1
|
Li C, Cai D, Yuan W, Cai R, Qiu X, Qin Y, Feng Y, Zhu Q, Liu Y, Chen Y, Yuan X, Jiang W, Hou N. The canonical Wnt/β-catenin signaling pathway upregulates carbonic anhydrase 2 via transcription factor 7-like 2 to promote cardiomyopathy in type 2 diabetic mice. Life Sci 2025; 368:123506. [PMID: 40010634 DOI: 10.1016/j.lfs.2025.123506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Excessive activation of the canonical Wnt/β-catenin pathway contributes to the development of diabetic cardiomyopathy (DCM). Transcription factor 7-like 2 (TCF7L2) is the main β-catenin partner of the TCF family in adult human hearts. Carbonic anhydrase 2 (CA2) is implicated in various hypertrophic cardiomyopathy. In this study, we aimed to investigate the role of the Wnt/β-catenin/TCF7L2 signaling and CA2 in the development of DCM. Streptozotocin (STZ)/high-fat diet (HFD)-induced diabetic mice and high glucose-stimulated neonatal rat cardiomyocytes (NRCMs) were used as in-vivo and in-vitro models of Type 2 diabetes (T2DM), respectively. Histopathological changes in the mouse myocardium were assessed with hematoxylin-eosin (HE) or Masson's trichrome staining. Cardiac function was evaluated with echocardiography. TCF7L2, β-catenin, and CA2 expression was determined with RT-qPCR, western blotting, and immunohistochemistry. Immunoprecipitation (IP) was used to evaluate the formation of the β-catenin/TCF7L2 bipartite. The regulatory relationship between the β-catenin/TCF7L2 bipartite and CA2 was investigated with chromatin immunoprecipitation (ChIP) and a luciferase reporter assay. Compared with the control mice, the T2DM mice exhibited increased myocardial β-catenin and TCF7L2 expression that was concentrated in the nucleus. Treatment of diabetic mice with the β-catenin/TCF7L2 bipartite inhibitor iCRT14 prevented myocardial remodeling and improved cardiac dysfunction. iCRT14 also prevented high glucose-induced hypertrophy in NRCMs, while the β-catenin stabilizer SKL2001 worsened hypertrophy. IP experiments confirmed the formation of the β-catenin/TCF7L2 bipartite in the control and T2DM mouse cardiomyocytes. Moreover, based on the results of RNA-sequencing analysis, CA2 was upregulated in T2DM cardiomyocytes in vitro and in vivo. TCF7L2 overexpression upregulated CA2, while iCRT14 treatment or TCF7L2 knockdown downregulated CA2. CA2 knockdown ameliorated NRCM hypertrophy induced by high glucose and SKL2001. The ChIP experiments revealed an increased interaction between β-catenin/TCF7L2 and the transcription initiation region of CA2 in the heart tissue of T2DM mice. The luciferase reporter assay confirmed that CA2 is directly regulated by the β-catenin/TCF7L2 bipartite. The results indicate that the canonical Wnt/β-catenin pathway upregulates CA2 via TCF7L2 to promote DCM. This research sheds new light on the pathogenesis of DCM and presents new potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Conglin Li
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China
| | - Daofeng Cai
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rui Cai
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoxia Qiu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Qin
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yaofeng Feng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiulian Zhu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yun Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yilin Chen
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xun Yuan
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Wenyue Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China.
| | - Ning Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Netala VR, Hou T, Wang Y, Zhang Z, Teertam SK. Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis. Int J Mol Sci 2025; 26:3218. [PMID: 40244022 PMCID: PMC11989402 DOI: 10.3390/ijms26073218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The present study provides a detailed review of cardiovascular biomarkers critical for the diagnosis, prognosis, and pathophysiology of cardiovascular diseases, the leading cause of global morbidity and mortality. These biomarkers aid in detecting disease onset, progression, and therapeutic responses, providing insights into molecular mechanisms. Enzyme markers like AST, CK-MB, LDH, CA-III, and HBDH are pivotal for detecting myocardial injury during acute events. Protein markers such as CRP, H-FABP, and MPO shed light on inflammation and oxidative stress. Cardiac Troponins, the gold standard for myocardial infarction diagnosis, exhibit high specificity and sensitivity, while IMA and GPBB indicate ischemia and early myocardial damage. Peptide markers, including BNP and NT-proBNP, are crucial for heart failure diagnosis and management, reflecting ventricular stress and remodeling. Novel peptides like MR-proANP and MR-proADM aid in assessing disease severity. Lipid markers such as lipoprotein-associated phospholipase A2 and oxylipins provide insights into lipid metabolism and atherosclerosis. Inflammatory and stress-related biomarkers, including TNFα, IL-6, GDF-15, and Pentraxin 3, illuminate chronic inflammation in CVDs. Hormonal markers like copeptin and endothelin-1 highlight neurohormonal activation, while emerging markers such as ST2, galectin-3, PAPP-A, and TMAO elucidate fibrosis, remodeling, and metabolic dysregulation. The inclusion of microRNAs and long non-coding RNAs represents a breakthrough in biomarker research, offering sensitive tools for early detection, risk stratification, and therapeutic targeting. This review emphasizes the diagnostic and prognostic utility of these biomarkers, advancing cardiovascular care through personalized medicine.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Yanbo Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol 2024; 23:252. [PMID: 39010053 PMCID: PMC11251349 DOI: 10.1186/s12933-024-02312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Collapse
Affiliation(s)
- Hong-Yi Duan
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Jiahao M, Fan Z, Junsheng M. Influence of acidic metabolic environment on differentiation of stem cell-derived cardiomyocytes. Front Cardiovasc Med 2024; 11:1288710. [PMID: 38572303 PMCID: PMC10987843 DOI: 10.3389/fcvm.2024.1288710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-based myocardial regeneration is a frontier topic in the treatment of myocardial infarction. Manipulating the metabolic microenvironment of stem cells can influence their differentiation into cardiomyocytes, which have promising clinical applications. pH is an important indicator of the metabolic environment during cardiomyocyte development. And lactate, as one of the main acidic metabolites, is a major regulator of the acidic metabolic environment during early cardiomyocyte development. Here, we summarize the progress of research into the influence of pH value and lactate on cardiomyocyte survival and differentiation, as well as related mechanisms.
Collapse
Affiliation(s)
- Mao Jiahao
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Fan
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Mu Junsheng
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Pan G, Cui B, Han M, Lin L, Li Y, Wang L, Guo S, Yin Y, Zhan H, Li P. Puerarin inhibits NHE1 activity by interfering with the p38 pathway and attenuates mitochondrial damage induced by myocardial calcium overload in heart failure rats. Acta Biochim Biophys Sin (Shanghai) 2024; 56:270-279. [PMID: 38282474 PMCID: PMC10984851 DOI: 10.3724/abbs.2023269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 01/30/2024] Open
Abstract
Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-β and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.
Collapse
Affiliation(s)
- Guopin Pan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Baoyue Cui
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Nanyang Second General HospitalNanyang473001China
| | - Mingming Han
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Laibiao Lin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Yinlan Li
- College of PharmacyHeilongjiang University of Chinese MedicineHarbin150040China
| | - Ling Wang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Heqin Zhan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| |
Collapse
|
6
|
El Salamouni NS, Buckley BJ, Lee R, Ranson M, Kelso MJ, Yu H. Ion Transport and Inhibitor Binding by Human NHE1: Insights from Molecular Dynamics Simulations and Free Energy Calculations. J Phys Chem B 2024; 128:440-450. [PMID: 38185879 DOI: 10.1021/acs.jpcb.3c05863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human Na+/H+ exchanger (NHE1) plays a crucial role in maintaining intracellular pH by regulating the electroneutral exchange of a single intracellular H+ for one extracellular Na+ across the plasma membrane. Understanding the molecular mechanisms governing ion transport and the binding of inhibitors is of importance in the development of anticancer therapeutics targeting NHE1. In this context, we performed molecular dynamics (MD) simulations based on the recent cryo-electron microscopy (cryo-EM) structures of outward- and inward-facing conformations of NHE1. These simulations allowed us to explore the dynamics of the protein, examine the ion-translocation pore, and confirm that Asp267 is the ion-binding residue. Our free energy calculations did not show a significant difference between Na+ and K+ binding at the ion-binding site. Consequently, Na+ over K+ selectivity cannot be solely explained by differences in ion binding. Our MD simulations involving NHE1 inhibitors (cariporide and amiloride analogues) maintained stable interactions with Asp267 and Glu346. Our study highlights the importance of the salt bridge between the positively charged acylguanidine moiety and Asp267, which appears to play a role in the competitive inhibitory mechanism for this class of inhibitors. Our computational study provides a detailed mechanistic interpretation of experimental data and serves the basis of future structure-based inhibitor design.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Xia H, Zahra A, Jia M, Wang Q, Wang Y, Campbell SL, Wu J. Na +/H + Exchanger 1, a Potential Therapeutic Drug Target for Cardiac Hypertrophy and Heart Failure. Pharmaceuticals (Basel) 2022; 15:ph15070875. [PMID: 35890170 PMCID: PMC9318128 DOI: 10.3390/ph15070875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiac hypertrophy is defined as increased heart mass in response to increased hemodynamic requirements. Long-term cardiac hypertrophy, if not counteracted, will ultimately lead to heart failure. The incidence of heart failure is related to myocardial infarction, which could be salvaged by reperfusion and ultimately invites unfavorable myocardial ischemia-reperfusion injury. The Na+/H+ exchangers (NHEs) are membrane transporters that exchange one intracellular proton for one extracellular Na+. The first discovered NHE isoform, NHE1, is expressed almost ubiquitously in all tissues, especially in the myocardium. During myocardial ischemia-reperfusion, NHE1 catalyzes increased uptake of intracellular Na+, which in turn leads to Ca2+ overload and subsequently myocardial injury. Numerous preclinical research has shown that NHE1 is involved in cardiac hypertrophy and heart failure, but the exact molecular mechanisms remain elusive. The objective of this review is to demonstrate the potential role of NHE1 in cardiac hypertrophy and heart failure and investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Huiting Xia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan 440070, China;
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (H.X.); (A.Z.)
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
- Correspondence:
| |
Collapse
|
8
|
Abubakar AA, Ali AK, Ibrahim SM, Handool KO, Khan MS, Mustapha NM, Ibrahim TAT, Kaka U, Yusof LM. Roles of Sodium Hydrogen Exchanger (NHE1) and Anion Exchanger (AE2) across Chondrocytes Plasma Membrane during Longitudinal Bone Growth. MEMBRANES 2022; 12:membranes12070707. [PMID: 35877910 PMCID: PMC9321928 DOI: 10.3390/membranes12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
Mammalian long bone growth occurs through endochondral ossification, majorly regulated by the controlled enlargement of chondrocytes at the growth plate (GP). This study aimed to investigate the roles of Na+/H+ (sodium hydrogen exchanger (NHE1)) and HCO3− (anion exchanger [AE2]) during longitudinal bone growth in mammals. Bones from P10 SpragueDawley rat pups were cultured exvivo in the presence or absence of NHE1 and AE2 inhibitors to determine their effect on long bone growth. Gross morphometry, histomorphometry, and immunohistochemistry were used to assess the bone growth. The results revealed that the culture of the bones in the presence of NHE1 and AE2 inhibitors reduces bone growth significantly (p < 0.05) by approximately 11%. The inhibitor significantly (p < 0.05) reduces bone growth velocity and the length of the hypertrophic chondrocyte zone without any effect on the total GP length. The total GP chondrocyte density was significantly (p < 0.05) reduced, but hypertrophic chondrocyte densities remained constant. NHE1 fluorescence signaling across the GP length was higher than AE2, and their localization was significantly (p < 0.05) inhibited at the hypertrophic chondrocytes zone. The GP lengthening was majorly driven by an increase in the overall GP chondrocyte and hypertrophic chondrocyte densities apart from the regulatory volume phenomenon. This may suggest that NHE1 and AE2 could have a regulatory role in long bone growth.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Veterinary Surgery and Radiology, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Faculty of Veterinary and Animal Science, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noordin Mohamed Mustapha
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Correspondence: ; Tel.: +60-192-590-571; Fax: +60-386-093-959
| |
Collapse
|
9
|
Chen X, Li Y, Yuan X, Yuan W, Li C, Zeng Y, Lian Y, Qiu X, Qin Y, Zhang G, Liu X, Luo C, Luo JD, Hou N. Methazolamide Attenuates the Development of Diabetic Cardiomyopathy by Promoting β-Catenin Degradation in Type 1 Diabetic Mice. Diabetes 2022; 71:795-811. [PMID: 35043173 DOI: 10.2337/db21-0506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022]
Abstract
Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes and diabetic db/db mice. However, whether MTZ has a cardioprotective effect in the setting of diabetic cardiomyopathy is not clear. We investigated the effects of MTZ in a mouse model of streptozotocin-induced type 1 diabetes mellitus (T1DM). Diabetic mice received MTZ by intragastric gavage (10, 25, or 50 mg/kg, daily for 16 weeks). In the diabetic group, MTZ significantly reduced both random and fasting blood glucose levels and improved glucose tolerance in a dose-dependent manner. MTZ ameliorated T1DM-induced changes in cardiac morphology and dysfunction. Mechanistic analysis revealed that MTZ blunted T1DM-induced enhanced expression of β-catenin. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) and adult mouse cardiomyocytes treated with high glucose or Wnt3a (a β-catenin activator). There was no significant change in β-catenin mRNA levels in cardiac tissues or NRCMs. MTZ-mediated β-catenin downregulation was recovered by MG132, a proteasome inhibitor. Immunoprecipitation and immunofluorescence analyses showed augmentation of AXIN1-β-catenin interaction by MTZ in T1DM hearts and in NRCMs treated with Wnt3a; thus, MTZ may potentiate AXIN1-β-catenin linkage to increase β-catenin degradation. Overall, MTZ may alleviate cardiac hypertrophy by mediating AXIN1-β-catenin interaction to promote degradation and inhibition of β-catenin activity. These findings may help inform novel therapeutic strategy to prevent heart failure in patients with diabetes.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yilang Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xun Yuan
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Conglin Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yue Zeng
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yuling Lian
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxia Qiu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Zhujiang Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yuan Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guiping Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiawen Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chengfeng Luo
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jian-Dong Luo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ning Hou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Qian F, Jiang X, Chai R, Liu D. The Roles of Solute Carriers in Auditory Function. Front Genet 2022; 13:823049. [PMID: 35154281 PMCID: PMC8827148 DOI: 10.3389/fgene.2022.823049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers (SLCs) are important transmembrane transporters with members organized into 65 families. They play crucial roles in transporting many important molecules, such as ions and some metabolites, across the membrane, maintaining cellular homeostasis. SLCs also play important roles in hearing. It has been found that mutations in some SLC members are associated with hearing loss. In this review, we summarize SLC family genes related with hearing dysfunction to reveal the vital roles of these transporters in auditory function. This summary could help us understand the auditory physiology and the mechanisms of hearing loss and further guide future studies of deafness gene identification.
Collapse
Affiliation(s)
- Fuping Qian
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoge Jiang
- Department of Rehabilitation Medicine, The Second People's Hospital of Nantong, Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors. Am J Cardiovasc Drugs 2022; 22:35-46. [PMID: 34189716 DOI: 10.1007/s40256-021-00486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Approximately 5 million individuals in the US are living with congestive heart failure (CHF), with 650,000 new cases being diagnosed every year. CHF has a multifactorial etiology, ranging from coronary artery disease, hypertension, valvular abnormalities and diabetes mellitus. Currently, guidelines by the American College of Cardiology advocate the use of angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, β-blockers, diuretics, aldosterone antagonists, and inotropes for the medical management of heart failure. The sodium glucose cotransporter 2 (SGLT2) inhibitors are a class of drug that have been widely used in the management of type 2 diabetes mellitus that work by inhibiting the reabsorption of glucose in the proximal convoluted tubule. Since the EMPA-REG OUTCOME trial, several studies have demonstrated the benefits of SGLT2 inhibitors in reducing cardiovascular risk related to heart failure. While the cardiovascular benefits could be explained by their ability to reduce weight, improve glycemic index and lower blood pressure, several recent trials have suggested that SGLT2 inhibitors exhibit pleiotropic effects that underlie their cardioprotective properties. These findings have led to an expansion in preclinical and clinical research aiming to understand the mechanisms by which SGLT2 inhibitors improve heart failure outcomes.
Collapse
|
12
|
Amino Acids 785, 787 of the Na +/H + Exchanger Cytoplasmic Tail Modulate Protein Activity and Tail Conformation. Int J Mol Sci 2021; 22:ijms222111349. [PMID: 34768780 PMCID: PMC8583816 DOI: 10.3390/ijms222111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane protein ubiquitously present in humans. It regulates intracellular pH by removing an intracellular proton in exchange for an extracellular sodium. It consists of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. Here, we investigated the effect of mutation of two amino acids of the regulatory tail, Ser785 and Ser787, that were similar in location and context to two amino acids of the Arabidopsis Na+/H+ exchanger SOS1. Mutation of these two amino acids to either Ala or phosphomimetic Glu did not affect surface targeting but led to a slight reduction in the level of protein expressed. The activity of the NHE1 protein was reduced in the phosphomimetic mutations and the effect was due to a decrease in Vmax activity. The Ser to Glu mutations also caused a change in the apparent molecular weight of both the full-length protein and of the cytosolic tail of NHE1. A conformational change in this region was indicated by differential trypsin sensitivity. We also found that a peptide containing amino acids 783–790 bound to several more proximal regions of the NHE1 tail in in vitro protein interaction experiments. The results are the first characterization of these two amino acids and show that they have significant effects on enzyme kinetics and the structure of the NHE1 protein.
Collapse
|
13
|
Role of Genetic Mutations of the Na +/H + Exchanger Isoform 1, in Human Disease and Protein Targeting and Activity. Mol Cell Biochem 2020; 476:1221-1232. [PMID: 33201382 DOI: 10.1007/s11010-020-03984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023]
Abstract
The mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein that is ubiquitously present in human cells. It functions to regulate intracellular pH removing an intracellular proton in exchange for one extracellular sodium and is involved in heart disease and in promoting metastasis in cancer. It is made of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. The membrane domain is thought to have 12 transmembrane segments and a large membrane-associated extracellular loop. Early studies demonstrated that in mice, disruption of the NHE1 gene results in locomotor ataxia and a phenotype of slow-wave epilepsy. Defects included a progressive neuronal degeneration. Growth and reproductive ability were also reduced. Recent studies have identified human autosomal homozygous recessive mutations in the NHE1 gene (SLC9A1) that result in impaired development, ataxia and other severe defects, and explain the cause of the human disease Lichtenstein-Knorr syndrome. Other human mutations have been identified that are stop codon polymorphisms. These cause short non-functional NHE1 proteins, while other genetic polymorphisms in the NHE1 gene cause impaired expression of the NHE1 protein, reduced activity, enhanced protein degradation or altered kinetic activation of the protein. Since NHE1 plays a key role in many human physiological functions and in human disease, genetic polymorphisms of the protein that significantly alter its function and are likely play significant roles in varying human phenotypes and be involved in disease.
Collapse
|
14
|
Riaz S, Abdulrahman N, Uddin S, Jabeen A, Gadeau AP, Fliegel L, Mraiche F. Anti-hypertrophic effect of Na +/H + exchanger-1 inhibition is mediated by reduced cathepsin B. Eur J Pharmacol 2020; 888:173420. [PMID: 32781168 DOI: 10.1016/j.ejphar.2020.173420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Previous studies have established the role of Na+/H+ exchanger isoform-1 (NHE1) and cathepsin B (Cat B) in the development of cardiomyocyte hypertrophy (CH). Both NHE1 and Cat B are activated under acidic conditions suggesting that their activities might be interrelated. The inhibition of NHE1 has been demonstrated to reduce cardiac hypertrophy but the mechanism that contributes to the anti-hypertrophic effect of NHE1 inhibition still remains unclear. H9c2 cardiomyoblasts were stimulated with Angiotensin (Ang) II in the presence and absence of N-[2-methyl-4,5-bis(methylsulphonyl)-benzoyl]-guanidine, hydrochloride (EMD, EMD 87580), an NHE1 inhibitor or CA-074Me, a Cat B inhibitor, and various cardiac hypertrophic parameters, namely cell surface area, protein content and atrial natriuretic peptide (ANP) mRNA were analyzed. EMD significantly suppressed markers of cardiomyocyte hypertrophy and inhibited Ang II stimulated Cat B protein and gene expression. Cat B is located within the acidic environment of lysosomes. Cat B proteases are released into the cytoplasm upon disintegration of the lysosomes. EMD or CA-074Me prevented the dispersal of the lysosomes induced by Ang II and reduced the ratio of LC3-II to LC3-I, a marker of autophagy. Moreover, Cat B protein expression and MMP-9 activity in the extracellular space were significantly attenuated in the presence of EMD or CA-074Me. Our study demonstrates a novel mechanism for attenuation of the hypertrophic phenotype by NHE1 inhibition that is mediated by a regression in Cat B. The inhibition of Cat B via EMD or CA-074Me attenuates the autosomal-lysosomal pathway and MMP-9 activation.
Collapse
Affiliation(s)
- Sadaf Riaz
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Hamad Medical Corporation, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ayesha Jabeen
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | | | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
15
|
Ma J, Chen Z, Ma Y, Xia Y, Hu K, Zhou Y, Chen A, Qian J, Ge J. MicroRNA‐19a attenuates hypoxia‐induced cardiomyocyte apoptosis by downregulating NHE‐1 expression and decreasing calcium overload. J Cell Biochem 2019; 121:1747-1758. [PMID: 31633225 DOI: 10.1002/jcb.29411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jiaqi Ma
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Yuanji Ma
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| |
Collapse
|
16
|
Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2019; 318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incidence of breast cancer is increasing year by year, and the pathogenesis is still unclear. Studies have shown that the high metabolism of solid tumors leads to an increase in hypoxia, glycolysis, production of lactic acid and carbonic acid, and extracellular acidification; a harsh microenvironment; and ultimately to tumor cell death. Approximately 50% of locally advanced breast cancers exhibit hypoxia and/or local hypoxia, and acid-base regulatory proteins play an important role in regulating milk secretion and maintaining mammary gland physiological function. Therefore, ion transporters have gradually become a hot topic in mammary gland and breast cancer research. This review focuses on the research progress of ion transporters in mammary glands and breast cancer. We hope to provide new targets for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Feng HZ, Jin JP. Transgenic expression of carbonic anhydrase III in cardiac muscle demonstrates a mechanism to tolerate acidosis. Am J Physiol Cell Physiol 2019; 317:C922-C931. [PMID: 31390226 DOI: 10.1152/ajpcell.00130.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrase III (CAIII) is abundant in liver, adipocytes, and skeletal muscles, but not heart. A cytosolic enzyme that catalyzes conversions between CO2 and HCO3- in the regulation of intracellular pH, its physiological role in myocytes is not fully understood. Mouse skeletal muscles lacking CAIII showed lower intracellular pH during fatigue, suggesting its function in stress tolerance. We created transgenic mice expressing CAIII in cardiomyocytes that lack endogenous CAIII. The transgenic mice showed normal cardiac development and life span under nonstress conditions. Studies of ex vivo working hearts under normal and acidotic conditions demonstrated that the transgenic and wild-type mouse hearts had similar pumping functions under normal pH. At acidotic pH, however, CAIII transgenic mouse hearts showed significantly less decrease in cardiac function than that of wild-type control as shown by higher ventricular pressure development, systolic and diastolic velocities, and stroke volume via elongating the time of diastolic ejection. In addition to the effect of introducing CAIII into cardiomyocytes on maintaining homeostasis to counter acidotic stress, the results demonstrate the role of carbonic anhydrases in maintaining intracellular pH in muscle cells as a potential mechanism to treat heart failure.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
18
|
Structural and Functional Changes in the Na +/H + Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation. Int J Mol Sci 2019; 20:ijms20102378. [PMID: 31091671 PMCID: PMC6566726 DOI: 10.3390/ijms20102378] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
The human Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane transport protein that plays an important role in pH regulation in mammalian cells. Because of the generation of protons by intermediary metabolism as well as the negative membrane potential, protons accumulate within the cytosol. Extracellular signal-regulated kinase (ERK)-mediated regulation of NHE1 is important in several human pathologies including in the myocardium in heart disease, as well as in breast cancer as a trigger for growth and metastasis. NHE1 has a N-terminal, a 500 amino acid membrane domain, and a C-terminal 315 amino acid cytosolic domain. The C-terminal domain regulates the membrane domain and its effects on transport are modified by protein binding and phosphorylation. Here, we discuss the physiological regulation of NHE1 by ERK, with an emphasis on the critical effects on structure and function. ERK binds directly to the cytosolic domain at specific binding domains. ERK also phosphorylates NHE1 directly at multiple sites, which enhance NHE1 activity with subsequent downstream physiological effects. The NHE1 cytosolic regulatory tail possesses both ordered and disordered regions, and the disordered regions are stabilized by ERK-mediated phosphorylation at a phosphorylation motif. Overall, ERK pathway mediated phosphorylation modulates the NHE1 tail, and affects the activity, structure, and function of this membrane protein.
Collapse
|
19
|
Li H, Ren C, Jiang X, Cheng C, Ruan Y, Zhang X, Huang W, Chen T, Hu C. Na+/H+ exchanger (NHE) in Pacific white shrimp (Litopenaeus vannamei): Molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis. PLoS One 2019; 14:e0212887. [PMID: 30811482 PMCID: PMC6392280 DOI: 10.1371/journal.pone.0212887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
Na+/H+ exchangers are the most common membrane proteins involved in the regulation of intracellular pH that concurrently transport Na+ into the cells and H+ out of the cells. In this study, the full-length cDNA of the Na+/H+ exchanger (NHE) from the Pacific white shrimp (Litopenaeus vannamei) was cloned. The LvNHE cDNA is 3167 bp long, contains a 5’-untranslated region (UTR) of 74 bp and a 3’-UTR of 456 bp and an open reading frame (ORF) of 2637 bp, coding for a protein of 878 amino acids with 11 putative transmembrane domains and a long cytoplasmic tail. LvNHE shows high sequence homology with mud crab NHE at the amino acid level. LvNHE mRNA was detected in the hepatopancreas, gill, eyestalk, skin, heart, intestine, muscle, brain and stomach, with the highest abundance in the intestine. In the shrimp intestinal fragment cultures exposed to gradually declining pH medium (from pH 8.0 to pH 6.4), the LvNHE mRNA expression was significantly stimulated, with the highest response when incubated in pH 7.0 medium for 6 h. To investigate the functional roles of LvNHE in pH regulation at the physiological and cellular levels, the LvNHE mRNA expression was silenced by siRNA knockdown. Upon low-pH challenge, the hemolymph pH was significantly reduced in the LvNHE mRNA knockdown shrimp. In addition, knockdown of LvNHE mRNA reduced the recovery capacity of intracellular pH in intestinal fragment cultures after acidification. Altogether, this study demonstrates the role of NHE in shrimp response to low pH stress and provides new insights into the acid/base homeostasis mechanisms of crustaceans.
Collapse
Affiliation(s)
- Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (TC); (CH)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (TC); (CH)
| |
Collapse
|
20
|
Despa S. Myocyte [Na +] i Dysregulation in Heart Failure and Diabetic Cardiomyopathy. Front Physiol 2018; 9:1303. [PMID: 30258369 PMCID: PMC6144935 DOI: 10.3389/fphys.2018.01303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
By controlling the function of various sarcolemmal and mitochondrial ion transporters, intracellular Na+ concentration ([Na+]i) regulates Ca2+ cycling, electrical activity, the matching of energy supply and demand, and oxidative stress in cardiac myocytes. Thus, maintenance of myocyte Na+ homeostasis is vital for preserving the electrical and contractile activity of the heart. [Na+]i is set by the balance between the passive Na+ entry through numerous pathways and the pumping of Na+ out of the cell by the Na+/K+-ATPase. This equilibrium is perturbed in heart failure, resulting in higher [Na+]i. More recent studies have revealed that [Na+]i is also increased in myocytes from diabetic hearts. Elevated [Na+]i causes oxidative stress and augments the sarcoplasmic reticulum Ca2+ leak, thus amplifying the risk for arrhythmias and promoting heart dysfunction. This mini-review compares and contrasts the alterations in Na+ extrusion and/or Na+ uptake that underlie the [Na+]i increase in heart failure and diabetes, with a particular emphasis on the emerging role of Na+ - glucose cotransporters in the diabetic heart.
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
The role of CD44, hyaluronan and NHE1 in cardiac remodeling. Life Sci 2018; 209:197-201. [PMID: 30089233 DOI: 10.1016/j.lfs.2018.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Cardiac remodeling, characterized by excessive extracellular matrix (ECM) remodeling, predisposes the heart to failure if left unresolved. Understanding the signaling mechanisms involved in excessive extracellular matrix (ECM) remodeling is necessary to identify the means to regress the development of cardiac remodeling and heart failure. Recently, hyaluronan (HA), a ubiquitously expressed glycosaminoglycan in the ECM, was shown to participate in tissue fibrosis and myofibroblast proliferation through interacting with its ubiquitously expressed cell-surface receptor, CD44. CD44 is a multifunctional transmembrane glycoprotein that serves as a cell-surface receptor for a number of ECM proteins. The mechanism by which the interaction between CD44-HA contributes to ECM and cardiac remodeling remains unknown. A previous study performed on a non-cardiac model showed that CD44-HA enhances Na+/H+ exchanger isoform-1 (NHE1) activity, causing ECM remodeling, HA metabolism and tumor invasion. Interestingly, NHE1 has been demonstrated to be involved in cardiac remodeling and myocardial fibrosis. In addition, it has previously been demonstrated that CD44 is upregulated in transgenic mouse hearts expressing active NHE-1. The role of CD44, HA and NHE1 and the cellular interplay of these factors in the ECM and cardiac remodeling is the focus of this review.
Collapse
|
22
|
Xue J, Zhou D, Poulsen O, Hartley I, Imamura T, Xie EX, Haddad GG. Exploring miRNA-mRNA regulatory network in cardiac pathology in Na +/H + exchanger isoform 1 transgenic mice. Physiol Genomics 2018; 50:846-861. [PMID: 30029588 DOI: 10.1152/physiolgenomics.00048.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have demonstrated that Na+/H+ exchanger isoform 1 (NHE1) is elevated in myocardial diseases and its effect is detrimental. To better understand the involvement of NHE1, we have previously studied cardiac-specific NHE1 transgenic mice and shown that these mice develop cardiac hypertrophy, interstitial fibrosis, and cardiac dysfunction. The purpose of current study was to identify microRNAs and their mRNA targets involved in NHE1-mediated cardiac injury. An unbiased high-throughput sequencing study was performed on both microRNAs and mRNAs. RNA sequencing showed that differentially expressed genes were enriched in hypertrophic cardiomyopathy pathway by Kyoto Encyclopedia of Genes and Genomes annotation in NHE1 transgenic hearts. These genes were classified as contraction defects (e.g., Myl2, Myh6, Mybpc3, and Actb), impaired intracellular Ca2+ homeostasis (e.g., SERCA2a, Ryr2, Rcan1, and CaMKII delta), and signaling molecules for hypertrophic cardiomyopathy (e.g., Itga/b, IGF-1, Tgfb2/3, and Prkaa1/2). microRNA sequencing revealed that 15 microRNAs were differentially expressed (2-fold, P < 0.05). Six of them (miR-1, miR-208a-3p, miR-199a-5p, miR-21-5p, miR-146a-5p, and miR-30c-5p) were reported to be related to cardiac pathological functions. The integrative analysis of microRNA and RNA sequencing data identified several crucial microRNAs including miR-30c-5p, miR-199a-5p, miR-21-5p, and miR-34a-5p as well as 10 of their mRNA targets that may affect the heart via NFAT hypertrophy and cardiac hypertrophy signaling. Furthermore, important microRNAs and mRNA targets were validated by quantitative PCR. Our study comprehensively characterizes the expression patterns of microRNAs and mRNAs, establishes functional microRNA-mRNA pairs, elucidates the potential signaling pathways, and provides novel insights on the mechanisms underlying NHE1-medicated cardiac injury.
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Dan Zhou
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Orit Poulsen
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Iain Hartley
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Toshihiro Imamura
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Edward X Xie
- Department of Pediatrics, University of California San Diego , La Jolla, California
| | - Gabriel G Haddad
- Department of Pediatrics, University of California San Diego , La Jolla, California.,Departments of Neurosciences, University of California San Diego , La Jolla, California.,The Rady Children's Hospital , San Diego, California
| |
Collapse
|
23
|
A novel SLC9A1 mutation causes cerebellar ataxia. J Hum Genet 2018; 63:1049-1054. [DOI: 10.1038/s10038-018-0488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 07/01/2018] [Indexed: 11/08/2022]
|
24
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
25
|
Abdulrahman N, Jaspard-Vinassa B, Fliegel L, Jabeen A, Riaz S, Gadeau AP, Mraiche F. Na +/H + exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase. Physiol Genomics 2018; 50:332-342. [PMID: 29473817 DOI: 10.1152/physiolgenomics.00133.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na+/H+ exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.
Collapse
Affiliation(s)
| | | | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| | | | - Sadaf Riaz
- College of Pharmacy, Qatar University , Doha , Qatar
| | - Alain-Pierre Gadeau
- University of Bordeaux, INSERM, Biology of Cardiovascular Disease, U1034, Pessac , France
| | | |
Collapse
|
26
|
Soleiman AA, Thameem F, Khan I. Mechanism of down regulation of Na-H exchanger-2 in experimental colitis. PLoS One 2017; 12:e0176767. [PMID: 28493993 PMCID: PMC5426621 DOI: 10.1371/journal.pone.0176767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Na-H exchanger [NHE] performs an electroneutral uptake of NaCl and water from the lumen of the gastrointestinal tract. There are several distinct NHE isoforms, some of which show an altered expression in the inflammatory bowel diseases (IBD). In this study, we examined a role of NHE-2 in experimental colitis. METHODS Colitis was induced in male Sprague-Dawley rats by intra-rectal administration of trinitrobenzenesulphonic acid (TNBS). On day 6 post-TNBS, the animals were sacrificed, colonic and ileal segments were taken out, cleaned with phosphate buffered saline and used in this study. RESULTS There was a significant decrease in the level of NHE-2 protein as measured by ECL western blot analysis and confocal immunofluorescence microscopy. The levels of NHE-2 mRNA and heteronuclear RNA measured by an end-point RT-PCR and a real time PCR were also decreased significantly in the inflamed colon. However, there was no change in the level of NHE-2 protein in response to in vitro TNF-α treatment of uninflamed rat colonic segment. These changes were selective and localized to the colon as actin, an internal control, remained unchanged. Confocal immunofluorescence microscopy revealed co-localization of NHE-2 and NHE-3 in the brush borders of colonic epithelial cells. Inflamed colon showed a significant increase in myeloperoxidase activity and colon hypertrophy. In addition, there was a significant decrease in body weight and goblet cells' mucin staining in the TNBS treated colon. These changes were not conspicuous in the non-inflamed ileum. CONCLUSIONS These findings demonstrate suppression of NHE-2 expression on the brush borders in the colonic epithelial cells which is regulated transcriptionally. However a role of TNF-α in the regulation of NHE-2 is discounted in the present model of colitis. This decrease in the NHE-2 expression will lead to a loss of electrolyte and water uptake thus contributing to the symptoms associated with IBD.
Collapse
Affiliation(s)
- Amal Ali Soleiman
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Farook Thameem
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Islam Khan
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- * E-mail:
| |
Collapse
|
27
|
Amith SR, Vincent KM, Wilkinson JM, Postovit LM, Fliegel L. Defining the Na +/H + exchanger NHE1 interactome in triple-negative breast cancer cells. Cell Signal 2016; 29:69-77. [PMID: 27751915 DOI: 10.1016/j.cellsig.2016.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
Mounting evidence supports a major role for the Na+/H+ exchanger NHE1 in cancer progression and metastasis. NHE1 is hyperactive at the onset of oncogenic transformation, resulting in intracellular alkalinization and extracellular microenvironmental acidification. These conditions promote invasion and facilitate metastasis. However, the signal pathways governing the regulation of exchanger activity are still unclear. This is especially important in the aggressively metastatic, triple-negative basal breast cancer subtype. We used affinity chromatography followed by mass spectrometry to identify novel and putative interaction partners of NHE1 in MDA-MB-231 triple-negative breast cancer cells. NHE1 associated with several types of proteins including cytoskeletal proteins and chaperones. We validated protein interactions by co-immunoprecipitation for: 14-3-3, AKT, α-enolase, CHP1, HSP70 and HSP90. Additionally, we used The Cancer Genome Atlas (TCGA) to study NHE1 gene expression in primary patient breast tumours versus adjacent normal tissue. NHE1 expression was elevated in breast tumour samples and, when broken down by breast cancer subtype, NHE1 gene expression was significantly lower in tumours of the basal subtype compared to luminal and HER2+ subtypes. Reverse phase protein array (RPPA) analysis showed that NHE1 expression positively correlated with p90RSK expression in basal, but not luminal, primary tumours. Other proteins were negatively correlated with NHE1 expression in basal breast cancer tumours. Taken together, our data provides the first insight into the signalling molecules that form the NHE1 interactome in triple-negative breast cancer cells. These results will focus our search for novel targeted therapies.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Krista Marie Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada.
| | - Jodi Marie Wilkinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Lynne Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
28
|
Li X, Augustine A, Chen S, Fliegel L. Stop Codon Polymorphisms in the Human SLC9A1 Gene Disrupt or Compromise Na+/H+ Exchanger Function. PLoS One 2016; 11:e0162902. [PMID: 27636896 PMCID: PMC5026351 DOI: 10.1371/journal.pone.0162902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The NHE1 isoform of the mammalian Na+/H+ exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in mammalian cells by removing one intracellular proton in exchange for one extracellular sodium. Deletion of the NHE1 gene (SLC9A1) affects the growth and motor ability of mice and humans but mutations and polymorphisms of the gene are only beginning to be characterized. NHE1 has a cytosolic C-terminal regulatory tail of approximately 315 amino acids and a 500 amino acid membrane domain. We examined the functional effects of three human stop codon mutations at amino acids 321, 449 and 735 in comparison with a mutant that had a shortened tail region (543 stop codon). The short mutants, 321, 449 and 543 stop codon mutant proteins, lost NHE1 activity and expression, and did not target to the plasma membrane. Protein for these short mutants was more rapidly degraded than the wild type and 735 ending proteins. The 735 terminating mutant, with the membrane domain and much of the cytosolic tail, had reduced protein expression and activity. The results demonstrate that early stop codon polymorphisms have significant and deleterious effects on the activity of the SLC9A1 protein product. The 735-NHE1 mutant, without the last 80 amino acids, had more minor defects. Surprisingly, retention of a proximal 43 amino acids adjacent to the membrane domain did little to maintain NHE1 expression, targeting and activity.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Aruna Augustine
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shuo Chen
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
- * E-mail:
| |
Collapse
|
29
|
Li X, Augustine A, Sun D, Li L, Fliegel L. Activation of the Na +/H + exchanger in isolated cardiomyocytes through β-Raf dependent pathways. Role of Thr 653 of the cytosolic tail. J Mol Cell Cardiol 2016; 99:65-75. [PMID: 27555478 DOI: 10.1016/j.yjmcc.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that is a key regulator of intracellular pH in isolated cardiomyocytes. A 500 amino acid membrane domain removes protons and is regulated by a 315 amino acid cytosolic domain. In the myocardium, aberrant regulation of NHE1 contributes to ischemia reperfusion damage and to heart hypertrophy. We examined mechanisms of regulation of NHE1 in the myocardium by endothelin and β-Raf. Endothelin stimulated NHE1 activity and activated Erk-dependent pathways. Inhibition of β-Raf reduced NHE1 activity and Erk-pathway activation. We demonstrated that myocardial β-Raf binds to the C-terminal 182 amino acids of the NHE1 protein and that β-Raf is associated with NHE1 in intact cardiomyocytes. NHE1 was phosphorylated in vivo and the protein kinase inhibitor sorafenib reduced NHE1 phosphorylation levels. Immunoprecipitates of β-Raf from cardiomyocytes phosphorylated the C-terminal 182 amino acids of NHE1 and mass spectrometry analysis showed that amino acid Thr653 was phosphorylated. Mutation of this amino acid to Ala resulted in defective activity while mutation to Asp restored the activity. The results demonstrate that Thr653 is an important regulatory amino acid of NHE1 that is activated through β-Raf dependent pathways by phosphorylation either directly or indirectly by β-Raf, and this affects NHE1 activity.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Aruna Augustine
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Difei Sun
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
30
|
Amith SR, Wilkinson JM, Baksh S, Fliegel L. The Na⁺/H⁺ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget 2015; 6:1262-75. [PMID: 25514463 PMCID: PMC4359231 DOI: 10.18632/oncotarget.2860] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/25/2014] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of Na+ /H+ exchanger isoform one (NHE1) activity is a hallmark of cells undergoing tumorigenesis and metastasis, the leading cause of patient mortality. The acidic tumor microenvironment is thought to facilitate the development of resistance to chemotherapy drugs and to promote extracellular matrix remodeling leading to metastasis. Here, we investigated NHE1 as a co-adjuvant target in paclitaxel chemotherapy of metastatic breast cancer. We generated a stable NHE1-knockout of the highly invasive, triple-negative, MDA-MB-231 breast cancer cells. The NHE1-knockout cells proliferated comparably to parental cells, but had markedly lower rates of migration and invasion in vitro. In vivo xenograft tumor growth in athymic nude mice was also dramatically decreased compared to parental MDA-MB-231 cells. Loss of NHE1 expression also increased the susceptibility of knockout cells to paclitaxel-mediated cell death. NHE1 inhibition, in combination with paclitaxel, resulted in a dramatic decrease in viability, and migratory and invasive potential of triple-negative breast cancer cells, but not in hormone receptor-positive, luminal MCF7 cells. Our data suggest that NHE1 is critical in triple-negative breast cancer metastasis, and its chemical inhibition boosts the efficacy of paclitaxel in vitro, highlighting NHE1 as a novel, potential co-adjuvant target in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Oncology, Alberta Inflammatory Bowel Disease Consortium, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Liu Y, Basu A, Li X, Fliegel L. Topological analysis of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [DOI: 10.1016/j.bbamem.2015.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Carreño JE, Verdugo FJ, Contreras F, Montellano FA, Veloso S, Schalper KA, Sandoval M, Villanueva S, Marusic E, Irarrazabal CE. Spironolactone inhibits the activity of the Na+/H+exchanger in the aorta of mineralocorticoid-induced hypertensive rats. J Renin Angiotensin Aldosterone Syst 2015; 16:1225-31. [DOI: 10.1177/1470320315587193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Juan E Carreño
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Fernando J Verdugo
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Felipe Contreras
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Felipe A Montellano
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Sebastian Veloso
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | | | - Mauricio Sandoval
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Sandra Villanueva
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Elisa Marusic
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| | - Carlos E Irarrazabal
- Laboratory of Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Chile
| |
Collapse
|
33
|
Mohamed IA, Gadeau AP, Fliegel L, Lopaschuk G, Mlih M, Abdulrahman N, Fillmore N, Mraiche F. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiomyocyte hypertrophy. PLoS One 2015; 10:e0123318. [PMID: 25884410 PMCID: PMC4401699 DOI: 10.1371/journal.pone.0123318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1.
Collapse
Affiliation(s)
| | - Alain-Pierre Gadeau
- University of Bordeaux, Adaptation Cardiovasculaire à L'ischémie, UMR1034, Pessac, France
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Mlih
- College of Pharmacy, Qatar University, Doha, Qatar
| | | | - Natasha Fillmore
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatima Mraiche
- College of Pharmacy, Qatar University, Doha, Qatar
- * E-mail:
| |
Collapse
|
34
|
Na+/H+ exchanger isoform 1 induced cardiomyocyte hypertrophy involves activation of p90 ribosomal s6 kinase. PLoS One 2015; 10:e0122230. [PMID: 25830299 PMCID: PMC4382094 DOI: 10.1371/journal.pone.0122230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/10/2015] [Indexed: 01/30/2023] Open
Abstract
Studies using pharmacological and genetic approaches have shown that increased activity/expression of the Na+/H+ exchanger isoform 1 (NHE1) play a critical role in the pathogenesis of cardiac hypertrophy. Despite the importance of NHE1 in cardiac hypertrophy, severe cerebrovascular side effects were associated with the use of NHE1 inhibitors when administered to patients with myocardial infarctions. p90 ribosomal S6 Kinase (RSK), a downstream regulator of the mitogen-activated protein kinase pathway, has also been implicated in cardiac hypertrophy. We hypothesized that RSK plays a role in the NHE1 induced cardiomyocyte hypertrophic response. Infection of H9c2 cardiomyoblasts with the active form of the NHE1 adenovirus induced hypertrophy and was associated with an increase in the phosphorylation of RSK (P<0.05). Parameters of hypertrophy such as cell area, protein content and atrial natriuretic mRNA expression were significantly reduced in H9c2 cardiomyoblasts infected with active NHE1 in the presence of dominant negative RSK (DN-RSK) (P<0.05). These results confirm that NHE1 lies upstream of RSK. Increased phosphorylation and activation of GATA4 at Ser261 was correlated with increased RSK phosphorylation. This increase was reversed upon inhibition of RSK or NHE1. These findings demonstrate for the first time that the NHE1 mediated hypertrophy is accounted for by increased activation and phosphorylation of RSK, which subsequently increased the phosphorylation of GATA4; eventually activating fetal gene transcriptional machinery.
Collapse
|
35
|
Li X, Fliegel L. A novel human mutation in the SLC9A1 gene results in abolition of Na+/H+ exchanger activity. PLoS One 2015; 10:e0119453. [PMID: 25760855 PMCID: PMC4356549 DOI: 10.1371/journal.pone.0119453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
36
|
Mlih M, Abdulrahman N, Gadeau AP, Mohamed IA, Jaballah M, Mraiche F. Na(+)/H (+) exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4. Mol Cell Biochem 2015; 404:211-20. [PMID: 25758355 DOI: 10.1007/s11010-015-2380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN), a multifunctional glycophosphoprotein, has been reported to contribute to the development and progression of cardiac remodeling and hypertrophy. Cardiac-specific OPN knockout mice were protected against hypertrophy and fibrosis mediated by Ang II. Recently, transgenic mice expressing the active form of the Na(+)/H(+) exchanger isoform 1 (NHE1) developed spontaneous hypertrophy in association with elevated levels of OPN. The mechanism by which active NHE1 induces OPN expression and contributes to the hypertrophic response remains unclear. To validate whether expression of the active form of NHE1 induces OPN, cardiomyocytes were stimulated with Ang II, a known inducer of both OPN and NHE1. Ang II induced hypertrophy and increased OPN protein expression (151.6 ± 28.19 %, P < 0.01) and NHE1 activity in H9c2 cardiomyoblasts. Ang II-induced hypertrophy and OPN protein expression were regressed in the presence of an NHE1 inhibitor, EMD 87580, or a calcineurin inhibitor, FK506. In addition, our results indicated that activation of NHE1-induced NFAT3 translocation into the nucleus and a significant activation of the transcription factor Gata4 (NHE1: 149 ± 28 % of control, P < 0.05). NHE1-induced activation of Gata4 was inhibited by FK506. In summary, our results suggest that activation of NHE1 induces hypertrophy through the activation of NFAT3/Gata4 and OPN expression.
Collapse
Affiliation(s)
- Mohamed Mlih
- College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | | | | | | | | |
Collapse
|
37
|
Li X, Ma Y, Fliegel L. Functional role of arginine 425 in the mammalian Na+/H+ exchanger. Biochem Cell Biol 2014; 92:541-6. [DOI: 10.1139/bcb-2014-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na+/H+ exchanger isoform 1 (NHE1) is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium ion. Critical transmembrane segments of Na+/H+ exchangers have discontinuous transmembrane helices, which result in a dipole within the membrane. Amino acid R425 has been suggested to play an important role in neutralizing one such helix dipole. To investigate this hypothesis, R425 was mutated to alanine, glutamine, histidine, or lysine and the mutant NHE1 proteins were expressed and characterized in NHE1-deficient cells. The R425A and R425E mutants exhibited complete loss of expression of mature, fully glycosylated NHE1, reduced expression overall, and greatly reduced cell surface targeting. The cell surface targeting, expression, and activity of the R425H and R425K mutant proteins were also impaired, though residual NHE1 activity remained. When reduced targeting and expression were accounted for, the R425H and R425K mutant proteins had activity similar to that of the wild-type protein. The results suggest that R425 is critical for NHE1 expression, targeting, and activity and that replacement with another basic residue can rescue activity. The findings are consistent with a role for R425 in both neutralizing a helix dipole and maintaining NHE1 structure and function.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Yike Ma
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
38
|
Odunewu-Aderibigbe A, Fliegel L. The Na+/H+exchanger and pH regulation in the heart. IUBMB Life 2014; 66:679-85. [DOI: 10.1002/iub.1323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Larry Fliegel
- Department of Biochemistry; University of Alberta; Edmonton AB Canada
| |
Collapse
|
39
|
Alves C, Ma Y, Li X, Fliegel L. Characterization of human mutations in phosphorylatable amino acids of the cytosolic regulatory tail of SLC9A1. Biochem Cell Biol 2014; 92:524-9. [PMID: 25162926 DOI: 10.1139/bcb-2014-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The NHE1 isoform of the mammalian Na(+)/H(+) exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in cells by removing one intracellular proton in exchange for one extracellular sodium. Genetic defects in NHE1 have been shown to affect the growth and motor ability of mice, but mutations in humans have not been studied. NHE1 has a cytosolic C-terminal regulatory domain of approximately 300 amino acids. We investigated the functional effects of two human mutations found in the regulatory phosphorylatable amino acids Ser(703) and Ser(771). A Ser703Pro mutant protein had essentially the same activity, expression, and targeting as the wild type NHE1 protein. In contrast, the Ser771Pro protein had reduced activity and expression of NHE1 protein, though cell surface targeting was normal. In dual pulse assays the Ser771Pro mutant was not further activated by sustained intracellular acidosis but displayed an unusual activation by brief pulses of acidosis. The results demonstrate that the Ser771Pro human genetic mutation has significant and detrimental physiological effects on the activity of the NHE1 protein, SLC9A1.
Collapse
Affiliation(s)
- Claudia Alves
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|
40
|
Alves C, Lee BL, Sykes BD, Fliegel L. Structural and Functional Analysis of the Transmembrane Segment Pair VI and VII of the NHE1 Isoform of the Na+/H+ Exchanger. Biochemistry 2014; 53:3658-70. [DOI: 10.1021/bi500392y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claudia Alves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian L. Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
41
|
Abstract
We examined substrate-induced conformational changes in MjNhaP1, an archaeal electroneutral Na(+)/H(+)-antiporter resembling the human antiporter NHE1, by electron crystallography of 2D crystals in a range of physiological pH and Na(+) conditions. In the absence of sodium, changes in pH had no major effect. By contrast, changes in Na(+) concentration caused a marked conformational change that was largely pH-independent. Crystallographically determined, apparent dissociation constants indicated ∼10-fold stronger Na(+) binding at pH 8 than at pH 4, consistent with substrate competition for a common ion-binding site. Projection difference maps indicated helix movements by about 2 Å in the 6-helix bundle region of MjNhaP1 that is thought to contain the ion translocation site. We propose that these movements convert the antiporter from the proton-bound, outward-open state to the Na(+)-bound, inward-open state. Oscillation between the two states would result in rapid Na(+)/H(+) antiport. DOI: http://dx.doi.org/10.7554/eLife.01412.001.
Collapse
Affiliation(s)
- Cristina Paulino
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | |
Collapse
|
42
|
Kant R, Hu Z, Malhotra JK, Krogh-Madsen T, Christini DJ, Heerdt PM, Abbott GW. NHE isoform switching and KChIP2 upregulation in aging porcine atria. PLoS One 2014; 8:e82951. [PMID: 24376615 PMCID: PMC3871617 DOI: 10.1371/journal.pone.0082951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Aging increases the risk of cardiac pathologies including atrial fibrillation and can alter myocardial responsiveness to therapeutic agents. Here, seeking molecular correlates of myocardial aging processes, we performed global “whole transcript” analysis of 25,388 genes using 572,667 probes to compare the left atrial (LA) transcriptomes of young adult (9 months old) versus elderly (10 years old) female swine. NHE2 (>9-fold) and KChIP2 (3.8-fold) exhibited the highest aging-related expression increases. Real-time qPCR recapitulated these findings and indicated a 50% decrease in LA NHE1, a twofold increase in right atrial KChIP2, but no significant changes for these transcripts in either ventricle. Notably, even in young adult pigs, NHE2 transcript was detectable and enriched in the atria over the ventricles. NHE1, the recognized cardiac isoform of the sodium hydrogen exchanger, has proven a compelling but clinically disappointing therapeutic target with respect to reperfusion arrhythmias. Our data challenge the dogma that NHE1 is alone in the myocardium and suggest that NHE2 could negatively impact the pharmacological responsiveness of atrial tissue to NHE1-specific inhibitors. KChIP2 is a cytosolic β subunit essential for generation of Ito. The increased KChIP2 expression we observed with aging substantially shortened in silico atrial myocyte action potential duration, a predisposing factor in atrial fibrillation. Consistent with this, 4/5 elderly swine sustained pacing-induced AF≥15 s after cessation of stimulation, compared to 0/3 young swine. Our findings uncover potential molecular bases for increased arrhythmogenicity and reduced pharmacologic efficacy in the aging atrium, in a large animal model of human cardiac physiology.
Collapse
Affiliation(s)
- Ritu Kant
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Zhaoyang Hu
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Jaideep K. Malhotra
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Trine Krogh-Madsen
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - David J. Christini
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul M. Heerdt
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Carbonic anhydrases (CAs) have not only been identified as ubiquitous enzymes catalyzing the fast reversible hydration of carbon dioxide to generate or consume protons and bicarbonate, but also as intra- and extracellular proteins, which facilitate transport function of many acid/base transporting membrane proteins, coined 'transport metabolon'. Functional interaction between CAs and acid/base transporters, such as chloride/bicarbonate exchanger (AE), sodium-bicarbonate cotransporter (NBC) and sodium/hydrogen exchanger (NHE) has been shown to require both catalytic CA activity as well as direct binding of the enzyme to specific sites on the transporter. In contrast, functional interaction between different CA isoforms and lactate-proton-cotransporting monocarboxylate transporters (MCT) has been found to be isoform-specific and independent of CA catalytic activity, but seems to require an intramolecular proton shuttle within the enzyme. In this chapter, we review the various types of interactions between acid/base-coupled membrane carriers and different CA isoforms, as studied in vitro, in intact Xenopus oocytes, and in various mammalian cell types. Furthermore, we discuss recent findings that indicate the significance of these 'transport metabolons' for normal cell functions.
Collapse
|
44
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
45
|
Madonna R, De Caterina R. Sodium-hydrogen exchangers (NHE) in human cardiovascular diseases: interfering strategies and their therapeutic applications. Vascul Pharmacol 2013; 59:127-30. [PMID: 24140414 DOI: 10.1016/j.vph.2013.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/06/2013] [Indexed: 11/29/2022]
Abstract
Sodium-hydrogen exchangers (NHE) are among the main regulators of cell volume and intracellular concentration of hydrogen and sodium ions. By indirectly affecting sodium/calcium exchange across the plasma membrane, NHE can also influence the intracellular concentration of calcium. Excess activation of NHE or inappropriate sodium extrusion due to failure of ATP-dependent Na(+)/K(+) transport system can be deleterious during cardiac or peripheral organ ischemia. Besides being responsible for the regulation of intracellular pH and sodium-calcium inward currents, NHE isoform 1 (NHE-1), which is predominantly expressed in the cardiovascular system, influences the tone of the vessel wall in response to a variety of stimuli, including hypertonic stress. Because of the extensive involvement of NHE-1 in cardiac myocyte contracture and necrosis, stunning, reperfusion arrhythmias, as well as hypertension and myocardial diseases such as diabetic cardiomyopathy, efforts have been made in developing inhibitors of this transporter. We here review the biology and regulation of NHE, focusing on current knowledge of the role of NHE-1 as a potential target in the development of novel compounds that could play a role in cardiovascular homeostasis, both in physiological and pathological conditions.
Collapse
|
46
|
Feger BJ, Starnes JW. Exercise alters the regulation of myocardial Na(+)/H(+) exchanger-1 activity. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1182-9. [PMID: 24049114 DOI: 10.1152/ajpregu.00228.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myocardial Na(+)/H(+) exchanger-1 (NHE1) plays a major role in regulation of intracellular pH, and its upregulation has been implicated in increased ischemia-reperfusion injury and other pathologies. Hydrogen peroxide (H2O2) increases NHE1 activity acutely via ERK1/2 signaling. Chronic strenuous exercise upregulates NHE1 in skeletal muscle, but we hypothesize this will not occur in the heart, because exercise creates a cardioprotective phenotype. NHE1 activity and its regulation by H2O2 were examined at physiological pH using isolated cardiomyocytes from female Sprague-Dawley rats exercised on a treadmill for 5 wk (E; n = 11). Compared with sedentary (S; n = 15), E displayed increases (P < 0.05) in heart-to-body weight ratio (6.8%) and plantaris mitochondria content (89%). NHE1 activity (acid efflux rate following an acid load) was 209% greater in E (0.65 ± 0.12 vs. 2.01 ± 0.29 fmol/min). The difference was attributed primarily to greater cell volume (22.2 ± 0.6 vs. 34.3 ± 1.1 pl) and intracellular pH-buffering capacity (33.94 ± 1.59 vs. 65.82 ± 5.20 mM/pH unit) of E myocytes. H2O2 stimulation (100 μM) raised NHE1 activity significantly less in E (45%) than S (167%); however, activity remained 185% greater in E. ERK1/2 inhibition abrogated the increases. H2O2-stimulated ERK1/2 phosphorylation levels normalized to total ERK1/2 were similar between groups. Content of NHE1 and activities of H2O2 scavengers were also similar. We observed that intracellular pH-buffering capacity differences between groups became progressively less with declining pH, which may be an exercise-induced cardioprotective adaptation to lower NHE1 activity during certain pathological situations. We conclude that strenuous endurance exercise increases myocardial NHE1 activity at physiological pH, which would likely enhance cardiac performance under physiological conditions.
Collapse
Affiliation(s)
- Bryan J Feger
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina
| | | |
Collapse
|
47
|
Structural and functional insights into the cardiac Na+/H+ exchanger. J Mol Cell Cardiol 2013; 61:60-7. [DOI: 10.1016/j.yjmcc.2012.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022]
|
48
|
Loqman MY, Bush PG, Farquharson C, Hall AC. Suppression of mammalian bone growth by membrane transport inhibitors. J Cell Biochem 2013; 114:658-68. [PMID: 23059814 DOI: 10.1002/jcb.24408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022]
Abstract
Bone lengthening during skeletal growth is driven primarily by the controlled enlargement of growth plate (GP) chondrocytes. The cellular mechanisms are unclear but membrane transporters are probably involved. We investigated the role of the Na(+)/H(+) antiporter (NHE1) and anion exchanger (AE2) in bone lengthening and GP chondrocyte hypertrophy in Sprague-Dawley 7-day-old rat (P7) bone rudiments using the inhibitors EIPA (5-(N-ethyl-N-isopropyl)amiloride) and DIDS (4,4-diidothiocyano-2,2-stilbenedisulphonate), respectively. We have also determined cell-associated levels of these transporters along the GP using fluorescent immunohistochemistry (FIHC). Culture of bones with EIPA or DIDS inhibited rudiment growth (50% at approx. 250 and 25 µM, respectively). Both decreased the size of the hypertrophic zone (P < 0.05) but had no effect on overall length or cell density of the GP. In situ chondrocyte volume in proliferative and hypertrophic zones was decreased (P < 0.01) with EIPA but not DIDS. FIHC labeling of NHE1 was relatively high and constant along the GP but declined steeply in the late hypertrophic zone. In contrast, AE2 labeling was relatively low in proliferative zone cells but increased (P < 0.05) reaching a maximum in the early hypertrophic zone, before falling rapidly in the late hypertrophic zone suggesting AE2 might regulate the transition phase of chondrocytes between proliferative and hypertrophic zones. The inhibition of bone growth by EIPA may be due to a reduction to chondrocyte volume set-point. However the effect of DIDS was unclear but could result from inhibition of AE2 and blocking of the transition phase. These results demonstrate that NHE1 and AE2 are important regulators of bone growth.
Collapse
Affiliation(s)
- Mohamad Y Loqman
- Centre for Integrative Physiology, School of Biomedical Sciences, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | | | | | | |
Collapse
|
49
|
Structural changes in the C-terminal regulatory region of the Na⁺/H⁺ exchanger mediate phosphorylation induced regulation. J Mol Cell Cardiol 2013; 61:153-63. [PMID: 23602949 DOI: 10.1016/j.yjmcc.2013.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/21/2013] [Accepted: 04/09/2013] [Indexed: 11/23/2022]
Abstract
The Na(+)/H(+) exchanger isoform 1 (NHE1) is a plasma membrane pH regulatory protein that removes one intracellular H(+) in exchange for an extracellular Na(+). NHE1 is regulated by phosphorylation of the cytoplasmic regulatory region and amino acids Ser(770) and Ser(771) of the regulatory domain are necessary for activation by sustained intracellular acidosis. The phosphomimetic mutations (S770D/S771D) resulted in an activated form of the protein. Immunoprecipitation of full length NHE1 protein showed that the phosphomimetic mutant had increased sensitivity to digestion with trypsin indicating a conformational change. Tryptic digestion of purified C-terminal regulatory region showed that the S770D/S771D mutation altered sensitivity to trypsin digestion. Wild type and phosphomimetic purified C-terminal region (577-815) of human NHE1 were compared and tryptophan fluorescence indicated that there were pH-dependent differences in the conformation of the proteins. Native polyacrylamide gel electrophoresis demonstrated that the phosphomimetic mutant had a more compact structure. Bottom-up hydrogen/deuterium exchange mass spectrometry demonstrated that a peptide fragment containing the phosphomimetic mutations became strongly stabilized relative to the wild type protein. Overall, the results suggested that phosphorylation of S770/S771 changes the conformation of the C-terminal regulatory region in a pH-dependent manner, resulting in a more compact region that affects NHE1 activity. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
|
50
|
Soliman D, Wang L, Hamming KSC, Yang W, Fatehi M, Carter CC, Clanachan AS, Light PE. Late sodium current inhibition alone with ranolazine is sufficient to reduce ischemia- and cardiac glycoside-induced calcium overload and contractile dysfunction mediated by reverse-mode sodium/calcium exchange. J Pharmacol Exp Ther 2012; 343:325-32. [PMID: 22879384 DOI: 10.1124/jpet.112.196949] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Excessive reverse-mode (RM) sodium/calcium exchanger 1.1 (NCX1.1) activity, resulting from intracellular sodium accumulation caused by reduced Na+/K+-ATPase activity, increased Na-H exchanger 1 activity. The induction of the voltage-gated sodium channel late current component (late INa), is a major pathway for intracellular calcium (Ca2+i) loading in cardiac ischemia-reperfusion (IR) injury and cardiac glycoside toxicity. Inhibition of late INa with the antianginal agent ranolazine is protective in models of IR injury and cardiac glycoside toxicity. However, whether inhibition of late INa alone is sufficient to provide maximal protection or additional inhibition of RM NCX1.1 provides further benefit remains to be determined conclusively. Therefore, the effects of ranolazine were compared with the INa inhibitor lidocaine in models of IR injury and ouabain toxicity, RM NCX1.1-mediated Ca2+ overload, and patch-clamp assays of RM NCX1.1 currents. Ranolazine and lidocaine (10 μM) similarly reduced Ca2+i overload and improved left ventricle work recovery in whole-heart models of IR injury or exposure to ouabain (80 μM). Ranolazine (10 μM), but not lidocaine (10 μM), reduced RM NCX1.1-mediated Ca2+i overload in ventricular myocytes. Furthermore, ranolazine inhibited RM NCX1.1 currents (IC50 1.7 μM), without affecting forward mode currents, revealing that ranolazine has novel RM NCX1.1 inhibitory actions. However, because lidocaine provides similar protection to ranolazine in whole-heart models but does not inhibit RM NCX1.1, we conclude that induction of late INa is upstream of RM NCX1.1 activity and selective inhibition of late INa alone is sufficient to reduce Ca2+i overload and contractile dysfunction in IR injury and cardiac glycoside toxicity.
Collapse
Affiliation(s)
- Daniel Soliman
- Cardiovascular Research Centre, Department of Pharmacology, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | | | | | | | | | | | | | | |
Collapse
|