The study included 498 patients (eyes) with initial, moderate and advanced stages of glaucoma. Patients were divided into 3 groups: group I (n=110) received 5 mg intramuscular and 5 mg retrobulbar injections of retinalamin; group II (n=171) received 5 mg retrobulbar injection of retinalamin; group III received 5 mg intramuscular injection of retinalamin. The overall treatment dose contained 50 mg of retinalamin. All the patients underwent tonometry and static perimetry. Patients of group II with initial glaucoma and patients of group III with moderate glaucoma also underwent contrast sensitivity tests. The examinations were conducted before the treatment, and on months 3 and 6. RESULTS Visual acuity did not change significantly. In group I, after 3 months of treatment total threshold retinal sensitivity increased by 122 dB in patients with initial glaucoma, by 166 dB in moderate and by 124 dB in advanced glaucoma. Positive trend was observed in patients with initial and moderate stages of glaucoma by month 6. In group II, total threshold retinal sensitivity increased by 123 dB in initial glaucoma and by 110 dB in moderate; the result did not change by month 6. No significant changes were observed in patients with advanced glaucoma. In group III, total threshold retinal sensitivity increased by 142 dB in initial glaucoma, by 274 dB in moderate and by 148 dB in advanced glaucoma. Regression began on the sixth month. In group II, patients with initial glaucoma were observed to have decreased sensorimotor reaction times to achromatic stimuli within the studied areas of central visual field. In group III, patients with advanced glaucoma were also observed to have decreased sensorimotor reaction times to achromatic stimuli detected within 1° and 5° areas from the fixation point, but not in the 10° area. CONCLUSION Retinalamin is most effective in initial and moderate glaucoma stages. Intramuscular, retrobulbar and combined administration methods have comparable efficacy.
Collapse
Affiliation(s)
- V P Erichev
- Research Institute of Eye Diseases, Moscow, Russia
| | | | - T V Yaremenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
34
|
Kojima H, Raut B, Chen LJ, Nagai N, Abe T, Kaji H. A 3D Printed Self-Sustainable Cell-Encapsulation Drug Delivery Device for Periocular Transplant-Based Treatment of Retinal Degenerative Diseases. MICROMACHINES 2020; 11:mi11040436. [PMID: 32326233 PMCID: PMC7231335 DOI: 10.3390/mi11040436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023]
Abstract
Self-sustainable release of brain-derived neurotrophic factor (BDNF) to the retina using minimally invasive cell-encapsulation devices is a promising approach to treat retinal degenerative diseases (RDD). Herein, we describe such a self-sustainable drug delivery device with human retinal pigment epithelial (ARPE-19) cells (cultured on collagen coated polystyrene (PS) sheets) enclosed inside a 3D printed semi-porous capsule. The capsule was 3D printed with two photo curable polymers: triethylene glycol dimethacrylate (TEGDM) and polyethylene glycol dimethylacrylate (PEGDM). The capsule's semi-porous membrane (PEGDM) could serve three functions: protecting the cells from body's immune system by limiting diffusion (5.97 ± 0.11%) of large molecules like immunoglobin G (IgG)(150 kDa); helping the cells to survive inside the capsule by allowing diffusion (43.20 ± 2.16%) of small molecules (40 kDa) like oxygen and necessary nutrients; and helping in the treatment of RDD by allowing diffusion of cell-secreted BDNF to the outside environment. In vitro results showed a continuous BDNF secretion from the device for at least 16 days, demonstrating future potential of the cell-encapsulation device for the treatment of RDD in a minimally invasive and self-sustainable way through a periocular transplant.
Collapse
Affiliation(s)
- Hideto Kojima
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Bibek Raut
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (N.N.); (T.A.)
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (N.N.); (T.A.)
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-4249
| |
Collapse
|
35
|
Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Taskar PS, Patil A, Lakhani P, Ashour E, Gul W, ElSohly MA, Murphy B, Majumdar S. Δ 9-Tetrahydrocannabinol Derivative-Loaded Nanoformulation Lowers Intraocular Pressure in Normotensive Rabbits. Transl Vis Sci Technol 2019; 8:15. [PMID: 31588378 PMCID: PMC6753841 DOI: 10.1167/tvst.8.5.15] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Δ9-Tetrahydrocannabinol-valine-hemisuccinate, a hydrophilic prodrug of Δ9-tetrahydrocannabinol, synthesized with the aim of improving the ocular bioavailability of the parent molecule, was investigated in a lipid-based nanoparticle dosage form for ocular delivery. METHODS Solid lipid nanoparticles (SLNs) of Δ9-tetrahydrocannabinol-valine-hemisuccinate and Δ9-tetrahydrocannabinol, along with a nanoemulsion of Δ9-tetrahydrocannabinol-valine-hemisuccinate, were tested for glaucoma management in a normotensive rabbit model by using a multiple-dosing protocol. Marketed formulations of timolol maleate and pilocarpine HCl were also tested for their pharmacodynamic profile, post-single dose administration. RESULTS A peak intraocular pressure (IOP) drop of 30% from baseline was observed in rabbits treated with SLNs loaded with Δ9-tetrahydrocannabinol-valine-hemisuccinate at 90 minutes. Treated eyes of rabbits receiving Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs had significantly lower IOP than untreated eyes until 360 minutes, whereas the group receiving the emulsion formulation showed a drop in IOP until 90 minutes only. In comparison to marketed pilocarpine and timolol maleate ophthalmic solutions, Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs produced a greater effect on IOP in terms of both intensity and duration. In terms of tissue concentrations, significantly higher concentrations of Δ9-tetrahydrocannabinol-valine-hemisuccinate were observed in iris-ciliary bodies and retina-choroid with SLNs. CONCLUSION Δ9-Tetrahydrocannabinol-valine-hemisuccinate formulated in a lipid-based nanoparticulate carrier shows promise in glaucoma pharmacotherapy. TRANSLATIONAL RELEVANCE Glaucoma therapies usually focus on decreased aqueous humor production and increased outflow. However, such therapy is not curative, and there lies a need in preclinical research to focus efforts on agents that not only affect the aqueous humor dynamics but also provide neuroprotection. Historically, there have been bench-scale studies looking at retinal ganglion cell death post-axonal injury. However, for a smooth translation of this in vitro activity to the clinic, animal models examining IOP reduction, i.e., connecting the neuroprotective activity to a measurable outcome in glaucoma management (IOP), need to be investigated. This study investigated the IOP reduction efficacy of cannabinoids for glaucoma pharmacotherapy in a normotensive rabbit model, bringing forth a new class of agents with the potential of IOP reduction and improved permeation to the back of the eye, possibly providing neuroprotective benefits in glaucoma management.
Collapse
Affiliation(s)
- Pranjal S Taskar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, USA
| | - Akash Patil
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, USA
| | - Prit Lakhani
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, USA
| | - Eman Ashour
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, USA
| | - Waseem Gul
- ElSohly Laboratories Inc., Oxford, MS, USA
| | - Mahmoud A ElSohly
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, USA
- ElSohly Laboratories Inc., Oxford, MS, USA
| | | | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
37
|
Sachan N, Bahadur S, Sharma PK. Recent Advances and Novel Approaches for Nose to Brain Drug Delivery for Treatment of Migraine. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210303109666190508083142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Nasal drug delivery has been used since ancient times for therapeutic and recreational
purposes. For the last decades, nasal drug delivery has been extended for drug delivery to the
brain. Therefore, it is important to understand the several physiological and physicochemical factors of
the nose for brain drug delivery.
Objective:
A major highlight of the present review article is the several aspects of the nose to brain delivery
for migraine treatment. This review will help to understand different factors which are needed to
be considered for intra-nasal formulations to achieve the desired therapeutic effects.
Method:
There are different drug delivery routes available for migraine treatment. Nasal route of administration
may be optimal for migraine treatment which has better drug concentration in the brain.
These approaches may be associated with limiting the adverse effects of drug therapeutics.
Results:
A list of total FDA approved approaches has been provided. Novel approaches used for drug
targeting to get maximum drug concentration in the brain have been highlighted. Several novel drug
delivery approaches such as nanoparticle, nanoemulsion, microspheres, etc. have been reported and better
therapeutic effects have been observed. Among the novel approaches, some of them are currently
under either Phase II or Phase III development but may prove to offer better clinical effects. These approaches
would become the alternate choice for migraine treatment with patients experiencing symptoms
consistent with gastrointestinal dysfunction associated with migraine.
Conclusion:
Intra-nasal administration of drugs for migraine treatment may offer an interesting alternative
for achieving therapeutic effects of drugs which are comparable to the parenteral route. Nasal drug
delivery can be an alternative route of drug administration for migraine treatment to achieve better
bioavailability.
Collapse
Affiliation(s)
- Nidhi Sachan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shiv Bahadur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod K. Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
38
|
A multilayered sheet-type device capable of sustained drug release and deployment control. Biomed Microdevices 2019; 21:60. [DOI: 10.1007/s10544-019-0411-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Solanki A, Smalling R, Parola AH, Nathan I, Kasher R, Pathak Y, Sutariya V. Humanin Nanoparticles for Reducing Pathological Factors Characteristic of Age-Related Macular Degeneration. Curr Drug Deliv 2019; 16:226-232. [PMID: 30381074 DOI: 10.2174/1567201815666181031163111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Humanin is a novel neuronal peptide that has displayed potential in the treatment of Alzheimer's Disease through the suppression of inflammatory IL-6 cytokine receptors. Such receptors are found throughout the body, including the eye, suggesting its other potential applications. Age-related Macular Degeneration (AMD) is the leading cause of blindness in the developing world. There is no cure for this disease, and current treatments have several negative side effects associated with them, making finding other treatment options desirable. OBJECTIVE In this study, the potential applications in treating AMD for a more potent humanin derivative, AGA-HNG, were studied. METHODS AGA-HNG was synthesized and encapsulated in chitosan Nanoparticles (NPs), which were then characterized for their size, Encapsulation Efficiency (EE), and drug release. Their ability to suppress VEGF secretion and protect against oxidative apoptosis was studied in vitro using ARPE-19 cells. The chitosan NPs exhibited similar anti-VEGF properties and oxidative protection as the free protein while exhibiting superior pharmaceutical characteristics including biocompatibility and drug release. RESULTS Drug-loaded NPs exhibited a radius of 346nm with desirable pharmacokinetic properties including a stable surface charge (19.5 ± 3.7 mV) and steady drug release capacity. AGA-HNG showed great promise in mediating apoptosis in hypoxic cells. They were also able to significantly reduce VEGF expression in vitro with reduced cellular toxicity compared to the free drug. CONCLUSION The ability of this drug delivery system to reduce retinal apoptosis with desirable pharmacokinetic and biocompatible properties makes this a promising therapeutic option for AMD.
Collapse
Affiliation(s)
- Aum Solanki
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,USF Morsani College of Medicine, University of South Florida, Tampa, FL 33647, United States
| | - Rudy Smalling
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| | - Abraham H Parola
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boquer Campus, Beersheba, 8499000, Israel
| | - Yashwant Pathak
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| |
Collapse
|
40
|
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019; 24:1524-1538. [PMID: 31102733 DOI: 10.1016/j.drudis.2019.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
Delivering therapeutics to the eye is challenging on multiple levels: rapid clearance of eyedrops from the ocular surface requires frequent instillation, which is difficult for patients; transport of drugs across the blood-retinal barrier when drugs are administered systemically, and the cornea when drugs are administered topically, is difficult to achieve; limited drug penetration to the back of the eye owing to the cornea, conjunctiva, sclera and vitreous barriers. Nanomedicine offers many advantages over conventional ophthalmic medications for effective ocular drug delivery because nanomedicine can increase the therapeutic index by overcoming ocular barriers, improving drug-release profiles and reducing potential drug toxicity. In this review, we highlight the therapeutic implications of nanomedicine for ocular drug delivery.
Collapse
Affiliation(s)
- Tuo Meng
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vineet Kulkarni
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Russell Simmers
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Physics, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vikram Brar
- Department of Ophthalmology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
41
|
Penkova A, Moats R, Humayun MS, Fraser S, Sadhal SS. Diffusive Transport in the Vitreous Humor: Experimental and Analytical Studies. JOURNAL OF HEAT TRANSFER 2019; 141:050801. [PMID: 35832509 PMCID: PMC9201755 DOI: 10.1115/1.4042297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/11/2018] [Indexed: 06/01/2023]
Abstract
In relation to intravitreal drug delivery, predictive mathematical models for drug transport are being developed, and to effectively implement these for retinal delivery, the information on biophysical properties of various ocular tissues is fundamentally important. It is therefore necessary to accurately measure the diffusion coefficient of drugs and drug surrogates in the vitreous humor. In this review, we present the studies conducted by various researchers on such measurements over the last several decades. These include imaging techniques (fluorescence and magnetic resonance imaging (MRI)) that make use of introducing a contrast agent or a labeled drug into the vitreous and tracking its diffusive movement at various time points. A predictive model for the same initial conditions when matched with the experimental measurements provides the diffusion coefficient, leading to results for various molecules ranging in size from approximately 0.1 to 160 kDa. For real drugs, the effectiveness of this system depends on the successful labeling of the drugs with suitable contrast agents such as fluorescein and gadolinium or manganese so that fluorescence or MR imagining could be conducted. Besides this technique, some work has been carried out using the diffusion apparatus for measuring permeation of a drug across an excised vitreous body from a donor chamber to the receptor by sampling assays from the chambers at various time intervals. This has the advantage of not requiring labeling but is otherwise more disruptive to the vitreous. Some success with nanoparticles has been achieved using dynamic light scattering (DLS), and presently, radioactive labeling is being explored.
Collapse
Affiliation(s)
- Anita Penkova
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453
| | - Rex Moats
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Mark S Humayun
- Department of Ophthalmology, USC Roski Eye Institute, Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-4682; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1111
| | - Scott Fraser
- Departments of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089-0371
| | - Satwindar Singh Sadhal
- Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453
| |
Collapse
|
42
|
Abstract
Although the eye is an accessible organ for direct drug application, ocular drug delivery remains a major challenge due to multiple barriers within the eye. Key barriers include static barriers imposed by the cornea, conjunctiva, and retinal pigment epithelium and dynamic barriers including tear turnover and blood and lymphatic clearance mechanisms. Systemic administration by oral and parenteral routes is limited by static blood-tissue barriers that include epithelial and endothelial layers, in addition to rapid vascular clearance mechanisms. Together, the static and dynamic barriers limit the rate and extent of drug delivery to the eye. Thus, there is an ongoing need to identify novel delivery systems and approaches to enhance and sustain ocular drug delivery. This chapter summarizes current and recent experimental approaches for drug delivery to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Burcin Yavuz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.,Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Uday B Kompella
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.
| |
Collapse
|
43
|
Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues. Pharmaceutics 2019; 11:pharmaceutics11040158. [PMID: 30987011 PMCID: PMC6523835 DOI: 10.3390/pharmaceutics11040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Delivering an effective drug load to the posterior section of the ocular tissues, while using a non-invasive technique, has always been a challenge. In this regard, the goal of the present study was to develop sustained release triamcinolone acetonide (TA) loaded polymeric matrix films for ocular delivery. The TA-films were prepared in two different polymer matrices, with drug loadings of 10% and 20% w/w, and they were evaluated for ocular distribution in vivo in a conscious rabbit model. A 4% w/v TA suspension (TA-C) was used as a control for in vitro and in vivo studies. The TA-films, prepared with melt-cast technology, used polyethylene oxide (PEO) and Soluplus® as the polymer matrix. The films were evaluated with respect to assay, content uniformity, excipient interaction, and permeability across isolated rabbit sclera. The distribution of TA in the ocular tissues, post topical administration, was determined in New Zealand male albino rabbits as a function of dose, and was compared against TA-C. The assay of the 10% and 20% w/w film was in the range from 70–79% and 92–94% for the Soluplus® and PEO films, respectively, and content uniformity was in the range of 95–103% for both the films. The assay of the TA from Soluplus® films was less compared with the PEO films and showed an interaction with TA, as revealed by Differential Scanning Calorimetry (DSC). Hence, Soluplus® films were not selected for further studies. No interaction was observed between the drug and PEO polymer matrix. The enhancement of trans-scleral flux and permeability of TA was about 1.16 and 1.33-folds, respectively, from the 10% w/w PEO and 3.5 and 2.12-folds, respectively, from the 20% w/w PEO films, as compared with TA-C formulations. The in vivo studies demonstrate that significantly higher TA levels were observed in the anterior and posterior segments of the eye at the end of 6h with the PEO films. Therefore, the PEO based polymeric films were able to deliver TA into the back of the eye efficiently and for prolonged periods.
Collapse
|
44
|
The gap between the need for novel retinal drug delivery methods, technologies in R&D phase, and approved ocular drug delivery technologies. Drug Discov Today 2019; 24:1433-1435. [PMID: 30904724 DOI: 10.1016/j.drudis.2019.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 11/20/2022]
Abstract
The past four decades were marked by the realization that the delivery of drugs into the eye is a crucial step in the development and utilization of new ocular drugs. This realization led to vast efforts and investments in research and development (R&D) to improve and approve new technologies. The realization of intravitreal injections and the vast utilization of this methodology in retinal disease management deepened the need for new drug delivery methods for drugs already approved safe and effective. Yet, there are only a handful of technologies approved and in clinical use today. Here, we focus on this gap by highlighting bottlenecks and by encouraging creative thinking for solutions.
Collapse
|
45
|
Tzameret A, Ketter-Katz H, Edelshtain V, Sher I, Corem-Salkmon E, Levy I, Last D, Guez D, Mardor Y, Margel S, Rotenstrich Y. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J Nanobiotechnology 2019; 17:3. [PMID: 30630490 PMCID: PMC6327435 DOI: 10.1186/s12951-018-0438-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background Retinal degeneration diseases affect millions of patients worldwide and lead to incurable vision loss. These diseases are caused by pathologies in the retina and underlying choroid, located in the back of the eye. One of the major challenges in the development of treatments for these blinding diseases is the safe and efficient delivery of therapeutics into the back of the eye. Previous studies demonstrated that narrow size distribution core–shell near infra-red fluorescent iron oxide (IO) nanoparticles (NPs) coated with human serum albumin (HSA, IO/HSA NPs) increase the half-life of conjugated therapeutic factors, suggesting they may be used for sustained release of therapeutics. In the present study, the in vivo tracking by MRI and the long term safety of IO/HSA NPs delivery into the suprachoroid of a rat model of retinal degeneration were assessed. Results Twenty-five Royal College of Surgeons (RCS) pigmented rats received suprachoroidal injection of 20-nm IO/HSA NPs into the right eye. The left eye was not injected and used as control. Animals were examined by magnetic resonance imaging (MRI), electroretinogram (ERG) and histology up to 30 weeks following injection. IO/HSA NPs were detected in the back part of the rats’ eyes up to 30 weeks following injection by MRI, and up to 6 weeks by histology. No significant differences in retinal structure and function were observed between injected and non-injected eyes. There was no significant difference in the weight of IO/HSA NP-injected animals compared to non-injected rats. Conclusions MRI could track the nanoparticles in the posterior segment of the injected eyes demonstrating their long-term persistence, and highlighting the possible use of MRI for translational studies in animals and in future clinical studies. Suprachoroidal injection of IO/HSA NPs showed no sign of adverse effects on retinal structure and function in a rat model of retinal degeneration, suggesting that suprachoroidal delivery of IO/HSA NPs is safe and that these NPs may be used in future translational and clinical studies for extended release drug delivery at the back of the eye. Electronic supplementary material The online version of this article (10.1186/s12951-018-0438-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adi Tzameret
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Hadas Ketter-Katz
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Victoria Edelshtain
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Enav Corem-Salkmon
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, 52900, Ramat-Gan, Israel
| | - Itay Levy
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, 52900, Ramat-Gan, Israel
| | - David Last
- Advanced Technology Center, Sheba Medical Center, 52621, Ramat-Gan, Israel
| | - David Guez
- Advanced Technology Center, Sheba Medical Center, 52621, Ramat-Gan, Israel
| | - Yael Mardor
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Advanced Technology Center, Sheba Medical Center, 52621, Ramat-Gan, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, 52900, Ramat-Gan, Israel
| | - Ygal Rotenstrich
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
46
|
Xu HL, Tong MQ, Wang LF, Chen R, Li XZ, Sohawon Y, Yao Q, Xiao J, Zhao YZ. Thiolated γ-polyglutamic acid as a bioadhesive hydrogel-forming material: evaluation of gelation, bioadhesive properties and sustained release of KGF in the repair of injured corneas. Biomater Sci 2019; 7:2582-2599. [DOI: 10.1039/c9bm00341j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Keratinocyte growth factor (KGF) has a good therapeutic effect on injured corneas.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Meng-Qi Tong
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Li-Fen Wang
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Rui Chen
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Xin-Ze Li
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Yasin Sohawon
- School of International Studies
- Wenzhou Medical University
- Wenzhou City
- China
- First Affiliated Hospital of Wenzhou Medical University
| | - Qing Yao
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Jian Xiao
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou City
- China
| |
Collapse
|
47
|
Loyet KM, Hass PE, Sandoval WN, Morando A, Liu P, Shatz W, Dickmann L, Kenrick M, Good J, Davancaze T, Morimoto AM, Kelley RF, Scheer JM. In Vivo Stability Profiles of Anti-factor D Molecules Support Long-Acting Delivery Approaches. Mol Pharm 2018; 16:86-95. [PMID: 30444371 DOI: 10.1021/acs.molpharmaceut.8b00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The collection of aqueous humor (phase 1 b/2 Mahalo study) from patients dosed intravitreally with anti-factor D (AFD; FCFD4514S, lampalizumab), a humanized antibody fragment previously under investigation to treat geographic atrophy (GA) secondary to age-related macular degeneration, presented a unique opportunity to examine AFD properties in clinical samples. We investigated AFD stability and target-binding characteristics to set up strategies for engineering and evaluating optimized molecules that enable less frequent dosing. Two variants, AFD.v8 and AFD.v14, were evaluated as alternatives to AFD for longer-acting treatments. Mass spectrometry, surface plasmon resonance, and immunoassay were used to assess AFD stability and binding activity in aqueous humor samples from Mahalo patients. In vitro stability and binding activity of AFD, AFD.v8, and AFD.v14 were assessed in human vitreous humor versus buffer at 37 °C over 16 weeks and in vivo in rabbits over 28 days along with pharmacokinetic determinations. In human aqueous humor, AFD specific binding was >85% through 30 days, and deamidation was <3% through 60 days, consistent with the AFD stability and binding activity in vitreous humor from humans in vitro and rabbits in vivo. Target binding, stability, and rabbit pharmacokinetic parameters of AFD.v8 and AFD.v14 were similar to those of AFD. Physiological stability and activity of AFD translated across in vitro and in vivo studies in humans and rabbits. The two variants AFD.v8 and AFD.v14 demonstrated comparable potency and pharmacokinetics. These findings, along with previously demonstrated improved solubility of AFD.v8 and AFD.v14, provide proof-of-concept for developing other similar long-acting therapeutic variants.
Collapse
Affiliation(s)
- Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Philip E Hass
- Department of Protein Chemistry , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Wendy N Sandoval
- Department of Microchemistry, Proteomics, & Lipidomics , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Ashley Morando
- Department of Biochemical and Cellular Pharmacology , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Peter Liu
- Department of Microchemistry, Proteomics, & Lipidomics , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Whitney Shatz
- Department of Protein Chemistry , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Leslie Dickmann
- Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Margaret Kenrick
- Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Jeremy Good
- Department of Assay Development and Technology , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Teresa Davancaze
- Department of Assay Development and Technology , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Alyssa M Morimoto
- Department of Assay Development and Technology , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Robert F Kelley
- Department of Drug Delivery , Genentech, Inc. , South San Francisco , California 94080 , United States
| | - Justin M Scheer
- Department of Protein Chemistry , Genentech, Inc. , South San Francisco , California 94080 , United States
| |
Collapse
|
48
|
Diffusion through the ex vivo vitreal body – Bovine, porcine, and ovine models are poor surrogates for the human vitreous. Int J Pharm 2018; 550:207-215. [DOI: 10.1016/j.ijpharm.2018.07.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022]
|
49
|
Kaji H, Nagai N, Nishizawa M, Abe T. Drug delivery devices for retinal diseases. Adv Drug Deliv Rev 2018; 128:148-157. [PMID: 28690136 DOI: 10.1016/j.addr.2017.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022]
Abstract
Retinal degenerative diseases are a leading cause of irreversible blindness and visual impairment, affecting millions of people worldwide. Although intravitreal injection can directly deliver drugs to the posterior segment of the eye, it is invasive and associated with serious side effects. The design of drug delivery systems targeting the posterior segment of the eye in a less invasive manner has still been challenging because of various anatomical and physiological barriers. In this review, we provide an overview of the current implant device-based approaches used for treating retinal degenerative diseases. We then offer our perspectives on future directions and challenges that remain for developing more effective device-based therapies for retinal diseases.
Collapse
Affiliation(s)
- Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
50
|
Li Y, Song X, Yi X, Wang R, Lee SMY, Wang X, Zheng Y. Zebrafish: A Visual Model To Evaluate the Biofate of Transferrin Receptor-Targeted 7Peptide-Decorated Coumarin 6 Micelles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39048-39058. [PMID: 29039926 DOI: 10.1021/acsami.7b12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the present study, the zebrafish was explored as an in vivo model to assess the biofate of transferrin receptor (TfR)-targeted coumarin 6 (C6) micelles across various biological barriers. Three 7peptide (7pep)-decorated poly(ethylene glycol)-block-poly(ε-caprolactone) micelles loaded with fluorescence coumarin 6 (7pep-M-C6) with different ligand densities were constructed with particle sizes between 30 and 40 nm. Whole-mount immunostaining revealed that the expression level of TfR in the retina, brain, and intestine increased along with development stage. Compared to unmodified micelles, 7pep-M-C6 demonstrated higher uptake efficiency in the larval zebrafish. Preinhibition of TfR with 7pep implicated the TfR-mediated endocytosis pathway in the uptake of 7pep-M-C6. Confocal images of the larval zebrafish eye and brain showed the efficient delivery of C6 across the retinal pigment epithelial to the ganglion cell layer and the significant accumulation of C6 in all brain tissues, respectively, which plateaued when the ligand density was 10%. To investigate the intestinal distribution of C6, micelles were administered to adult zebrafish via gavaging. Notably, 7pep-M-C6 enhanced the transport of C6 across the villi and increased its aggregation into the basolateral membrane of the intestine. After the oral administration of 7pep-M-C6, C6 accumulated in the eye and brain. Förster resonance energy transfer analysis suggested that intact 7pep-modified micelles could enter the epithelial cells of the intestine, brain, and eye after oral administration in adult zebrafish. In conclusion, zebrafish could be used as a model for in vivo visual assessment of the biofate of TfR-targeted drug delivery systems.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Xiaoning Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| |
Collapse
|