1
|
Mulder IA, Abbinanti M, Woller SA, Ruschel J, Coutinho JM, de Vries HE, van Bavel E, Rosen K, McKerracher L, Ayata C. The novel ROCK2 selective inhibitor NRL-1049 preserves the blood-brain barrier after acute injury. J Cereb Blood Flow Metab 2024; 44:1238-1252. [PMID: 38833563 PMCID: PMC11542141 DOI: 10.1177/0271678x241238845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
Endothelial blood-brain barrier (BBB) dysfunction is critical in the pathophysiology of brain injury. Rho-associated protein kinase (ROCK) activation disrupts BBB integrity in the injured brain. We aimed to test the efficacy of a novel ROCK2 inhibitor in preserving the BBB after acute brain injury. We characterized the molecular structure and pharmacodynamic and pharmacokinetic properties of a novel selective ROCK2 inhibitor, NRL-1049, and its first metabolite, 1-hydroxy-NRL-1049 (referred to as NRL-2017 hereon) and tested the efficacy of NRL-1049 on the BBB integrity in rodent models of acute brain injury. Our data show that NRL-1049 and NRL-2017 both inhibit ROCK activity and are 44-fold and 17-fold more selective towards ROCK2 than ROCK1, respectively. When tested in a mouse model of cortical cryoinjury, NRL-1049 significantly attenuated the increase in water content. Interestingly, 60% of the mice in the vehicle arm developed seizures within 2 hours after cryoinjury versus none in the NRL-1049 arm. In spontaneously hypertensive rats, NRL-1049 attenuated the dramatic surge in Evans Blue extravasation compared with the vehicle arm after transient middle cerebral artery occlusion. Hemorrhagic transformation was also reduced. We show that NRL-1049, a selective ROCK2 inhibitor, is a promising drug candidate to preserve the BBB after brain injury.
Collapse
Affiliation(s)
- Inge A Mulder
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
| | | | | | | | - Jonathan M Coutinho
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Helga E de Vries
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, the Netherlands
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
| | | | - Lisa McKerracher
- BioAxone BioSciences Inc, Boston, MA, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Bonney SK, Nielson CD, Sosa MJ, Bonnar O, Shih AY. Capillary regression leads to sustained local hypoperfusion by inducing constriction of upstream transitional vessels. Proc Natl Acad Sci U S A 2024; 121:e2321021121. [PMID: 39236241 PMCID: PMC11406265 DOI: 10.1073/pnas.2321021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a feature of many neurological disorders and injuries and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ~59% of the injuries resulted in regression of the capillary segment 7 to 14 d following injury, and the remaining repaired to reestablish blood flow within 7 d. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days postinjury in both awake and anesthetized mice. The degree of vasomotor dynamics was chronically attenuated in the ACT zone consequently reducing blood flow in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how focal capillary injury and regression can impair the microvascular sensory web and contribute to cerebral hypoperfusion.
Collapse
Affiliation(s)
- Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
| | - Cara D. Nielson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | - Maria J. Sosa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
| | - Orla Bonnar
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
- Department of Pediatrics, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
| |
Collapse
|
3
|
Bonney SK, Nielson CD, Sosa MJ, Shih AY. Capillary regression leads to sustained local hypoperfusion by inducing constriction of upstream transitional vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564529. [PMID: 37961686 PMCID: PMC10635020 DOI: 10.1101/2023.10.28.564529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a hallmark of many neurological disorders and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ∼63% of the injuries resulted in regression of the capillary segment 7-14 days following injury, and the remaining repaired to re-establish blood flow within 7 days. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days post-injury in both awake and anesthetized mice. This abnormal vasoconstriction involved attenuation of vasomotor dynamics and uncoupling from mural cell calcium signaling following capillary regression. Consequently, blood flow was reduced in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how capillary injury and regression, as often seen in age-related neurological disease, can impair the microvascular sensory web and contribute to cerebral hypoperfusion. SIGNIFICANCE Deterioration of the capillary network is a characteristic of many neurological diseases and can exacerbate neuronal dysfunction and degeneration due to poor blood perfusion. Here we show that focal capillary injuries can induce vessel regression and elicit sustained vasoconstriction in upstream transitional vessels that branch from cortical penetrating arterioles. This reduces blood flow to broader, uninjured regions of the same microvascular network. These findings suggest that widespread and cumulative damage to brain capillaries in neurological disease may broadly affect blood supply and contribute to hypoperfusion through their remote actions.
Collapse
|
4
|
Lyden PD, Diniz MA, Bosetti F, Lamb J, Nagarkatti KA, Rogatko A, Kim S, Cabeen RP, Koenig JI, Akhter K, Arbab AS, Avery BD, Beatty HE, Bibic A, Cao S, Simoes Braga Boisserand L, Chamorro A, Chauhan A, Diaz-Perez S, Dhandapani K, Dhanesha N, Goh A, Herman AL, Hyder F, Imai T, Johnson CW, Khan MB, Kamat P, Karuppagounder SS, Kumskova M, Mihailovic JM, Mandeville JB, Morais A, Patel RB, Sanganahalli BG, Smith C, Shi Y, Sutariya B, Thedens D, Qin T, Velazquez SE, Aronowski J, Ayata C, Chauhan AK, Leira EC, Hess DC, Koehler RC, McCullough LD, Sansing LH. A multi-laboratory preclinical trial in rodents to assess treatment candidates for acute ischemic stroke. Sci Transl Med 2023; 15:eadg8656. [PMID: 37729432 DOI: 10.1126/scitranslmed.adg8656] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Karisma A Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - André Rogatko
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Imaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazi Akhter
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Ali S Arbab
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912-0004, USA
| | - Brooklyn D Avery
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Hannah E Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | | | - Angel Chamorro
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Hospital Clinic, University of Barcelona, Barcelona 08036, Spain
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Sebastian Diaz-Perez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Krishnan Dhandapani
- Department Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew Goh
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Alison L Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Conor W Johnson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Joseph B Mandeville
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Andreia Morais
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rakesh B Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Cameron Smith
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Thedens
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tao Qin
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sofia E Velazquez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Enrique C Leira
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Liu C, Han S, Zheng J, Wang H, Li S, Li J. EphA4 regulates white matter remyelination after ischemic stroke through Ephexin-1/RhoA/ROCK signaling pathway. Glia 2022; 70:1971-1991. [PMID: 35762396 DOI: 10.1002/glia.24232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022]
Abstract
Ischemic stroke, which accounts for nearly 80% of all strokes, leads to white matter injury and neurobehavioral dysfunction, but relevant therapies to inhibit demyelination or promote remyelination after white matter injury are still unavailable. In this study, the middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro were used to establish the ischemic models. We found that Eph receptor A4 (EphA4) had no effect on the apoptosis of oligodendrocytes using TUNEL staining. In contrast, EphA4 promoted proliferation of oligodendrocyte precursor cells (OPCs), but reduced the numbers of mature oligodendrocytes and the levels of myelin-associated proteins (MAG, MOG, and MBP) in the process of remyelination in ischemic models in vivo and in vitro as determined using PDGFRα-EphA4-shRNA and LV-EphA4 treatments. Notably, conditional knockout of EphA4 in OPCs (EphA4fl/fl + AAV-PDGFRα-Cre) improved the levels of myelin-associated proteins and functional recovery following ischemic stroke. In addition, regulation of remyelination by EphA4 was mediated by the Ephexin-1/RhoA/ROCK signaling pathway. Therefore, EphA4 did not affect oligodendrocyte (OL) apoptosis but regulated white matter remyelination after ischemic stroke through the Ephexin-1/RhoA/ROCK signaling pathway. EphA4 may provide a novel and effective therapeutic target in clinical practice of ischemic stroke.
Collapse
Affiliation(s)
- Cui Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Hongyu Wang
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Shujuan Li
- The Neurological Department, Fu Wai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Aykan SA, Xie H, Zheng Y, Chung DY, Kura S, Han Lai J, Erdogan TD, Morais A, Tamim I, Yagmur D, Ishikawa H, Arai K, Abbas Yaseen M, Boas DA, Sakadzic S, Ayata C. Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions. Stroke 2022; 53:2369-2376. [PMID: 35656825 DOI: 10.1161/strokeaha.121.037358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.
Collapse
Affiliation(s)
- Sanem A Aykan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hongyu Xie
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China (H.X.)
| | - Yi Zheng
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.)
| | - James Han Lai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Taylan D Erdogan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Isra Tamim
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Damla Yagmur
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - M Abbas Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.).,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| |
Collapse
|
7
|
AKAP12 Supports Blood-Brain Barrier Integrity against Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21239078. [PMID: 33260683 PMCID: PMC7730430 DOI: 10.3390/ijms21239078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.
Collapse
|
8
|
Y-27632 Induces Neurite Outgrowth by Activating the NOX1-Mediated AKT and PAK1 Phosphorylation Cascades in PC12 Cells. Int J Mol Sci 2020; 21:ijms21207679. [PMID: 33081375 PMCID: PMC7589331 DOI: 10.3390/ijms21207679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Y-27632 is known as a selective Rho-associated coiled coil-forming kinase (ROCK) inhibitor. Y-27632 has been shown to induce neurite outgrowth in several neuronal cells. However, the precise molecular mechanisms linking neurite outgrowth to Y-27632 are not completely understood. In this study, we examined the ability of Y-27632 to induce neurite outgrowth in PC12 cells and evaluated the signaling cascade. The effect of Y-27632 on the neurite outgrowth was inhibited by reactive oxygen species (ROS) scavengers such as N-acetyl cysteine (NAC) and trolox. Furthermore, Y-27632-induced neurite outgrowth was not triggered by NADPH oxidase 1 (NOX1) knockdown or diphenyleneiodonium (DPI), a NOX inhibitor. Suppression of the Rho-family GTPase Rac1, which is under the negative control of ROCK, with expression of the dominant negative Rac1 mutant (Rac1N17) prevented Y-27632-induced neurite outgrowth. Moreover, the Rac1 inhibitor NSC23766 prevented Y-27632-induced AKT and p21-activated kinase 1 (PAK1) activation. AKT inhibition with MK2206 suppressed Y-27632-induced PAK1 phosphorylation and neurite outgrowth. In conclusion, our results suggest that Rac1/NOX1-dependent ROS generation and subsequent activation of the AKT/PAK1 cascade contribute to Y-27632-induced neurite outgrowth in PC12 cells.
Collapse
|
9
|
Ma S, Wang L, Ouyang B, Fan M, Qi J, Yao L. Design, synthesis and biological evaluation of 4-aryl-5-aminoalkyl-thiazole-2-amines derivatives as ROCK II inhibitors. Bioorg Med Chem 2020; 28:115683. [PMID: 32912437 DOI: 10.1016/j.bmc.2020.115683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 01/21/2023]
Abstract
A series of 4-aryl-5-aminoalkyl-thiazole-2-amines were designed and synthesized, and their inhibitory activity on ROCK II was screened by enzyme-linked immunosorbent assay (ELISA). The results showed that 4-aryl-5-aminomethyl-thiazole-2-amines derivatives had certain ROCK II inhibitory activities. Compound 10l showed ROCK II inhibitory activity with IC50 value of 20 nM.
Collapse
Affiliation(s)
- Shuchao Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Linan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Ben Ouyang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Meixia Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Junhui Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| |
Collapse
|
10
|
Pro-Nerve Growth Factor Induces Activation of RhoA Kinase and Neuronal Cell Death. Brain Sci 2019; 9:brainsci9080204. [PMID: 31430874 PMCID: PMC6721354 DOI: 10.3390/brainsci9080204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously shown that the expression of pro-nerve growth factor (proNGF) was significantly increased, nerve growth factor (NGF) level was decreased, and the expression of p75NTR was enhanced in Alzheimer’s disease (AD) hippocampal samples. NGF regulates cell survival and differentiation by binding TrkA and p75NTR receptors. ProNGF is the precursor form of NGF, binds to p75NTR, and induces cell apoptosis. The objective of this study is to determine whether the increased p75NTR expression in AD is due to the accumulation of proNGF and Rho kinase activation. PC12 cells were stimulated with either proNGF or NGF. Pull-down assay was carried out to determine the RhoA kinase activity. We found the expression of p75NTR was enhanced by proNGF compared to NGF. The proNGF stimulation also increased the RhoA kinase activity leading to apoptosis. The expression of active RhoA kinase was found to be increased in human AD hippocampus compared to control. The addition of RhoA kinase inhibitor Y27632 not only blocked the RhoA kinase activity but also reduced the expression of p75NTR receptor and inhibited the activation of JNK and MAPK induced by proNGF. This suggests that overexpression of proNGF in AD enhances p75NTR expression and activation of RhoA, leading to neuronal cell death.
Collapse
|
11
|
Chen F, Liu Z, Peng W, Gao Z, Ouyang H, Yan T, Ding S, Cai Z, Zhao B, Mao L, Cao Z. Activation of EphA4 induced by EphrinA1 exacerbates disruption of the blood-brain barrier following cerebral ischemia-reperfusion via the Rho/ROCK signaling pathway. Exp Ther Med 2018; 16:2651-2658. [PMID: 30186497 DOI: 10.3892/etm.2018.6460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Vascular dementia (VD) is a syndrome characterized by progressive cognitive decline. According to previous studies, stroke is considered to be a risk factor for VD. The disruption of the blood-brain barrier (BBB) is pivotal to the pathology of stroke, as it contributes to post-stroke inflammation and edema. It has been reported that the Eph/Ephrin signaling pathway serves an important role in central nervous system injury. However, the role of EphrinA1/EphA4 signaling in BBB damage following ischemic stroke has not yet been reported. Oxygen-glucose deprivation/reperfusion was performed to detect changes in EphrinA1 and EphA4 expression in human brain microvascular endothelial cells (HBMECs). Male mice were randomly divided into four groups [Sham, ischemia-reperfusion (I/R), I/R+EphrinA1 and I/R+EphA4] to observe the role of EphrinA1 and EphA4 under I/R conditions in vivo. The results of the present study revealed that the expression of EphrinA1 and EphA4 was significantly increased following I/R in vitro and in vivo. The administration of soluble ligand EphrinA1 enhanced CD68+ cell accumulation, brain edema and dysfunction of the BBB, with lower expression levels of zonula occludens-1 (ZO-1) and Claudin-5. In addition, EphrinA1-treated mice had a higher level of caspase-3 and a lower level of phosphorylated-protein kinase B. However, the effects of EphrinA1 were abolished by EphA4-Fc, an inhibitor of EphA4. These results suggested that EphrinA1 exerted its effects on I/R injury via the activated EphA4 receptor. In addition, EphrinA1 decreased ZO-1 and Claudin-5 expression through the Rho/Rho associated kinase (ROCK) signaling pathway, which was attenuated by the pharmacological inhibition of Rho (C3 transferase) or ROCK (Y-27632). In conclusion, the present study provides evidence that the activation of EphA4 induced by EphrinA1 contributes to BBB damage following ischemic stroke through the Rho/ROCK signaling pathway, which highlights a potential therapeutic strategy for ischemic stroke and may help the development of preventative interventions for VD.
Collapse
Affiliation(s)
- Fangbin Chen
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Zhiyang Liu
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Wei Peng
- Department of Psychiatry, The 92nd Hospitial of PLA, Nanping, Fujian 353000, P.R. China
| | - Zhiqin Gao
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Hui Ouyang
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Tongjun Yan
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Songbai Ding
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Zhankui Cai
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Zhao
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Longjin Mao
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| | - Zhiyong Cao
- Institute of Psychiatry, The 102nd Hospital of PLA, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
12
|
Akhter M, Qin T, Fischer P, Sadeghian H, Kim HH, Whalen MJ, Goldstein JN, Ayata C. Rho-kinase inhibitors do not expand hematoma volume in acute experimental intracerebral hemorrhage. Ann Clin Transl Neurol 2018; 5:769-776. [PMID: 29928660 PMCID: PMC5989779 DOI: 10.1002/acn3.569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
Rho‐associated kinase (ROCK) is an emerging target in acute ischemic stroke. Early pre‐hospital treatment with ROCK inhibitors may improve their efficacy, but their antithrombotic effects raise safety concerns in hemorrhagic stroke, precluding use prior to neuroimaging. Therefore, we tested whether ROCK inhibition affects the bleeding times, and worsens hematoma volume in a model of intracerebral hemorrhage (ICH) induced by intrastriatal collagenase injection in mice. Tail bleeding time was measured 1 h after treatment with isoform‐nonselective inhibitor fasudil, or ROCK2‐selective inhibitor KD025, or their vehicles. In the ICH model, treatments were administered 1 h after collagenase injection. Although KD025 but not fasudil prolonged the tail bleeding times, neither drug expanded the volume of ICH or worsened neurological deficits at 48 h compared with vehicle. Although more testing is needed in aged animals and comorbid models such as diabetes, these results suggest ROCK inhibitors may be safe for pre‐hospital administration in acute stroke.
Collapse
Affiliation(s)
- Murtaza Akhter
- Department of Emergency Medicine University of Arizona College of Medicine- Phoenix Maricopa Medical Center Phoenix Arizona.,Neurovascular Research Laboratory Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts.,Department of Emergency Medicine Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Tom Qin
- Neurovascular Research Laboratory Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Paul Fischer
- Neurovascular Research Laboratory Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Homa Sadeghian
- Neurovascular Research Laboratory Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Hyung Hwan Kim
- Neurovascular Research Laboratory Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Michael J Whalen
- Department of Pediatrics Pediatric Critical Care Medicine Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Joshua N Goldstein
- Department of Emergency Medicine Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Cenk Ayata
- Neurovascular Research Laboratory Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts.,Stroke Service and Neuroscience Intensive Care Unit Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| |
Collapse
|
13
|
Yao Y, Li R, Liu X, Yang F, Yang Y, Li X, Shi X, Yuan T, Fang L, Du G, Jiao X, Xie P. Discovery of Novel N-Substituted Prolinamido Indazoles as Potent Rho Kinase Inhibitors and Vasorelaxation Agents. Molecules 2017; 22:E1766. [PMID: 29048389 PMCID: PMC6151428 DOI: 10.3390/molecules22101766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023] Open
Abstract
Inhibitors of Rho kinase (ROCK) have potential therapeutic applicability in a wide range of diseases, such as hypertension, stroke, asthma and glaucoma. In a previous article, we described the lead discovery of DL0805, a new ROCK I inhibitor, showing potent inhibitory activity (IC50 6.7 μM). Herein, we present the lead optimization of compound DL0805, resulting in the discovery of 24- and 39-fold more-active analogues 4a (IC50 0.27 μM) and 4b (IC50 0.17 μM), among other active analogues. Moreover, ex-vivo studies demonstrated that 4a and 4b exhibited comparable vasorelaxant activity to the approved drug fasudil in rat aortic rings. The research of a preliminary structure-activity relationship (SAR) indicated that the target compounds containing a β-proline moiety have improved activity against ROCK I relative to analogues bearing an α-proline moiety, and among the series of the derivatives with a β-proline-derived indazole scaffold, the inhibitory activity of the target compounds with a benzyl substituent is superior to those with a benzoyl substituent.
Collapse
Affiliation(s)
- Yangyang Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Renze Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Feilong Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
14
|
Wang X, Wang B, Li Z, Zhu G, Heng L, Zhu X, Yang Q, Ma J, Gao G. Neuroprotection effect of Y-27632 against H2O2-induced cell apoptosis of primary cultured cortical neurons. RSC Adv 2016. [DOI: 10.1039/c6ra03284b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Y-27632 protects the cortical neurons from H2O2-induced apoptosis by inhibiting oxidative stress and activation of JNK and p38 MAPKs pathways.
Collapse
Affiliation(s)
- Xingqin Wang
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Bao Wang
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery
- Xijing Hospital
- Fourth Military Medical University
- Xi'an 710032
- China
| | - Gang Zhu
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Lijun Heng
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Xianke Zhu
- Department of Orthopedics
- No. 150 Central Hospital of PLA
- Luoyang
- China
| | - Qian Yang
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Jie Ma
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Guodong Gao
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| |
Collapse
|
15
|
Mishra RK, Alokam R, Singhal SM, Srivathsav G, Sriram D, Kaushik-Basu N, Manvar D, Yogeeswari P. Design of novel rho kinase inhibitors using energy based pharmacophore modeling, shape-based screening, in silico virtual screening, and biological evaluation. J Chem Inf Model 2014; 54:2876-86. [PMID: 25254429 DOI: 10.1021/ci5004703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rho-associated protein kinase (ROCK) plays a key role in regulating a variety of cellular processes, and dysregulation of ROCK signaling or expression is implicated in numerous diseases and infections. ROCK proteins have therefore emerged as validated targets for therapeutic intervention in various pathophysiological conditions such as diabetes-related complications or hepatitis C-associated pathogenesis. In this study, we report on the design and identification of novel ROCK inhibitors utilizing energy based pharmacophores and shape-based approaches. The most potent compound 8 exhibited an IC50 value of 1.5 μM against ROCK kinase activity and inhibited methymercury-induced neurotoxicity of IMR-32 cells at GI50 value of 0.27 μM. Notably, differential scanning fluorometric analysis revealed that ROCK protein complexed with compound 8 with enhanced stability relative to Fasudil, a validated nanomolar range ROCK inhibitor. Furthermore, all compounds exhibited ≥96 μM CC50 (50% cytotoxicity) in Huh7 hepatoma cells, while 6 compounds displayed anti-HCV activity in HCV replicon cells. The identified lead thus constitutes a prototypical molecule for further optimization and development as anti-ROCK inhibitor.
Collapse
Affiliation(s)
- Ram Kumar Mishra
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus , Jawahar Nagar, Hyderabad-500078, Andhra Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
17
|
Rho-kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice. J Cereb Blood Flow Metab 2014; 34:284-7. [PMID: 24192634 PMCID: PMC3915205 DOI: 10.1038/jcbfm.2013.195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 11/08/2022]
Abstract
Hyperlipidemia is a major cardiovascular risk factor associated with progressive cerebrovascular dysfunction and diminished collateral perfusion in stroke. Rho-associated kinase (ROCK) may be an important mediator of hyperlipidemic vascular dysfunction. We tested the efficacy of acute or chronic ROCK inhibition on the size of dynamic perfusion defect using laser speckle flowmetry in hyperlipidemic apolipoprotein E knockout mice fed on a high-fat diet for 8 weeks. Mice were studied at an age before the development of flow-limiting atherosclerotic stenoses in aorta and major cervical arteries. Focal ischemia was induced by distal middle cerebral artery occlusion (dMCAO) during optical imaging. The ROCK inhibitor fasudil (10 mg/kg) was administered either as a single dose 1 hour before ischemia onset, or daily for 4 weeks. Fasudil decreased both baseline arterial blood pressure and cerebrovascular resistance (CVR) by ∼15%, and significantly improved tissue perfusion during dMCAO. Interestingly, peri-infarct depolarizations were also reduced. Chronic treatment did not further enhance these benefits compared with acute treatment with a single dose. These data show that ROCK inhibition improves CVR and ischemic tissue perfusion in hyperlipidemic mice.
Collapse
|
18
|
Hyun Lee J, Zheng Y, von Bornstadt D, Wei Y, Balcioglu A, Daneshmand A, Yalcin N, Yu E, Herisson F, Atalay YB, Kim MH, Ahn YJ, Balkaya M, Sweetnam P, Schueller O, Poyurovsky MV, Kim HH, Lo EH, Furie KL, Ayata C. Selective ROCK2 Inhibition In Focal Cerebral Ischemia. Ann Clin Transl Neurol 2013; 1:2-14. [PMID: 24466563 PMCID: PMC3900310 DOI: 10.1002/acn3.19] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Rho-associated kinase (ROCK) is a key regulator of numerous processes in multiple cell types relevant in stroke pathophysiology. ROCK inhibitors have improved outcome in experimental models of acute ischemic or hemorrhagic stroke. However, the relevant ROCK isoform (ROCK1 or ROCK2) in acute stroke is not known. METHODS We characterized the pharmacodynamic and pharmacokinetic profile, and tested the efficacy and safety of a novel selective ROCK2 inhibitor KD025 (formerly SLx-2119) in focal cerebral ischemia models in mice. RESULTS KD025 dose-dependently reduced infarct volume after transient middle cerebral artery occlusion. The therapeutic window was at least 3 hours from stroke onset, and the efficacy was sustained for at least 4 weeks. KD025 was at least as efficacious in aged, diabetic or female mice, as in normal adult males. Concurrent treatment with atorvastatin was safe, but not additive or synergistic. KD025 was also safe in a permanent ischemia model, albeit with diminished efficacy. As one mechanism of protection, KD025 improved cortical perfusion in a distal middle cerebral artery occlusion model, implicating enhanced collateral flow. Unlike isoform-nonselective ROCK inhibitors, KD025 did not cause significant hypotension, a dose-limiting side effect in acute ischemic stroke. INTERPRETATION Altogether, these data show that KD025 is efficacious and safe in acute focal cerebral ischemia in mice, implicating ROCK2 as the relevant isoform in acute ischemic stroke. Data suggest that selective ROCK2 inhibition has a favorable safety profile to facilitate clinical translation.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Yi Zheng
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Daniel von Bornstadt
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Ying Wei
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Aygul Balcioglu
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Ali Daneshmand
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Nilufer Yalcin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Esther Yu
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Fanny Herisson
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Yahya B Atalay
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Maya H Kim
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Yong-Joo Ahn
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Mustafa Balkaya
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | | | | | | | - Hyung-Hwan Kim
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
| | - Karen L Furie
- Department of Neurology, Rhode Island HospitalProvidence, Rhode Island, 02903
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, Massachusetts, 02129
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical SchoolBoston, Massachusetts, 02114
- Correspondence Cenk Ayata, Neurovascular Research Laboratory, Massachusetts General Hospital, 149 13th Street, Room 6403, Charlestown, MA 02129. Tel: (617) 726-8021; Fax: (617) 726-2547; E-mail:
| |
Collapse
|
19
|
Sun H, Schlondorff J, Higgs HN, Pollak MR. Inverted formin 2 regulates actin dynamics by antagonizing Rho/diaphanous-related formin signaling. J Am Soc Nephrol 2013; 24:917-29. [PMID: 23620398 DOI: 10.1681/asn.2012080834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in inverted formin 2 INF2 are a common cause of familial FSGS. INF2 interacts with diaphanous-related formins (mDia) and antagonizes mDia-mediated actin polymerization in response to active Rho signaling, suggesting that dysregulation of these pathways may mediate the development of INF2-related FSGS. However, the precise mechanisms by which INF2 regulates actin-dependent podocyte behavior remain largely unknown. Here, we investigated the possible role of INF2 in both lamellipodia-associated actin dynamics and actin-dependent slit diaphragm (SD) protein trafficking by manipulating the expression of INF2 and the activity of Rho/mDia signaling in cultured podocytes. Activation of mDia in the absence of INF2 led to defective formation of lamellipodia and abnormal SD trafficking. Effects of mutations disrupting the INF2-mDia interaction suggested the specificity of the mDia-antagonizing effect of INF2 in maintaining the lamellipodium. Furthermore, we found that SD trafficking requires INF2 interaction with lipid raft components. In summary, INF2 regulates lamellipodial actin dynamics and the trafficking of slit diaphragm proteins by opposing Rho/mDia-mediated actin polymerization. Thus, in podocytes, INF2 appears to be an important modulator of actin-dependent behaviors that are under the control of Rho/mDia signaling.
Collapse
Affiliation(s)
- Hua Sun
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Diabetes is considered a major risk factor for stroke and is associated with worsened stroke outcomes. Here, we discuss and summarize the mechanisms that have been associated with the increased risk of stroke due to the hyperglycemia in diabetes mellitus. In diabetic stroke models, hyperglycemia exaggerates the following damaging processes: acidosis, accumulation of reactive oxygen species/reactive nitrogen, inflammation and mitochondrial dysfunction. Understanding the mechanism of diabetes acting as a stroke risk factor will definitely assist to reveal issues related to drug metabolism and toxicity in diabetic stroke. In addition, it is suggested that future studies may focus on the mechanisms mediating blood-brain barrier and astrocytes dysfunction under hyperglycemic stroke.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Jingqi Yan
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Honglian Shi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
21
|
Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 2012; 69:2345-63. [PMID: 22618244 PMCID: PMC11114534 DOI: 10.1007/s00018-012-1011-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/06/2011] [Accepted: 04/20/2012] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) act physiologically as signaling molecules. In pathological conditions, such as ischemic stroke, ROS are released in excessive amounts and upon reperfusion exceed the body's antioxidant detoxifying capacity. This process leads to brain tissue damage during reoxygenation. Consequently, antioxidant strategies have long been suggested as a therapy for experimental stroke, but clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. As an evolution of this concept, recent studies have targeted the sources of ROS generation-rather than ROS themselves. In this context, NADPH oxidases have been identified as important generators of ROS in the cerebral vasculature under both physiological conditions in general and during ischemia/reoxygenation in particular. Inhibition of NADPH oxidases or genetic deletion of certain NADPH oxidase isoforms has been found to considerably reduce ischemic injury in experimental stroke. This review focuses on recent advances in the understanding of NADPH oxidase-mediated tissue injury in the cerebral vasculature, particularly at the level of the blood-brain barrier, and highlights promising inhibitory strategies that target the NADPH oxidases.
Collapse
Affiliation(s)
- Timo Kahles
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Frankfurt, Germany.
| | | |
Collapse
|
22
|
Chowdhury S, Sessions EH, Pocas JR, Grant W, Schröter T, Lin L, Ruiz C, Cameron MD, Schürer S, LoGrasso P, Bannister TD, Feng Y. Discovery and optimization of indoles and 7-azaindoles as Rho kinase (ROCK) inhibitors (part-I). Bioorg Med Chem Lett 2011; 21:7107-12. [DOI: 10.1016/j.bmcl.2011.09.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/20/2011] [Indexed: 01/21/2023]
|
23
|
Kang JH, Asai D, Tsuchiya A, Mori T, Niidome T, Katayama Y. Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2). PLoS One 2011; 6:e22699. [PMID: 21818369 PMCID: PMC3144920 DOI: 10.1371/journal.pone.0022699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK) is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32)P [counts per minute (CPM)] for each peptide substrate was determined by the radiolabel assay using [γ-(32)P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135) were phosphorylated by other enzymes (PKA, PKCα, and ERK1), R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Daisuke Asai
- Department of Microbiology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akira Tsuchiya
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Takuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Ratz PH. ROK controls urethral tone, but by what mechanism? Am J Physiol Renal Physiol 2011; 300:F71-2. [DOI: 10.1152/ajprenal.00608.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Paul H. Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
25
|
Potentiation of nerve growth factor-induced neurite outgrowth by the ROCK inhibitor Y-27632: A possible role of IP3 receptors. Eur J Pharmacol 2010; 648:67-73. [DOI: 10.1016/j.ejphar.2010.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/20/2010] [Accepted: 09/06/2010] [Indexed: 01/17/2023]
|
26
|
Salomone S, Soydan G, Ip PCT, Hopson KMP, Waeber C. Vessel-specific role of sphingosine kinase 1 in the vasoconstriction of isolated basilar arteries. Pharmacol Res 2010; 62:465-74. [PMID: 20850539 DOI: 10.1016/j.phrs.2010.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) constricts cerebral arteries through S1P(3) receptor stimulation. Because the activity of the key S1P-synthesizing enzyme, sphingosine kinase (SPK), can be stimulated by agonists of various G protein-coupled receptors, it is likely that S1P also acts as a second messenger for other vasoconstrictors. We investigated the effect of SPK inhibitors and SPK gene deletion on the contractile responses of isolated vessels to vasoactive agonists and KCl-induced depolarization. Basilar and femoral arteries of rat, mounted in a wire myograph, were incubated with dimethylsphingosine (DMS), 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (Compound 2) or FTY720, and exposed to KCl, 5-hydroxytryptamine (5-HT), S1P or phenylephrine (PE). Vasomotor responses in basilar artery were decreased by DMS, Compound 2 and FTY720, while they were not affected in femoral artery. Basilar arteries from SPK1(-/-) mice exhibited weaker vasoconstriction to both KCl and agonists (S1P and the prostanoid U46619) when compared to either wild type (WT) or SPK2(-/-). In contrast, in mesenteric resistance arteries, neither the contraction to KCl nor the maximum contraction to PE and S1P significantly differed among WT, SPK1(-/-) and SPK2(-/-). Quantitative analysis of SPK mRNA (reverse transcription and real time polymerase chain reaction) in mouse arteries showed 40-80-fold higher SPK1 expression in cerebral arteries than in aorta or mesenteric arteries. SPK1 critically modulates the reactivity of cerebral vasculature to vasoconstrictors. S1P plays a specific role as modulator of cerebral blood flow, potentially acting either directly outside vascular smooth muscle cells on S1P(3) receptors, or indirectly after being generated inside the cell in response to vasoconstrictors.
Collapse
Affiliation(s)
- Salvatore Salomone
- Stroke and Neurovascular Laboratory Regulation, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
27
|
Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention. Clin Sci (Lond) 2010; 119:1-17. [PMID: 20370718 DOI: 10.1042/cs20090649] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelium plays a crucial role in the control of vascular homoeostasis through maintaining the synthesis of the vasoprotective molecule NO* (nitric oxide). Endothelial dysfunction of cerebral blood vessels, manifested as diminished NO* bioavailability, is a common feature of several vascular-related diseases, including hypertension, hypercholesterolaemia, stroke, subarachnoid haemorrhage and Alzheimer's disease. Over the past several years an enormous amount of research has been devoted to understanding the mechanisms underlying endothelial dysfunction. As such, it has become apparent that, although the diseases associated with impaired NO* function are diverse, the underlying causes are similar. For example, compelling evidence indicates that oxidative stress might be an important mechanism of diminished NO* signalling in diverse models of cardiovascular 'high-risk' states and cerebrovascular disease. Although there are several sources of vascular ROS (reactive oxygen species), the enzyme NADPH oxidase is emerging as a strong candidate for the excessive ROS production that is thought to lead to vascular oxidative stress. The purpose of the present review is to outline some of the mechanisms thought to contribute to endothelial dysfunction in the cerebral vasculature during disease. More specifically, we will highlight current evidence for the involvement of ROS, inflammation, the RhoA/Rho-kinase pathway and amyloid beta-peptides. In addition, we will discuss currently available therapies for improving endothelial function and highlight future therapeutic strategies.
Collapse
|
28
|
Sessions EH, Smolinski M, Wang B, Frackowiak B, Chowdhury S, Yin Y, Chen YT, Ruiz C, Lin L, Pocas J, Schröter T, Cameron MD, LoGrasso P, Feng Y, Bannister TD. The development of benzimidazoles as selective rho kinase inhibitors. Bioorg Med Chem Lett 2010; 20:1939-43. [PMID: 20167489 DOI: 10.1016/j.bmcl.2010.01.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 01/15/2023]
Abstract
Rho Kinase (ROCK) is a serine/threonine kinase whose inhibition could prove beneficial in numerous therapeutic areas. We have developed a promising class of ATP-competitive inhibitors based upon a benzimidazole scaffold, which show excellent potency toward ROCK (IC(50)<10nM). This report details the optimization of selectivity for ROCK over other related kinases such as Protein kinase A (PKA).
Collapse
Affiliation(s)
- E Hampton Sessions
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lartey J, López Bernal A. RHO protein regulation of contraction in the human uterus. Reproduction 2009; 138:407-24. [DOI: 10.1530/rep-09-0160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The state of contraction in smooth muscle cells of the human uterus is dependent on the interaction of activated forms of actin and myosin. Ras homology (RHO) proteins are small monomeric GTP-binding proteins that regulate actin polymerisation and myosin phosphorylation in smooth muscle cells. Their action is determined by their level of expression, GTP-bound state, intracellular localisation and phosphorylated status. Agonist activated RHO proteins bind to effector kinases such as RHO kinase (ROCK) and diaphanous proteins (DIAPH) to regulate smooth muscle contraction by two mechanisms: ROCK activates smooth muscle myosin either by direct phosphorylation at Ser19/Thr18 or through inhibition of myosin phosphatase which is a trimeric protein regulated by ROCK and by other protein kinases. Actin-polymerising proteins such as DIAPH homolog 1 increase filamentous actin assembly to enhance acto-myosin cross bridge formation and contraction. This review explores recent advances in RHO protein signalling in human myometrium and proposes areas of further research to investigate the involvement of these proteins in the regulation of uterine contractility in pregnancy and labour.
Collapse
|