1
|
Deng M, Ding H, Zhou Y, Qi G, Gan J. Cancer metastasis to the bone: Mechanisms and animal models (Review). Oncol Lett 2025; 29:221. [PMID: 40103600 PMCID: PMC11916653 DOI: 10.3892/ol.2025.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
The majority of cancer-related deaths result from tumor metastasis, with bone metastasis occurring in almost all types of malignant tumors. Understanding the mechanism by which tumors metastasize to bone is critical for the identification of novel therapeutic targets. A large amount of research has been carried out using animal models, and these models have been crucial in advancing the fundamental understanding of cancer. However, current models are limited; although they can mimic specific stages of the metastatic process, they are not able to replicate the entire process from tumorigenesis to bone metastasis. The present review describes the molecular changes that occur in the intraosseous microenvironment of bone metastases, including osteolytic and osteoblastic types, and summarizes advancements in animal models of bone metastasis.
Collapse
Affiliation(s)
- Meimei Deng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Hao Ding
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuru Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
2
|
Schirmer U, Schneider SA, Khromov T, Bremmer F, Schminke B, Schliephake H, Liefeith K, Brockmeyer P. Sclerostin Alters Tumor Cell Characteristics of Oral Squamous Cell Carcinoma and May Be a Key Player in Local Bone Invasion. Cells 2024; 13:137. [PMID: 38247829 PMCID: PMC10814349 DOI: 10.3390/cells13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Localized jawbone invasion is a milestone in the progression of oral squamous cell carcinoma (OSCC). The factors that promote this process are not well understood. Sclerostin is known to be involved in bone metabolism and there are preliminary reports of its involvement in bone tumors and bone metastasis. To identify a possible involvement of sclerostin in the bone invasion process of OSCC, sclerostin expression was analyzed in vitro in two different human OSCC tumor cell lines by quantitative real-time polymerase chain reaction (qRT-PCR), and the effect of recombinant human (rh)-sclerostin treatment on tumor cell capabilities was evaluated using proliferation, migration, and invasion assays. Undifferentiated human mesenchymal stem cells (hMSCs) were osteogenically differentiated and co-cultured with OSCC tumor cells to demonstrate potential interactions and migration characteristics. Sclerostin expression was evaluated in clinical cases by immunohistochemistry at the OSCC-jawbone interface in a cohort of 15 patients. Sclerostin expression was detected in both OSCC tumor cell lines in vitro and was also detected at the OSCC-jawbone interface in clinical cases. Tumor cell proliferation rate, migration and invasion ability were increased by rh-sclerostin treatment. The migration rate of tumor cells co-cultured with osteogenically differentiated hMSCs was increased. The results presented are the first data suggesting a possible involvement of sclerostin in the bone invasion process of OSCC, which deserves further investigation and may be a potential approach for drug-based tumor therapy.
Collapse
Affiliation(s)
- Uwe Schirmer
- Institute for Bioprocessing and Analytical Measurement Techniques, D-37308 Heiligenstadt, Germany; (U.S.); (S.A.S.); (K.L.)
| | - Sina Allegra Schneider
- Institute for Bioprocessing and Analytical Measurement Techniques, D-37308 Heiligenstadt, Germany; (U.S.); (S.A.S.); (K.L.)
| | - Tatjana Khromov
- Department of Clinical Chemistry, University Medical Center Goettingen, D-37075 Goettingen, Germany;
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, D-37075 Goettingen, Germany;
| | - Boris Schminke
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, D-37075 Goettingen, Germany; (B.S.); (H.S.)
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, D-37075 Goettingen, Germany; (B.S.); (H.S.)
| | - Klaus Liefeith
- Institute for Bioprocessing and Analytical Measurement Techniques, D-37308 Heiligenstadt, Germany; (U.S.); (S.A.S.); (K.L.)
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, D-37075 Goettingen, Germany; (B.S.); (H.S.)
| |
Collapse
|
3
|
Zhang K, Ogando C, Filip A, Zhang T, Horton JA, Soman P. In vitromodel to study confined osteocyte networks exposed to flow-induced mechanical stimuli. Biomed Mater 2022; 17:10.1088/1748-605X/aca37c. [PMID: 36384043 PMCID: PMC10642715 DOI: 10.1088/1748-605x/aca37c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes are considered the primary mechanical sensor in bone tissue and orchestrate the coupled bone remodeling activity of adjacent osteoblast and osteoclast cells.In vivoinvestigation of mechanically induced signal propagation through networks of interconnected osteocytes is confounded by their confinement within the mineralized bone matrix, which cannot be modeled in conventional culture systems. In this study, we developed a new model that mimics thisin vivoconfinement using gelatin methacrylate (GelMA) hydrogel or GelMA mineralized using osteoblast-like model cells. This model also enables real-time optical examination of osteocyte calcium (Ca2+) signaling dynamics in response to fluid shear stimuli cultured under confined conditions. Using this system, we discovered several distinct and previously undescribed patterns of Ca2+responses that vary across networks of interconnected osteocytes as a function of space, time and connectivity. Heterogeneity in Ca2+signaling may provide new insights into bone remodeling in response to mechanical loading. Overall, such a model can be extended to study signaling dynamics within cell networks exposed to flow-induced mechanical stimuli under confined conditions.
Collapse
Affiliation(s)
- Kairui Zhang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Courtney Ogando
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Alex Filip
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA, 13244
| | - Jason A. Horton
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
- Dept. of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| |
Collapse
|
4
|
Litak J, Czyżewski W, Szymoniuk M, Sakwa L, Pasierb B, Litak J, Hoffman Z, Kamieniak P, Roliński J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers (Basel) 2022; 14:cancers14194599. [PMID: 36230523 PMCID: PMC9559304 DOI: 10.3390/cancers14194599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Our literature review aimed to describe the up-to-date knowledge about the molecular pathways and biomarkers engaged in the spine’s metastatic processes. Moreover, we described current data regarding bone-targeted treatment, the emerging targeted therapies, radiotherapy, and immunotherapy used for the treatment of spine metastases. We hope that knowledge comprehensively presented in our review will contribute to the development of novel drugs targeting specific biomarkers and pathways. The more we learn about the molecular aspects of cancer metastasis, the easier it will be to look for treatment methods that will allow us to precisely kill tumor cells. Abstract Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Thanks to continuous research, there appears more and more detailed knowledge about cancer and metastasis, but these transformations are extremely complicated, e.g., due to the complexity of reactions, the variety of places where they occur, or the participation of both tumor cells and host cells in these transitions. The right target points in tumor metastasis mechanisms are still being researched; that will help us in the proper diagnosis as well as in finding the right treatment. In this literature review, we described the current knowledge about the molecular pathways and biomarkers engaged in metastatic processes involving the spine. We also presented a current bone-targeted treatment for spine metastases and the emerging therapies targeting the discussed molecular mechanisms.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, Lekarska 4, 26-600 Radom, Poland
- Correspondence:
| | - Joanna Litak
- St. John’s Cancer Center in Lublin, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Ma Y, Ran D, Shi X, Zhao H, Liu Z. Cadmium toxicity: A role in bone cell function and teeth development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144646. [PMID: 33485206 DOI: 10.1016/j.scitotenv.2020.144646] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a widespread environmental contaminant that causes severe bone metabolism disease, such as osteoporosis, osteoarthritis, and osteomalacia. The present review aimed to explore the molecular mechanisms of Cd-induced bone injury starting from bone cell function and teeth development. Cd inhibits the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts, and directly causes BMSC apoptosis. In the case of osteoporosis, Cd mainly affects the activation of osteoclasts and promotes bone resorption. Cd-induces osteoblast injury and oxidative stress, which causes DNA damage, mitochondrial dysfunction, and endoplasmic reticulum stress, resulting in apoptosis. In addition, the development of osteoarthritis (OA) might be related to Cd-induced chondrocyte damage. The high expression of metallothionein (MT) might reduce Cd toxicity toward osteocytes. The toxicity of Cd toward teeth mainly focuses on enamel development and dental caries. Understanding the effect of Cd on bone cell function and teeth development could contribute to revealing the mechanisms of Cd-induced bone damage. This review explores Cd-induced bone disease from cellular and molecular levels, and provides new directions for removing this heavy metal from the environment.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xueni Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
6
|
Breast Cancer and Microcalcifications: An Osteoimmunological Disorder? Int J Mol Sci 2020; 21:ijms21228613. [PMID: 33203195 PMCID: PMC7696282 DOI: 10.3390/ijms21228613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.
Collapse
|
7
|
Bone, a Secondary Growth Site of Breast and Prostate Carcinomas: Role of Osteocytes. Cancers (Basel) 2020; 12:cancers12071812. [PMID: 32640686 PMCID: PMC7408809 DOI: 10.3390/cancers12071812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is the primarily preferred site for breast and prostate cancer to metastasize. Bone metastases are responsible for most deaths related to breast and prostate cancer. The bone's particular microenvironment makes it conducive for the growth of cancer cells. Studies on bone metastasis have focused on the interaction between cancer cells and the bone microenvironment. Osteocytes, the most common cell type of bone tissue, have received little attention in bone metastasis, although they are master signal sensors, integrators, and skeleton transducers. They play an important role in regulating bone mass by acting on both osteoblasts and osteoclasts, through the release of proteins such as sclerostin, Dickkopf-1 (DKK-1), and fibroblast growth factor 23 (FGF23). Osteocytes have been extensively re-evaluated, in light of their multiple functions: with different experimental approaches, it has been shown that, indeed, osteocytes are actively involved in the colonization of bone tissue by cancer cells. The present review focuses on recent research on the role that osteocytes play in bone metastasis of breast and prostate cancers. Moreover, the studies here summarized open up perspectives for new therapeutic approaches focused on modulating the activity of osteocytes to improve the condition of the bone metastatic patients. A better understanding of the complex interactions between cancer cells and bone-resident cells is indispensable for identifying potential therapeutic targets to stop tumor progression and prevent bone metastases.
Collapse
|
8
|
Akkouch A, Eliason S, Sweat ME, Romero-Bustillos M, Zhu M, Qian F, Amendt BA, Hong L. Enhancement of MicroRNA-200c on Osteogenic Differentiation and Bone Regeneration by Targeting Sox2-Mediated Wnt Signaling and Klf4. Hum Gene Ther 2019; 30:1405-1418. [PMID: 31288577 DOI: 10.1089/hum.2019.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miR)-200c functions in antitumorigenesis and mediates inflammation and osteogenic differentiation. In this study, we discovered that miR-200c was upregulated in human bone marrow mesenchymal stromal cells (hBMSCs) during osteogenic differentiation. Inhibition of endogenous miR-200c resulted in downregulated osteogenic differentiation of hBMSCs and reduced bone volume in the maxilla and mandible of a transgenic mouse model. Overexpression of miR-200c by transfection of naked plasmid DNA (pDNA) encoding miR-200c significantly promoted the biomarkers of osteogenic differentiation in hBMSCs, including alkaline phosphatase, Runt-related transcription factor 2, osteocalcin, and mineral deposition. The pDNA encoding miR-200c also significantly enhanced bone formation and regeneration in calvarial defects of rat models. In addition, miR-200c overexpression was shown to downregulate SRY (sex determining region Y)-box 2 (Sox2) and Kruppel-like factor 4 by directly targeting 3'-untranslated regions and upregulate the activity of Wnt signaling inhibited by Sox2. These results strongly indicated that miR-200c may serve as a unique osteoinductive agent applied for bone healing and regeneration.
Collapse
Affiliation(s)
- Adil Akkouch
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Mason E Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | - Min Zhu
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa.,Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Liu Hong
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I. Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 2018; 32:1500-1514. [PMID: 29535427 PMCID: PMC6035148 DOI: 10.1038/s41375-018-0061-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell (PC) disorder, characterized by a complex interactive network of tumour cells and the bone marrow (BM) stromal microenvironment, contributing to MM cell survival, proliferation and chemoresistance. Mesenchymal stem cells (MSCs) represent the predominant stem cell population of the bone marrow stroma, capable of differentiating into multiple cell lineages, including fibroblasts, adipocytes, chondrocytes and osteoblasts. MSCs can migrate towards primary tumours and metastatic sites, implying that these cells might modulate tumour growth and metastasis. However, this issue remains controversial and is not well understood. Interestingly, several recent studies have shown functional abnormalities of MM patient-derived MSCs indicating that MSCs are not just by-standers in the BM microenvironment but rather active players in the pathophysiology of this disease. It appears that the complex interaction of MSCs and MM cells is critical for MM development and disease outcome. This review will focus on the current understanding of the biological role of MSCs in MM as well as the potential utility of MSC-based therapies in this malignancy.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kim De Veirman
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ann De Becker
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ivan Van Riet
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium.
| |
Collapse
|
10
|
Sohail A, Sherin L, Butt SI, Javed S, Li Z, Iqbal S, Be'g OA. Role of key players in paradigm shifts of prostate cancer bone metastasis. Cancer Manag Res 2018; 10:1619-1626. [PMID: 29950899 PMCID: PMC6016588 DOI: 10.2147/cmar.s162525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The decreased bone mineral density and compromised bone strength predispose individuals to skeletal osteoporosis. Both prostate cancer and bone metastasis caused by cancer invasion have remained a great challenge to researchers. With the advancement in the fields of biochemistry and biomechanics, the molecular mechanisms that make prostate cancer metastasize to bone have recently been identified, and they provide new molecular targets for drug development. Many biochemical by-products have been identified to help in understanding the interaction between the bone and the tumor. Enhanced clinical management of patients with bone metastases was reported during the past decade; however, the anticipated risk and the response to the therapy are still challenging to assess. In this review, the key players that play a dominant role in secondary osteoporosis are addressed. An attempt is made to provide the readers with a clear understanding of the communication pathways between each of the cell types involved in this vicious cycle. Furthermore, the role of Wnts, sclerostin, RANKL, PTHrP, and their respective clinical studies are addressed in this study.
Collapse
Affiliation(s)
- Ayesha Sohail
- Department of Mathematics, Comsats Institute of Information Technology, Lahore, Pakistan
| | - Lubna Sherin
- Department of Chemistry, Comsats Institute of Information Technology, Lahore Pakistan
| | - Saad I Butt
- Department of Mathematics, Comsats Institute of Information Technology, Lahore, Pakistan
| | - Sana Javed
- Department of Mathematics, Comsats Institute of Information Technology, Lahore, Pakistan
| | - Zhiwu Li
- Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau.,School of Electro-Mechanical Engineering, Xidian University, Xi'an, China
| | - Sohail Iqbal
- Department of Medicine, Sir Ganga Ram Hospital, Fatima Jinnah Medical College, Lahore, Pakistan
| | - O Anwar Be'g
- Fluid Mechanics, Spray Research Group, Mechanical and Petroleum Engineering, School of Computing, Science and Engineering, University of Salford, Manchester, UK
| |
Collapse
|
11
|
Abstract
Breast cancer bone metastasis develops as the result of a series of complex interactions between tumor cells, bone marrow cells, and resident bone cells. The net effect of these interactions are the disruption of normal bone homeostasis, often with significantly increased osteoclast and osteoblast activity, which has provided a rational target for controlling tumor progression, with little or no emphasis on tumor eradication. Indeed, the clinical course of metastatic breast cancer is relatively long, with patients likely to experience sequential skeletal-related events (SREs), often over lengthy periods of time, even up to decades. These SREs include bone pain, fractures, and spinal cord compression, all of which may profoundly impair a patient's quality-of-life. Our understanding of the contributions of the host bone and bone marrow cells to the control of tumor progression has grown over the years, yet the focus of virtually all available treatments remains on the control of resident bone cells, primarily osteoclasts. In this perspective, our focus is to move away from the current emphasis on the control of bone cells and focus our attention on the hallmarks of bone metastatic tumor cells and how these differ from primary tumor cells and normal host cells. In our opinion, there remains a largely unmet medical need to develop and utilize therapies that impede metastatic tumor cells while sparing normal host bone and bone marrow cells. This perspective examines the impact of metastatic tumor cells on the bone microenvironment and proposes potential new directions for uncovering the important mechanisms driving metastatic progression in bone based on the hallmarks of bone metastasis.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Driehuis E, Clevers H. WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. Br J Pharmacol 2017; 174:4547-4563. [PMID: 28244067 PMCID: PMC5727251 DOI: 10.1111/bph.13758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is an essential signalling pathway for all multicellular animals. Although first described more than 30 years ago, new components and regulators of the pathway are still being discovered. Considering its importance in both embryonic development and adult homeostasis, it is not surprising that this pathway is often deregulated in human diseases such as cancer. Recently, it became clear that in addition to cytoplasmic components such as β-catenin, other, membrane-bound or extracellular, components of the WNT pathway are also altered in cancer. This review gives an overview of the recent discoveries on WNT signalling events near the cell membrane. Furthermore, membrane-associated components of the WNT pathway, which are more accessible for therapeutic intervention, as well therapeutic approaches that already target those components will be discussed. In this way, we hope to stimulate the development of effective anti-cancer therapies that target this fascinating pathway. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Else Driehuis
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
- Princess Maxime Center (PMC)UtrechtThe Netherlands
| |
Collapse
|
13
|
Costa AG, Cremers S, Bilezikian JP. Sclerostin measurement in human disease: Validity and current limitations. Bone 2017; 96:24-28. [PMID: 27742501 DOI: 10.1016/j.bone.2016.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Sclerostin a potent regulator of bone formation, is an antagonist of the Wnt-signaling pathway. The advent of assays to measure circulating sclerostin has enabled research to be performed with the aim to understand the potential role of circulating sclerostin as a pathophysiological marker in a variety of clinical settings. At this time, however, assays to measure circulating sclerostin are still relatively new and have not demonstrated consistent internal agreement in addition to which there are differences between serum and plasma levels. Nevertheless, measurement of sclerostin in the circulation has the potential to reflect the dynamics of bone formation with particular reference to situations in which osteocytes, the major source of circulating sclerostin, may be perturbed. Because of technical uncertainties regarding sclerostin assays that are currently available, circulating sclerostin measurements should be interpreted cautiously with attention to reference ranges for each assay and whether or not the measurement is made in serum or plasma.
Collapse
Affiliation(s)
- Aline G Costa
- Department of Medicine, Division of Endocrinology, Metabolic Bone Diseases Unit, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Serge Cremers
- Department of Medicine, Division of Endocrinology, Metabolic Bone Diseases Unit, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Pathology & Cell Biology, Division of Clinical Pathology College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, Metabolic Bone Diseases Unit, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
14
|
Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Curr Med Chem 2017; 23:3754-3774. [PMID: 27604089 PMCID: PMC5204071 DOI: 10.2174/0929867323666160907162546] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022]
Abstract
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity.
Collapse
Affiliation(s)
- Lia Ginaldi
- School and Unit of Allergy and Clinical Immunology, Department of Life, Health, & Environmental Sciences, University of L'Aquila, Italy.
| | | |
Collapse
|
15
|
Gavriatopoulou M, Dimopoulos MA, Kastritis E, Terpos E. Emerging treatment approaches for myeloma-related bone disease. Expert Rev Hematol 2017; 10:217-228. [PMID: 28092987 DOI: 10.1080/17474086.2017.1283213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Multiple myeloma is characterized by the presence of osteolytic lesions that leads to devastating skeletal-related events in the majority of patients. Myeloma bone disease is attributed to increased osteoclastic and suppressed osteoblastic activity. Areas covered: Bisphosphonates remain the main treatment option, however they have limitations on their own. Understanding the pathogenesis of myeloma bone disease may provide a roadmap for new therapeutic approaches. The pathway of RANKRANKLOPG pathway has revealed denosumab, a monoclonal antibody targeting RANKL as a novel emerging therapy for myeloma-related bone disease. Furthermore, the Wnt signaling inhibitors dicckopf-1 and sclerostin that are implicated in the pathogenesis of bone destruction of myeloma are now targeted by novel monoclonal antibodies. Activin-A is a TGF-beta superfamily member which increases osteoclast activity and inhibits osteoblast function in myeloma; sotatercept and other molecules targeting activin-A have entered into clinical development. Several other molecules and pathways that play an important role in the pathogenesis of bone destruction in myeloma, such as periostin, adiponectin, Notch and BTK signaling are also targeted in an attempt to develop novel therapies for myeloma-related bone disease. Expert commentary: We summarize the current advances in the biology of myeloma bone disease and the potential therapeutic targets.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Meletios A Dimopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Efstathios Kastritis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Evangelos Terpos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| |
Collapse
|
16
|
Shen F, Zhang Y, Jernigan DL, Feng X, Yan J, Garcia FU, Meucci O, Salvino JM, Fatatis A. Novel Small-Molecule CX3CR1 Antagonist Impairs Metastatic Seeding and Colonization of Breast Cancer Cells. Mol Cancer Res 2016; 14:518-27. [PMID: 27001765 PMCID: PMC5070649 DOI: 10.1158/1541-7786.mcr-16-0013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Recent evidence indicates that cancer cells, even in the absence of a primary tumor, recirculate from established secondary lesions to further seed and colonize skeleton and soft tissues, thus expanding metastatic dissemination and precipitating the clinical progression to terminal disease. Recently, we reported that breast cancer cells utilize the chemokine receptor CX3CR1 to exit the blood circulation and lodge to the skeleton of experimental animals. Now, we show that CX3CR1 is overexpressed in human breast tumors and skeletal metastases. To assess the clinical potential of targeting CX3CR1 in breast cancer, a functional role of CX3CR1 in metastatic seeding and progression was first validated using a neutralizing antibody for this receptor and transcriptional suppression by CRISPR interference (CRISPRi). Successively, we synthesized and characterized JMS-17-2, a potent and selective small-molecule antagonist of CX3CR1, which was used in preclinical animal models of seeding and established metastasis. Importantly, counteracting CX3CR1 activation impairs the lodging of circulating tumor cells to the skeleton and soft-tissue organs and also negatively affects further growth of established metastases. Furthermore, nine genes were identified that were similarly altered by JMS-17-2 and CRISPRi and could sustain CX3CR1 prometastatic activity. In conclusion, these data support the drug development of CX3CR1 antagonists, and promoting their clinical use will provide novel and effective tools to prevent or contain the progression of metastatic disease in breast cancer patients. IMPLICATIONS This work conclusively validates the instrumental role of CX3CR1 in the seeding of circulating cancer cells and is expected to pave the way for pairing novel inhibitors of this receptor with current standards of care for the treatment of breast cancer patients. Mol Cancer Res; 14(6); 518-27. ©2016 AACR.
Collapse
Affiliation(s)
- Fei Shen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yun Zhang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Danielle L Jernigan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Xin Feng
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jie Yan
- Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Fernando U Garcia
- Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania. Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania. The Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Piec I, Washbourne C, Tang J, Fisher E, Greeves J, Jackson S, Fraser WD. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits. Calcif Tissue Int 2016; 98:546-55. [PMID: 26749312 PMCID: PMC4860200 DOI: 10.1007/s00223-015-0105-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022]
Abstract
Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice.
Collapse
Affiliation(s)
- Isabelle Piec
- Bioanalytical Facility, University of East Anglia, Floor 2, Bob Champion Research and Education Building, Norwich Research Park, James Watson Road, Norwich, NR4 7UQ, UK.
| | - Christopher Washbourne
- Bioanalytical Facility, University of East Anglia, Floor 2, Bob Champion Research and Education Building, Norwich Research Park, James Watson Road, Norwich, NR4 7UQ, UK
| | - Jonathan Tang
- Bioanalytical Facility, University of East Anglia, Floor 2, Bob Champion Research and Education Building, Norwich Research Park, James Watson Road, Norwich, NR4 7UQ, UK
| | - Emily Fisher
- Bioanalytical Facility, University of East Anglia, Floor 2, Bob Champion Research and Education Building, Norwich Research Park, James Watson Road, Norwich, NR4 7UQ, UK
| | - Julie Greeves
- Women Ground Close Combat Review, Directorate of Manning (Army), Blenheim Bld, IDL 27, Monxton Road, Andover, SP11 8HT, UK
| | - Sarah Jackson
- Women Ground Close Combat Review, Directorate of Manning (Army), Blenheim Bld, IDL 27, Monxton Road, Andover, SP11 8HT, UK
| | - William D Fraser
- Bioanalytical Facility, University of East Anglia, Floor 2, Bob Champion Research and Education Building, Norwich Research Park, James Watson Road, Norwich, NR4 7UQ, UK
- Norfolk and Norwich University Hospital, Norwich, NR4 7UV, UK
| |
Collapse
|
18
|
Inagaki Y, Hookway ES, Kashima TG, Munemoto M, Tanaka Y, Hassan AB, Oppermann U, Athanasou NA. Sclerostin expression in bone tumours and tumour-like lesions. Histopathology 2016; 69:470-8. [PMID: 26896083 DOI: 10.1111/his.12953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
AIMS To assess the immunophenotypic and mRNA expression of sclerostin in human skeletal tissues and in a wide range of benign and malignant bone tumours and tumour-like lesions. METHODS AND RESULTS Sclerostin expression was evaluated by immunohistochemistry and quantitative polymerase chain reaction (PCR). In lamellar and woven bone, there was strong sclerostin expression by osteocytes. Osteoblasts and other cell types in bone were negative. Hypertrophic chondrocytes in the growth plate and mineralized cartilage cells in zone 4 of hyaline articular cartilage strongly expressed sclerostin, but most chondrocytes in hyaline cartilage were negative. In primary bone-forming tumours, including osteosarcomas, there was patchy expression of sclerostin in mineralized osteoid and bone. Sclerostin staining was seen in woven bone in fibrous dysplasia, in osteofibrous dysplasia, and in reactive bone formed in fracture callus, in myositis ossificans, and in the wall of solitary bone cysts and aneurysmal bone cysts. Sclerostin was expressed by hypertrophic chondrocytes in osteochondroma and chondroblasts in chondroblastoma, but not by tumour cells in other bone tumours, including myeloma and metastatic carcinoma. mRNA expression of sclerostin was identified by quantitative PCR in osteosarcoma specimens and cell lines. CONCLUSIONS Sclerostin is an osteocyte marker that is strongly expressed in human woven and lamellar bone and mineralizing chondrocytes. This makes it a useful marker with which to identify benign and malignant osteogenic tumours and mineralizing cartilage tumours, such as chondroblastomas and other lesions in which there is bone formation.
Collapse
Affiliation(s)
- Yusuke Inagaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.,Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Edward S Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Takeshi G Kashima
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Mitsuru Munemoto
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.,Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Andrew Bassim Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Nick A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| |
Collapse
|
19
|
Abstract
In the context of breast cancer, the importance of the skeleton in the regulation of primary tumour development and as a site for subsequent metastasis is well characterized. Our understanding of the contributions made by the host bone and bone marrow cells increasingly demonstrates the extent of the interaction between tumour cells and normal host cells. As a result, the need to develop and utilize therapies that can impede the growth and/or function of tumour cells while sparing normal host bone and bone marrow cells is immense and expanding. The need for these new treatments is, however, superimposed on the orthopaedic management of patients' quality of life, where pain control and continued locomotion are paramount. Indeed, the majority of the anticancer therapies used to date often result in direct or indirect damage to bone. Thus, although the bone microenvironment regulates tumour cell growth in bone, cells within the bone marrow niche also mediate many of the orthopaedic consequences of tumour progression as well as resistance to the antitumour effects of existing therapies. In this Review, we highlight the effects of existing cancer treatments on bone and the bone marrow microenvironment as well as the mechanisms mediating these effects and the current utility of modern orthopaedic interventions.
Collapse
Affiliation(s)
- Issam Makhoul
- Department of Medicine, Division of Haematology/Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Corey O Montgomery
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Dana Gaddy
- Department of Physiology and Biophysics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
20
|
Abstract
➤ Osteocytes, derived from osteoblasts, reside within bone and communicate extensively with other bone cell populations to regulate bone metabolism. The mature osteocyte expresses the protein sclerostin, a negative regulator of bone mass.➤ In normal physiologic states, the protein sclerostin acts on osteoblasts at the surface of bone and is differentially expressed in response to mechanical loading, inflammatory molecules such as prostaglandin E2, and hormones such as parathyroid hormone and estrogen.➤ Pathologically, sclerostin dysregulation has been observed in osteoporosis-related fractures, failure of implant osseous integration, metastatic bone disease, and select genetic diseases of bone mass.➤ An antibody that targets sclerostin, decreasing endogenous levels of sclerostin while increasing bone mineral density, is currently in phase-III clinical trials.➤ The osteocyte has emerged as a versatile, indispensable bone cell. Its location within bone, extensive dendritic network, and close communication with systemic circulation and other bone cells produce many opportunities to treat a variety of orthopaedic conditions.
Collapse
Affiliation(s)
- Jocelyn T. Compton
- Center for Orthopaedic Research at Columbia University Medical Center, 650 West 168th Street, Box #480 (J.T.C.), Black Building 1412 (F.Y.L.), New York, NY 10032. E-mail address for J.T. Compton: . E-mail address for F.Y. Lee:
| | - Francis Y. Lee
- Center for Orthopaedic Research at Columbia University Medical Center, 650 West 168th Street, Box #480 (J.T.C.), Black Building 1412 (F.Y.L.), New York, NY 10032. E-mail address for J.T. Compton: . E-mail address for F.Y. Lee:
| |
Collapse
|
21
|
Webb SL, Edwards CM. Novel therapeutic targets in myeloma bone disease. Br J Pharmacol 2014; 171:3765-76. [PMID: 24750110 PMCID: PMC4128042 DOI: 10.1111/bph.12742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma is a neoplastic disorder of plasma cells characterized by clonal proliferation within the bone marrow. One of the major clinical features of multiple myeloma is the destructive osteolytic bone disease that occurs in the majority of patients. Myeloma bone disease is associated with increased osteoclast activity and suppression of osteoblastogenesis. Bisphosphonates have been the mainstay of treatment for many years; however, their use is limited by their inability to repair existing bone loss. Therefore, research into novel approaches for the treatment of myeloma bone disease is of the utmost importance. This review will discuss the current advances in our understanding of osteoclast stimulation and osteoblast suppression mechanisms in myeloma bone disease and the treatments that are under development to target this destructive and debilitating feature of myeloma.
Collapse
Affiliation(s)
- S L Webb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
22
|
Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal 2014; 12:36. [PMID: 24965524 PMCID: PMC4081546 DOI: 10.1186/1478-811x-12-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022] Open
Abstract
CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|
23
|
|
24
|
Jacobs C, Simos D, Addison C, Ibrahim M, Clemons M. Pharmacotherapy of bone metastases in breast cancer patients – an update. Expert Opin Pharmacother 2014; 15:1109-18. [DOI: 10.1517/14656566.2014.903925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Kovacic N, Croucher PI, McDonald MM. Signaling between tumor cells and the host bone marrow microenvironment. Calcif Tissue Int 2014; 94:125-39. [PMID: 24046000 DOI: 10.1007/s00223-013-9794-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/25/2013] [Indexed: 02/04/2023]
Abstract
Tumor cells with high skeletal homing affinity express numerous cell surface receptors that bind ligands produced in bone. Upon arrival, these cells survive in the host environment, encompassed in close proximity to bone marrow cells. Interactions between tumor cells and cells of the host microenvironment are essential to not only tumor cell survival but also their activation and proliferation into environment-modifying tumors. Through the production of RANKL, PTHrP, cytokines, and integrins, activated tumor cells stimulate osteoclastogenesis, enhance bone resorption, and subsequently release matrix-bound proteins that further promote tumor growth and bone resorption. In addition, alterations in the TGF-β/BMP and Wnt signaling pathways via tumor cell growth can either stimulate or suppress osteoblastic bone formation and function, leading to sclerotic or lytic bone disease, respectively. Hence, the presence of tumor cells in bone dysregulates bone remodeling, dramatically impairing skeletal integrity. Furthermore, through complex mechanisms, cells of the immune system interact with tumor cells to further impact bone remodeling. Lastly, with alterations in bone cell activity, the environment is permissive to promoting tumor growth further, suggesting an interdependence between tumor cells and bone cells in metastatic bone disease and multiple myeloma.
Collapse
Affiliation(s)
- Natasa Kovacic
- Bone Biology Group, Musculoskeletal Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | | | |
Collapse
|
26
|
Larson S, Zhang X, Dumpit R, Coleman I, Lakely B, Roudier M, Higano C, True LD, Lange PH, Montgomery B, Corey E, Nelson PS, Vessella RL, Morrissey C. Characterization of osteoblastic and osteolytic proteins in prostate cancer bone metastases. Prostate 2013; 73:932-40. [PMID: 23334979 PMCID: PMC4214278 DOI: 10.1002/pros.22639] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/12/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND Approximately 90% of patients who die of Prostate Cancer (PCa) have bone metastases, which promote a spectrum of osteoblastic, osteolytic or mixed bone responses. Numerous secreted proteins have been reported to promote osteoblastic or osteolytic bone responses. We determined whether previously identified and/or novel proteins were associated with the osteoblastic or osteolytic response in clinical specimens of PCa bone metastases. METHODS Gene expression was analyzed on 14 PCa metastases from 11 patients by microarray profiling and qRT-PCR, and protein expression was analyzed on 33 PCa metastases from 30 patients by immunohistochemistry on highly osteoblastic and highly osteolytic bone specimens. RESULTS Transcript and protein levels of BMP-2, BMP-7, DKK-1, ET-1, and Sclerostin were not significantly different between osteoblastic and osteolytic metastases. However, levels of OPG, PGK1, and Substance P proteins were increased in osteoblastic samples. In addition, Emu1, MMP-12, and sFRP-1 were proteins identified with a novel role of being associated with either the osteoblastic or osteolytic bone response. CONCLUSIONS This is the first detailed analysis of bone remodeling proteins in human specimens of PCa bone metastases. Three proteins not previously shown to be involved may have a role in the PCa bone response. Furthermore, our data suggests that the relative expression of numerous, rather than a single, bone remodeling proteins determine the bone response in PCa bone metastases.
Collapse
Affiliation(s)
- Sandy Larson
- Department of Urology, University of Washington, Seattle, WA
| | - Xiaotun Zhang
- Department of Urology, University of Washington, Seattle, WA
| | - Ruth Dumpit
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Bryce Lakely
- Department of Urology, University of Washington, Seattle, WA
| | - Martine Roudier
- Department of Pathology, University of Washington, Seattle, WA
| | - Celestia Higano
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Paul H. Lange
- Department of Urology, University of Washington, Seattle, WA
- Department of Veterans Affairs Medical Center, Seattle, WA
| | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, WA
- Department of Veterans Affairs Medical Center, Seattle, WA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA
| |
Collapse
|
27
|
Delgado-Calle J, Arozamena J, Pérez-López J, Bolado-Carrancio A, Sañudo C, Agudo G, de la Vega R, Alonso MA, Rodríguez-Rey JC, Riancho JA. Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Mol Cell Endocrinol 2013; 369:27-34. [PMID: 23415712 DOI: 10.1016/j.mce.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/16/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Sclerostin, encoded by the SOST gene, is specifically expressed by osteocytes. However osteoblasts bear a heavily methylated SOST promoter and therefore do not express SOST. Thus, studying the regulation of human SOST is challenged by the absence of human osteocytic cell lines. Herein, we explore the feasibility of using the induction of SOST expression in osteoblasts by a demethylating agent to study the mechanisms underlying SOST transcription, and specifically, the influence of bone morphogenetic proteins (BMPs). Microarray analysis and quantitative PCR showed that AzadC up-regulated the expression of several BMPs, including BMP-2, BMP-4 and BMP-6, as well as several BMP downstream targets. Recombinant BMP-2 increased the transcriptional activity of the SOST promoter cloned into a reporter vector. Likewise, exposing cells transfected with the vector to AzadC also resulted in increased transcription. On the other hand, inhibition of the canonical BMP signaling blunted the effect of AzadC on SOST. These results show that the AzadC-induced demethylation of the SOST promoter in human osteoblastic cells may be a valuable tool to study the regulation of SOST expression. As a proof of concept, it allowed us to demonstrate that BMPs stimulate SOST expression by a mechanism involving BMPR1A receptors and downstream Smad-dependent pathways.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital UM Valdecilla, IFIMAV, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Terpos E, Kastritis E, Dimopoulos MA. Prevention and Treatment of Myeloma Bone Disease. Curr Hematol Malig Rep 2012; 7:249-57. [DOI: 10.1007/s11899-012-0135-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|