1
|
Vilkaite A, Nguyen XP, Güzel CT, Gottschlich L, Bender U, Dietrich JE, Hinderhofer K, Strowitzki T, Rehnitz J. Beyond Repetition: The Role of Gray Zone Alleles in the Upregulation of FMR1-Binding miR-323a-3p and the Modification of BMP/SMAD-Pathway Gene Expression in Human Granulosa Cells. Int J Mol Sci 2025; 26:3192. [PMID: 40244008 PMCID: PMC11989689 DOI: 10.3390/ijms26073192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The Fragile X mental retardation type 1 gene (FMR1) contains a CGG triplet cluster of varied length (30 repeats on average) located in its 5' UTR. In its premutated state (54-200 repeats), FMR1 contributes to the pathogenesis of premature ovarian insufficiency (POI). Its gray zone alleles (41-54 repeats) are supposed to impair the ovarian function as well. In the case of a CGG repeat length > 200, Fragile X syndrome occurs. Post-transcriptional expression of FMR1 is regulated by microRNAs. Although miR-323a-3p overexpression suppresses FMR1 in various tissues, this relationship has not been evaluated in the human ovary. Additionally, this microRNA targets SMADs, which are suggested regulators of ovarian cell proliferation, growth, and function. This study investigated how FMR1 allele lengths with CGG repeat numbers n < 55 (normal and gray zone genotypes) relate to miR-323a-3p expression and how they may impact associated SMAD expression in human granulosa cells. COV434 cells and patient-derived GCs were used to evaluate FMR1, miR-323a-3p, and BMP/SMAD-pathway member expression levels. Briefly, miR-323a-3p was significantly upregulated in GCs of the gray zone group compared to the normal allele group (p < 0.0001), while the FMR1 level did not vary. Furthermore, the gray zone group showed a significant upregulation of BMPR2, SMAD1, SMAD4, and SMAD9. In contrast, the miR-323a-3p transfection of COV434 cells significantly downregulated SMAD3, SMAD4, SMAD5, and SMAD9, while the FMR1 and SMAD1 levels remained stable. Our findings highlight a CGG repeat number-dependent upregulation of miR-323a-3p and an alteration of the BMP/SMAD pathway, suggesting that these changes happen and contribute to impaired ovarian function independently.
Collapse
Affiliation(s)
- Adriana Vilkaite
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Xuan Phuoc Nguyen
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Cansu Türkan Güzel
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Lucas Gottschlich
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Ulrike Bender
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Jens E. Dietrich
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Katrin Hinderhofer
- Institute of Human Genetics, University Heidelberg, 69120 Heidelberg, Germany;
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| | - Julia Rehnitz
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (A.V.); (X.P.N.); (C.T.G.); (L.G.); (U.B.); (J.E.D.); (T.S.)
| |
Collapse
|
2
|
Wen Q, Wittens MMJ, Engelborghs S, van Herwijnen MHM, Tsamou M, Roggen E, Smeets B, Krauskopf J, Briedé JJ. Beyond CSF and Neuroimaging Assessment: Evaluating Plasma miR-145-5p as a Potential Biomarker for Mild Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1042-1054. [PMID: 38407050 PMCID: PMC10921410 DOI: 10.1021/acschemneuro.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aβ1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aβ1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Sebastiaan Engelborghs
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Marcel H. M. van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maria Tsamou
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Erwin Roggen
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Bert Smeets
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Julian Krauskopf
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Men Y, Zhai Y, Wu L, Liu L, Zhang W, Jiang W, Bi N, Song Y, Hui Z, Wang L. MiR-323a-3p acts as a tumor suppressor by suppressing FMR1 and predicts better esophageal squamous cell carcinoma outcome. Cancer Cell Int 2022; 22:140. [PMID: 35351128 PMCID: PMC8966287 DOI: 10.1186/s12935-022-02541-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has unfavorable outcomes with the highest incidence seen in China. Accordingly, exploring effective molecular biomarkers is of great value. MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression and modulate numerous biological processes in tumors. Our study aimed to identify prognostic miRNAs and investigate their role in ESCC. METHODS Prognosis-related plasma miRNAs were detected by miRNA microarray and qRT-PCR. Functional assays and molecular mechanism studies were used to investigate the role of miRNA in ESCC. RESULTS Over-expression of miR-323a-3p was associated with a favorable prognosis. MiR-323a-3p negatively regulated proliferation, migration, and invasion. Through biological predictions, the fragile X mental retardation 1 (FMR1) was found to be a potential target of miR-323a-3p. Further investigation revealed that miR-323a-3p directly targeted and suppressed FMR1. MiR-323a-3p and FMR1 mRNA, as well as miR-323a-3p and the FMR1-encoded protein FMRP, showed negative correlations. Luciferase activity of FMR1-3'-UTR, but not mutant counterparts, was decreased by mimic compared with that of the control. The compromised cell proliferation, migration, and invasion induced by transfection with miR-323a-3p mimic were rescued by transfection with a FMR1 expression plasmid. Tumors induced by miR-323a-3p overexpressed ESCC cells grew significantly slower in vivo and resulted in smaller tumor masses. Metastatic lung colonization was also inhibited by miR-323a-3p overexpression. CONCLUSIONS MiR-323a-3p was significantly associated with survival and acted as a tumor suppressor by inhibiting proliferation, migration, and invasion via the regulation of FMR1. MiR-323a-3p is a promising biomarker and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yu Men
- Department of VIP Medical Services & Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yirui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihong Wu
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Lipin Liu
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjue Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Guangdong, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Guangdong, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services & Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Guangdong, China.
| |
Collapse
|
4
|
Lv JN, Li JQ, Cui YB, Ren YY, Fu YJ, Jiang YJ, Shang H, Zhang ZN. Plasma MicroRNA Signature Panel Predicts the Immune Response After Antiretroviral Therapy in HIV-Infected Patients. Front Immunol 2021; 12:753044. [PMID: 34887859 PMCID: PMC8650117 DOI: 10.3389/fimmu.2021.753044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Approximately 10–40% of people with human immunodeficiency virus (HIV) infection are unable to obtain successful improvements in immune function after antiretroviral therapy (ART). These patients are at greater risk of developing non-acquired immunodeficiency syndrome (AIDS)-related conditions, with the accompanying increased morbidity and mortality. Discovering predictive biomarkers can help to identify patients with a poor immune response earlier and provide new insights into the mechanisms of this condition. Methods A total of 307 people with HIV were enrolled, including 110 immune non-responders (INRs) and 197 immune responders (IRs). Plasma samples were taken before ART, and quantities of plasma microRNAs (miRNAs) were determined using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Candidate biomarkers were established through four phases: discovery, training, validation, and blinded test. Binary logistic regression was used to analyze the combined predictive capacity of the identified miRNAs. The effect of one miRNA, miR-16-5p, on T cell function was assessed in vitro. Results Expression of five miRNAs (miR-580, miR-627, miR-138-5p, miR-16-5p, and miR-323-3p) was upregulated in the plasma of INRs compared with that in IRs. Expression of these miRNAs was negatively correlated with both CD4+ T cell counts and the increase in the proportion of CD4+ T cells after one year of ART. These five miRNAs were combined in a predictive model, which could effectively identify INRs or IRs. Furthermore, we found that miR-16-5p inhibits CD4+ T cell proliferation by regulating calcium flux. Conclusion We established a five-miRNA panel in plasma that accurately predicts poor immune response after ART, which could inform strategies to reduce the incidence of this phenomenon and improve the clinical management of these patients.
Collapse
Affiliation(s)
- Jun-Nan Lv
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jia-Qi Li
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying-Bin Cui
- R&D Department, Beijing Quantobio Star Biotechnology Co., Ltd., Beijing, China
| | - Yuan-Yuan Ren
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
5
|
Liu L, Chen H, Jiang T, He D. MicroRNA-106b Overexpression Suppresses Synovial Inflammation and Alleviates Synovial Damage in Patients with Rheumatoid Arthritis. Mod Rheumatol 2021; 32:1054-1063. [PMID: 34850088 DOI: 10.1093/mr/roab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To explore the effect of miR-106b on synovial inflammation and damage in rheumatoid arthritis (RA) patients, and further to investigate its possible mechanism. METHODS : Quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, in situ hybridization and immunohistochemistry assay were separately used to verify the levels of miR-106b and cytokines in the synovial tissues of patients with RA or osteoarthritis (OA). Pearson correlation analysis was conducted to examine the bivariate relationship between miR-106b and cytokines or RANKL. Following the isolation and culture of fibroblast-like synoviocytes (FLS), the cells were transfected with lentivirus-mediated miR-106b mimic, miR-106b inhibitor, and negative control miR-106b mimic, respectively. Thereafter, cell proliferation was measured by Cell Counting Kit-8 assay, and cell invasion and migration capacity was assessed by Transwell assay. Furthermore, concentration and expression of cytokines were separately detected by Enzyme linked immunosorbent assay and Western blot. RESULTS Compared with osteoarthritis, validation by qRT-PCR showed that RA patients had a lower level of miR-106b and higher levels of receptor activator of nuclear factor-κ B ligand (RANKL), tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Additionally, the scatter plot showed that the relative transcription of miR-106b level was negatively correlated to the level of TNF-a, IL-6, and RNKAL in the synovial tissues of both RA and OA patients (All P<0.05). Furthermore, miR-106b overexpression suppressed cell proliferation, migration and invasion capacity of human RA-FLS. CONCLUSIONS miR-106b overexpression suppresses synovial inflammation and alleviates synovial damage, thus it may be served as a potential therapeutic target for RA patients.
Collapse
Affiliation(s)
- Linchen Liu
- Department of Rheumatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing China
| | - Haiyan Chen
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Ting Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Dongyi He
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
6
|
Sproviero D, Gagliardi S, Zucca S, Arigoni M, Giannini M, Garofalo M, Olivero M, Dell’Orco M, Pansarasa O, Bernuzzi S, Avenali M, Cotta Ramusino M, Diamanti L, Minafra B, Perini G, Zangaglia R, Costa A, Ceroni M, Perrone-Bizzozero NI, Calogero RA, Cereda C. Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22052737. [PMID: 33800495 PMCID: PMC7962970 DOI: 10.3390/ijms22052737] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.
Collapse
Affiliation(s)
- Daisy Sproviero
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
| | - Stella Gagliardi
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
| | - Susanna Zucca
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- EnGenome SRL, 27100 Pavia, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomics Unit, University of Turin, 10126 Turin, Italy; (M.A.); (R.A.C.)
| | - Marta Giannini
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Maria Garofalo
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- Department of Biology and Biotechnology (“L. Spallanzani”), University of Pavia, 27100 Pavia, Italy
| | - Martina Olivero
- Department of Oncology, University of Turin, 10060 Turin, Italy;
| | - Michela Dell’Orco
- Departments of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Orietta Pansarasa
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
| | - Stefano Bernuzzi
- Immunohematological and Transfusional Service and Centre of Transplantation Immunology, IRCCS “San Matteo Foundation”, 27100 Pavia, Italy;
| | - Micol Avenali
- Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Luca Diamanti
- Neuro-Oncology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Brigida Minafra
- Parkinson Unit and Movement Disorders Mondino Foundation IRCCS, 27100 Pavia, Italy; (B.M.); (R.Z.)
| | - Giulia Perini
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Roberta Zangaglia
- Parkinson Unit and Movement Disorders Mondino Foundation IRCCS, 27100 Pavia, Italy; (B.M.); (R.Z.)
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Mauro Ceroni
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.R.); (G.P.); (M.C.)
| | - Nora I. Perrone-Bizzozero
- Departments of Neurosciences and Psychiatry and Behavioral Health, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomics Unit, University of Turin, 10126 Turin, Italy; (M.A.); (R.A.C.)
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.S.); (S.G.); (S.Z.); (M.G.); (M.G.); (O.P.)
- Correspondence: ; Tel.: +39-0382380348
| |
Collapse
|
7
|
Du S, Shen S, Ding S, Wang L. Suppression of microRNA-323-3p restrains vascular endothelial cell apoptosis via promoting sirtuin-1 expression in coronary heart disease. Life Sci 2021; 270:119065. [PMID: 33460661 DOI: 10.1016/j.lfs.2021.119065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/22/2023]
Abstract
AIMS Coronary heart disease (CHD), a chronic inflammatory condition of vascular endothelial cells (VECs), poses a serious threat to human health. Previous studies have found that microRNAs (miRNAs) are closely related to the occurrence and development of cardiac diseases. Therefore, this study focused on the regulation by miR-323-3p on the progression of CHD. METHODS Initially, we employed microarray-based gene expression profiling of CHD to identify differentially expressed miRNAs. Next, the expression of miR-323-3p and SIRT1 was detected by RT-qPCR in a rat model of CHD generated by feeding with a high-fat diet. The interaction between miR-323-3p and SIRT1 was identified using bioinformatics analysis and dual luciferase reporter gene assay. The expressions of miR-323-3p and SIRT1 were altered in CHD rats and vascular endothelial cells (VECs) to examine the specific effects on CHD. RESULTS miR-323-3p was observed to be highly-expressed in blood samples from patients with CHD or with mild atherosclerosis and in the rat model of CHD. SIRT1 was a target gene of miR-323-3p, which could downregulate SIRT1 expression. miR-323-3p overexpression or SIRT1 inhibition resulted in increased apoptosis of VECs, elevated ac-p65 protein expression and ratio of ac-p65/p65, and upregulated expression of NF-κB signaling pathway-related proteins. Besides, miR-323-3p inhibition or SIRT1 upregulation in the CHD rat model was found to significantly alleviate symptoms and decrease levels of proteins related to the ac-p65 and NF-κB signaling pathways. CONCLUSION Overall, the experimental data provide evidence that miR-323-3p suppression may restrain VEC apoptosis and prevent the resultant CHD progression via SIRT1-inactivatedNF-κB signaling pathway.
Collapse
Affiliation(s)
- Song Du
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China
| | - Shuxin Shen
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China
| | - Shoukun Ding
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China
| | - Lixia Wang
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China.
| |
Collapse
|
8
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Salama II, Sami SM, Abdellatif GA, Mohsen A, Rasmy H, Kamel SA, Ibrahim MH, Mostafa M, Fouad WA, Raslan HM. Plasma microRNAs biomarkers in mild cognitive impairment among patients with type 2 diabetes mellitus. PLoS One 2020; 15:e0236453. [PMID: 32726329 PMCID: PMC7390351 DOI: 10.1371/journal.pone.0236453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To assess the potential value of some miRNAs as diagnostic biomarkers for mild cognitive impairment (MCI) among patients with type2 diabetes mellitus (T2DM) and to identify other risk factors for MCI among them. METHODS This study enrolled 163 adults with T2DM using face to face interview. Cognitive function with its domains was assessed using Adenbrooke's Cognitive Examination III (ACE III). Lipid profile, glycated hemoglobin, and miR-128, miR-132, miR- 874, miR-134, miR-323, and miR-382 expressions, using quantitative real-time PCR, were assessed. RESULTS MCI was detected among 59/163 (36.2%) patients with T2DM. Plasma expression of miR-132 was significantly higher in T2DM patients with MCI compared to those without MCI and to normal cognitive healthy individuals (median = 2, 1.1 and 1.2 respectively, P < 0.05. Logistic regression analysis showed that higher miR-132 expression with adjusted odds ratio (AOR): 1.2 (95% CI 1.0-1.3), female gender (AOR:2.1; 95%CI 1.0-4.3), education below postgraduate (secondary and university education with AOR: 9.5 & 19.4 respectively) were the significant predicting factors for MCI among T2DM patients. Using ROC curve, miR-132 was the only assayed miRNA that significantly differentiates T2DM patients with MCI from those with normal cognition with 72.3% sensitivity, 56.2% specificity, and 63.8% accuracy (P < 0.05). Other studied miRNAs showed lower sensitivity and specificity for detecting MCI among studied T2DM participants. CONCLUSION MCI affects nearly one-third of adult patients with T2DM. A significantly over expression of miR-132 was detected among T2DM with MCI compared to those with normal cognition.
Collapse
Affiliation(s)
- Iman I. Salama
- Community Medicine Department, National Research Centre, Cairo, Egypt
| | - Samia M. Sami
- Child Health Department, National Research Centre, Cairo, Egypt
| | | | - Amira Mohsen
- Community Medicine Department, National Research Centre, Cairo, Egypt
| | - Hanaa Rasmy
- Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Solaf Ahmed Kamel
- Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Mona Hamed Ibrahim
- Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Mona Mostafa
- Internal Medicine Department, National Research Centre, Cairo, Egypt
| | - Walaa A. Fouad
- Community Medicine Department, National Research Centre, Cairo, Egypt
| | - Hala M. Raslan
- Internal Medicine Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Zhao Y, Tao M, Wei M, Du S, Wang H, Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3804-3813. [PMID: 31549864 DOI: 10.1080/21691401.2019.1669619] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease. Adipose mesenchymal stem cells (AMSCs) can produce a mass of exosomes. The objective of this study was to determine the effects of exosomal miR-323-3p on cumulus cells (CCs) of PCOS patients. Exosomal miR-323-3p were collected from modified AMSCs. Real-time PCR, western blots, MTT assays, flow cytometry, luciferase reporter assays and a letrozole-induced PCOS mouse model were used to identify mechanisms of exosomal miR-323-3p on CCs. The results revealed that miR-323-3p expression was upregulated in AMSCs, exosomes and CCs. Upregulated miR-323-3p promoted cell proliferation and suppressed apoptosis in CCs, while miR-323-3p inhibitor exerted opposite roles in exosome-treated CCs. Moreover, PDCD4 was upregulated in PCOS CCs, displayed an inverse expression pattern to those of miR-323-3p, and was a direct target of miR-323-3p. Overexpression of PDCD4 reversed the effects of upregulated miR-323-3p on CCs. Serum FSH, LH and testosterone were upregulated while E2 levels were downregulated in the PCOS mice. Upregulation of miR-323-3p alleviated PCOS by suppressing CCs' apoptosis through targeting PDCD4 in vivo. The results demonstrated that exosomal miR-323-3p promoted cell proliferation and inhibited apoptosis in CCs through targeting PDCD4 in PCOS. This study provides insight into developing new therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Yinghui Zhao
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Mei Tao
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Meiling Wei
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Shengye Du
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Hongping Wang
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Xiaohong Wang
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| |
Collapse
|
11
|
Chen P, Li Y, Li L, Yu Q, Chao K, Zhou G, Qiu Y, Feng R, Huang S, He Y, Chen B, Chen M, Zeng Z, Zhang S. Circulating microRNA146b-5p is superior to C-reactive protein as a novel biomarker for monitoring inflammatory bowel disease. Aliment Pharmacol Ther 2019; 49:733-743. [PMID: 30734320 DOI: 10.1111/apt.15159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/06/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Owing to the importance of early treatment, simple and reliable methods for monitoring inflammatory bowel disease (IBD) are needed. AIMS To determine whether circulating microRNAs are reliable biomarkers for IBD monitoring. METHODS Serum levels of 17 candidate microRNAs were measured by quantitative real-time polymerase chain reaction in a discovery cohort (n = 120). Differentially expressed serum microRNAs were further investigated in an independent training cohort (n = 341). Correlations between relative microRNA levels and disease activity were evaluated. A disease control group was included to investigate the specificity of microRNA. Logistical regression was used to construct a microRNA classifier to identify endoscopic activity. Its predictive value was explored in the validation cohort (n = 66) using the area under the receiver operating characteristic curve (AUC). RESULTS Serum microRNA146b-5p (miR-146b-5p) expression was 2.87- and 2.72-fold higher in patients with Crohn's disease and ulcerative colitis, respectively, than in healthy controls. Serum miR-146b-5p was significantly correlated with disease activity and was more specific than C-reactive protein (CRP). A classifier was built for Crohn's disease, ie P [Endoscopically active] = 11+e2.937-0.737(miR-146b-5p)-0.008PLT , with a greater AUC of 0.869 [0.764-0.940] than that for CRP (0.680 [0.554-0.790]) (P = 0.0043). CONCLUSIONS MiR-146b-5p may better reflect mucosal inflammation in IBD than CRP. The Crohn's disease classifier developed in this study may be valuable for identifying endoscopic activity in patients with Crohn's disease.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiao Yu
- Division of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Kang Chao
- Division of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun Qiu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shanshan Huang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
12
|
Brennan GP, Vitsios DM, Casey S, Looney AM, Hallberg B, Henshall DC, Boylan GB, Murray DM, Mooney C. RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS One 2018; 13:e0207952. [PMID: 30507953 PMCID: PMC6277075 DOI: 10.1371/journal.pone.0207952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dimitrios M. Vitsios
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | | | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - David C. Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Catherine Mooney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
13
|
Qiao C, Yang L, Wan J, Liu X, Pang C, You W, Zhao G. Long noncoding RNA ANRIL contributes to the development of ulcerative colitis by miR-323b-5p/TLR4/MyD88/NF-κB pathway. Biochem Biophys Res Commun 2018; 508:217-224. [PMID: 30477744 DOI: 10.1016/j.bbrc.2018.11.100] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the role and possible mechanism of long noncoding RNA ANRIL in the development of ulcerative colitis (UC). The expression of ANRIL in colonic mucosa tissues collected from the sigmoid colon of UC patients and healthy control was determined. Subsequently, fetal human cells (FHCs) were treated with lipopolysaccharide (LPS) to stimulate UC-caused inflammatory injury, followed by detection of the effects of suppression of ANRIL on cell viability, apoptosis and cytokines production in LPS-stimulated FHCs. Moreover, the regulatory relationship between ANRIL and miR-323b-5p as well as the target relationship between miR-323b-5p and TLR4 were investigated. Furthermore, the effects of ANRIL/miR-323b-5p axis on the activation of TLR4/MyD88/NF-κB pathway in LPS-stimulated FHCs were investigated. LncRNA ANRIL was highly expressed in colonic mucosa tissues of UC patients. In addition, LPS markedly induced cell injury in FHC cells (inhibited cell viability and promoted cell apoptosis and cytokine production). Suppression of ANRIL alleviated LPS-induced injury in FHC cells, which was achieved by negatively regulating miR-323b-5p. Moreover, miR-323b-5p negatively regulated TLR4 expression and TLR4 was a target of miR-323b-5p. Knockdown of TLR4 reversed the effects of miR-323b-5p suppression on LPS-induced injury in LPS-stimulated FHCs. Furthermore, the effects of ANRIL on LPS-induced cell injury were achieved by TLR4/MyD88/NF-κB pathway. Our data indicate that suppression of ANRIL may inhibit the development of UC by regulating miR-323b-5p/TLR4/MyD88/NF-κB pathway. ANRIL/miR-323b-5p/TLR4/MyD88/NF-κB pathway may provide a new strategy for UC therapy.
Collapse
Affiliation(s)
- Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jine Wan
- Department of High Pressure Oxygen, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xiaoling Liu
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, Shandong, 266000, China
| | - Chengjian Pang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Wenli You
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| |
Collapse
|
14
|
Teijido O, Cacabelos R. Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2018; 19:E3199. [PMID: 30332838 PMCID: PMC6213964 DOI: 10.3390/ijms19103199] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular and neurodegenerative disorders affect one billion people around the world and result from a combination of genomic, epigenomic, metabolic, and environmental factors. Diagnosis at late stages of disease progression, limited knowledge of gene biomarkers and molecular mechanisms of the pathology, and conventional compounds based on symptomatic rather than mechanistic features, determine the lack of success of current treatments, including current FDA-approved conventional drugs. The epigenetic approach opens new avenues for the detection of early presymptomatic pathological events that would allow the implementation of novel strategies in order to stop or delay the pathological process. The reversibility and potential restoring of epigenetic aberrations along with their potential use as targets for pharmacological and dietary interventions sited the use of epidrugs as potential novel candidates for successful treatments of multifactorial disorders involving neurodegeneration. This manuscript includes a description of the most relevant epigenetic mechanisms involved in the most prevalent neurodegenerative disorders worldwide, as well as the main potential epigenetic-based compounds under investigation for treatment of those disorders and their limitations.
Collapse
Affiliation(s)
- Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| |
Collapse
|
15
|
Wang T, Liu Y, Lv M, Xing Q, Zhang Z, He X, Xu Y, Wei Z, Cao Y. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene 2018; 683:87-100. [PMID: 30300681 DOI: 10.1016/j.gene.2018.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic heterogeneous disorder. The incidence of which reaches 5% to 10% among reproductive-age women. Abnormal folliculogenesis is considered to be a common characteristic of PCOS, but the cause of this disorder and its pathogenesis still remain uncertain. Previous studies had proved that dysregulation of microRNAs is related to the pathogenesis of PCOS. In this study, we investigated the effect of miR-323-3p on the human cumulus cells (CCs). We also investigated the underlying mechanisms of miR-323-3p on human granulosa-like tumor cell line (KGN) or primary human CCs by stimulating with Dihydrotestosterone (DHT). Our findings suggested that the level of miR-323-3p in human CCs of women with PCOS was down-regulated, compared with that of the control group. Moreover, the inhibition of the level of miR-323-3p could up-regulate of the steroidogenesis and promote the apoptosis in KGN cells. In addition, our data confirmed that the Insulin-like growth factor 1 (IGF-1) gene was the direct target of miR-323-3p. Furthermore, the mimic of miR-323-3p inhibited the expression of IGF-1, which down-regulated the levels of AR, AMHR-II, CYP19A, EGFR, and GATA-4. In conclusion, miR-323-3p targeting IGF-1 regulates the steroidogenesis and the activity of CCs, which plays an important role in the occurrence and development of PCOS. Our results have shown that miR-323-3p is a novel and promising molecular target for the improvement of the dysfunction of CCs in PCOS.
Collapse
Affiliation(s)
- Tianjuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Qiong Xing
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
16
|
Malpeli G, Barbi S, Zupo S, Tosadori G, Scardoni G, Bertolaso A, Sartoris S, Ugel S, Vicentini C, Fassan M, Adamo A, Krampera M, Scupoli MT, Croce CM, Scarpa A. Identification of microRNAs implicated in the late differentiation stages of normal B cells suggests a central role for miRNA targets ZEB1 and TP53. Oncotarget 2017; 8:11809-11826. [PMID: 28107180 PMCID: PMC5355306 DOI: 10.18632/oncotarget.14683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
In the late B cell differentiation stages, miRNAs expression modifications promoting or inhibiting key pathways are only partially defined. We isolated 29 CD19+ human B cell samples at different stages of differentiation: B cells from peripheral blood; naïve, germinal center (GC) and subepithelial (SE) B cells from tonsils. SE cells were further split in activated and resting B cell. The miRNA expression profile of these B cells was assessed by microarray analysis and selected miRNAs were validated by quantitative RT-PCR and in situ hybridization on normal tonsils. The comparison of all samples showed changes in 107 miRNAs in total. Among 48 miRNAs differentially expressed in naïve, GC and SE cells, we identified 8 miRNAs: mir-323, mir-138, mir-9*, mir-211, mir-149, mir-373, mir-135a and mir-184, strictly specific to follicular cells that had never been implicated before in late stages of B cell development. Moreover, we unveiled 34 miRNAs able to discriminate between CD5− activated B cells and resting B cells. The miRNAs profile of CD5− resting B cells showed a higher similarity to naïve CD5+ than CD5− activated B cells. Finally, network analysis on shortest paths connecting gene targets suggested ZEB1 and TP53 as key miRNA targets during the follicular differentiation pathway. These data confirm and extend our knowledge on the miRNAs-related regulatory pathways involved in the late B cell maturation.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Stefano Barbi
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Simonetta Zupo
- Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gabriele Tosadori
- Center for BioMedical Computing (CBMC), University of Verona, Verona, Italy
| | - Giovanni Scardoni
- Center for BioMedical Computing (CBMC), University of Verona, Verona, Italy
| | - Anna Bertolaso
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Annalisa Adamo
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | | | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| |
Collapse
|
17
|
Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum 2017; 46:724-731. [DOI: 10.1016/j.semarthrit.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
|
18
|
Cretoiu D, Xu J, Xiao J, Suciu N, Cretoiu SM. Circulating MicroRNAs as Potential Molecular Biomarkers in Pathophysiological Evolution of Pregnancy. DISEASE MARKERS 2016; 2016:3851054. [PMID: 27493447 PMCID: PMC4967453 DOI: 10.1155/2016/3851054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs represent nonprotein coding small RNA molecules that are very stable to degradation and responsible for gene silencing in most eukaryotic cells. Increased evidence has been accumulating over the years about their potential value as biomarkers for several diseases. MicroRNAs were predicted to be involved in nearly all biological processes from development to oncogenesis. In this review, we address the importance of circulating microRNAs in different conditions associated with pregnancy starting with the implantation period to preeclampsia and we shortly describe the correlation between placental circulating miRNAs and pregnancy status. We also discuss the importance of microRNAs in recurrent abortion and ectopic pregnancy.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Nicolae Suciu
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 011062 Bucharest, Romania
- Alessandrescu-Rusescu National Institute of Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
19
|
Churov AV, Oleinik EK, Knip M. MicroRNAs in rheumatoid arthritis: Altered expression and diagnostic potential. Autoimmun Rev 2015; 14:1029-37. [DOI: 10.1016/j.autrev.2015.07.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/07/2015] [Indexed: 01/17/2023]
|
20
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
21
|
Yoo JK, Kim CH, Jung HY, Lee DR, Kim JK. Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. Exp Gerontol 2014; 58:139-45. [PMID: 25087724 DOI: 10.1016/j.exger.2014.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest in which specific mRNAs and miRNAs are involved in senescence progression. miRNAs interact with specific mRNAs to regulate various cellular mechanisms, including metabolism, proliferation, apoptosis, senescence and differentiation. In this study, we identify and characterize miRNAs during cellular senescence in mesenchymal stem cells (MSCs). Using previously reported miRNAs, expression profiling of 23 miRNAs was performed using real-time PCR analysis. Among these miRNAs, 19 miRNAs showed upregulated expression patterns in senescent MSCs compared with young MSCs, and 5 miRNAs were downregulated. These miRNAs have not been previously identified as being related to cellular senescence but seem to be related. miR-103-2*, miR-140-5p and miR-330-5p are highly upregulated, while miR-29b and miR-199b-5p are significantly downregulated in senescent MSCs. We identify unique functions of 5 miRNAs and predict putative target genes of 5 miRNAs using our previous report. Among them, miR-199b-5p directly suppressed LAMC1 expression, as shown in a luciferase assay. miR-199b-5p significantly regulates translational activity but does not control post-transcriptional activity. Likewise, miR-199b-5p modulates LAMC networks, which demonstrates the resulting phenomenon during cellular senescence, namely, that miR-199b-5p indirectly regulates cellular senescence in MSCs.
Collapse
Affiliation(s)
- Jung Ki Yoo
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk Ilsan Hospital, Gyeonggi-do 410-773, Republic of Korea
| | - Ho Yong Jung
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, 606-5 Yeoksam-dong, Gangnam-gu, Seoul 135-081, Republic of Korea.
| | - Jin Kyeoung Kim
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea.
| |
Collapse
|
22
|
Abstract
We provide a review of microRNA (miRNA) related to human implantation which shows the potential diagnostic role of miRNAs in impaired endometrial receptivity, altered embryo development, implantation failure after assisted reproduction technology, and in ectopic pregnancy and pregnancies of unknown location. MicroRNAs may be emerging diagnostic markers and potential therapeutic tools for understanding implantation disorders. However, further research is needed before miRNAs can be used in clinical practice for identifying and treating implantation failure.
Collapse
|