1
|
Dupuy S, Salvador J, Morille M, Noël D, Belamie E. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biomater Sci 2025; 13:1871-1900. [PMID: 40052975 DOI: 10.1039/d5bm00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sustained release and controlled bioavailability of biological factors, thereby improving therapeutic outcomes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules (molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the approaches developed to maintain the biomolecules in scaffolds and control their release, based on their chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to their application in cartilage repair.
Collapse
Affiliation(s)
- Silouane Dupuy
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Jérémy Salvador
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Emmanuel Belamie
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
2
|
Wu J, Li J, Mao S, Li B, Zhu L, Jia P, Huang G, Yang X, Xu L, Qiu D, Wang S, Dong Y. Heparin-Functionalized Bioactive Glass to Harvest Endogenous Growth Factors for Pulp Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30715-30727. [PMID: 38833722 DOI: 10.1021/acsami.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pulp and periapical diseases can lead to the cessation of tooth development, resulting in compromised tooth structure and functions. Despite numerous efforts to induce pulp regeneration, effective strategies are still lacking. Growth factors (GFs) hold considerable promise in pulp regeneration due to their diverse cellular regulatory properties. However, the limited half-lives and susceptibility to degradation of exogenous GFs necessitate the administration of supra-physiological doses, leading to undesirable side effects. In this research, a heparin-functionalized bioactive glass (CaO-P2O5-SiO2-Heparin, abbreviated as PSC-Heparin) with strong bioactivity and a stable neutral pH is developed as a promising candidate to addressing challenges in pulp regeneration. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis reveal the successful synthesis of PSC-Heparin. Scanning electron microscopy and X-ray diffraction show the hydroxyapatite formation can be observed on the surface of PSC-Heparin after soaking in simulated body fluid for 12 h. PSC-Heparin is capable of harvesting various endogenous GFs and sustainably releasing them over an extended duration by the enzyme-linked immunosorbent assay. Cytological experiments show that developed PSC-Heparin can facilitate the adhesion, migration, proliferation, and odontogenic differentiation of stem cells from apical papillae. Notably, the histological analysis of subcutaneous implantation in nude mice demonstrates PSC-Heparin is capable of promoting the odontoblast-like layers and pulp-dentin complex formation without the addition of exogenous GFs, which is vital for clinical applications. This work highlights an effective strategy of harvesting endogenous GFs and avoiding the involvement of exogenous GFs to achieve pulp-dentin complex regeneration, which may open a new horizon for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jingyi Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Sicong Mao
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Baokui Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Lin Zhu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Peipei Jia
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xule Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Sainan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
3
|
Nikolaeva V, Kamalov M, Abdullin TI, Salakhieva D, Chasov V, Rogov A, Zoughaib M. Evaluation of GHK peptide-heparin interactions in multifunctional liposomal covering. J Liposome Res 2024; 34:18-30. [PMID: 37144381 DOI: 10.1080/08982104.2023.2206894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 05/06/2023]
Abstract
Small biospecific peptides with defined chemical structure and cellular responses are promising alternatives to full-length therapeutic proteins. Identification of these peptides solely or in combination with other bioactive factors and determination of their targets are of substantial interest in current drug delivery research. This study is aimed at the development of new liposomal formulations of ECM-derived GHK peptide known for its multiple regeneration-related activities but poorly recognized cellular targets. In situ association of membranotropic GHK derivative with unilamellar liposomes was performed to prepare GHK-modified liposomes with defined properties. According to DLS, the GHK component on the liposomal surface interacted with heparin in a specific manner compared to other polysaccharides and RGD counterpart, whereas ITC analysis of such interactions was complicated. The results provide a useful tool for screening of bio-interactions of synthetic peptide-presenting liposomes by the DLS technique. They were also employed to produce a multi-functional nanosized GHK-heparin covering for liposomes. The resulting composite liposomes possessed low size dispersity, increased anionic charge, and mechanical rigidity. The heparin component significantly promoted the accumulation of GHK-modified liposomes in 3T3 fibroblasts so that the composite liposomes exhibited the highest cell-penetrating activity. Furthermore, the latter formulation stimulated cell proliferation and strongly inhibited ROS production and GSH depletion under oxidative stress conditions. Together, the results support that cell-surface glycosaminoglycans can be involved in GHK-mediated liposomal delivery, which can be further greatly enhanced by association with heparin. The composite liposomes with GHK-heparin covering can be considered as an advanced GHK-based formulation for therapeutic and cosmeceutical applications.
Collapse
Affiliation(s)
- Viktoriia Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Marat Kamalov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Diana Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
4
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
5
|
Tyubaeva PM, Varyan IA, Nikolskaya ED, Mollaeva MR, Yabbarov NG, Sokol MB, Chirkina MV, Popov AA. Biocompatibility and Antimicrobial Activity of Electrospun Fibrous Materials Based on PHB and Modified with Hemin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020236. [PMID: 36677989 PMCID: PMC9861043 DOI: 10.3390/nano13020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 05/31/2023]
Abstract
The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Elena D. Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Mariia R. Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Nikita G. Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Maria B. Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Margarita V. Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly A. Popov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| |
Collapse
|
6
|
Regeneration of Osteochondral Defects by Combined Delivery of Synovium-Derived Mesenchymal Stem Cells, TGF-β1 and BMP-4 in Heparin-Conjugated Fibrin Hydrogel. Polymers (Basel) 2022; 14:polym14245343. [PMID: 36559710 PMCID: PMC9780905 DOI: 10.3390/polym14245343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The regeneration of cartilage and osteochondral defects remains one of the most challenging clinical problems in orthopedic surgery. Currently, tissue-engineering techniques based on the delivery of appropriate growth factors and mesenchymal stem cells (MSCs) in hydrogel scaffolds are considered as the most promising therapeutic strategy for osteochondral defects regeneration. In this study, we fabricated a heparin-conjugated fibrin (HCF) hydrogel with synovium-derived mesenchymal stem cells (SDMSCs), transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-4 (BMP-4) to repair osteochondral defects in a rabbit model. An in vitro study showed that HCF hydrogel exhibited good biocompatibility, a slow degradation rate and sustained release of TGF-β1 and BMP-4 over 4 weeks. Macroscopic and histological evaluations revealed that implantation of HCF hydrogel with SDMSCs, TGF-β1 and BMP-4 significantly enhanced the regeneration of hyaline cartilage and the subchondral bone plate in osteochondral defects within 12 weeks compared to hydrogels with SDMSCs or growth factors alone. Thus, these data suggest that combined delivery of SDMSCs with TGF-β1 and BMP-4 in HCF hydrogel may synergistically enhance the therapeutic efficacy of osteochondral defect repair of the knee joints.
Collapse
|
7
|
Cook CJ, Miller AE, Barker TH, Di Y, Fogg KC. Characterizing the extracellular matrix transcriptome of cervical, endometrial, and uterine cancers. Matrix Biol Plus 2022; 15:100117. [PMID: 35898192 PMCID: PMC9309672 DOI: 10.1016/j.mbplus.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
The matrisome plays a critical role in the progression of cancer, but the matrisomes of gynecological cancers have not been well characterized. We built an in silico analysis pipeline to analyze publicly available bulk RNA-seq datasets of cervical, endometrial, and uterine cancers. Using a machine learning approach, we identified genes and gene networks that held inferential significance for cancer stage and patient survival. Cervical, endometrial, and uterine cancers are highly distinct from one another and should be analyzed separately.
Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted, exploration of the tumor microenvironment is critical for better understanding the progression of gynecological cancers, identifying key biomarkers for cancer progression, establishing the role of gene expression in patient survival, and for assisting in the development of new targeted therapies. In this work, we explored the matrisome gene expression profiles of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS) using publicly available RNA-seq data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) portal. We hypothesized that the matrisomal expression patterns of CESC, UCEC, and UCS would be highly distinct with respect to genes which are differentially expressed and hold inferential significance with respect to tumor progression, patient survival, or both. Through a combination of statistical and machine learning analysis techniques, we identified sets of genes and gene networks which characterized each of the gynecological cancer cohorts. Our findings demonstrate that the matrisome is critical for characterizing gynecological cancers and transcriptomic mechanisms of cancer progression and outcome. Furthermore, while the goal of pan-cancer transcriptional analyses is often to highlight the shared attributes of these cancer types, we demonstrate that they are highly distinct diseases which require separate analysis, modeling, and treatment approaches. In future studies, matrisome genes and gene ontology terms that were identified as holding inferential significance for cancer stage and patient survival can be evaluated as potential drug targets and incorporated into in vitro models of disease.
Collapse
Affiliation(s)
- Carson J Cook
- Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yanming Di
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlin C Fogg
- Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
8
|
Tyubaeva P, Varyan I, Krivandin A, Shatalova O, Karpova S, Lobanov A, Olkhov A, Popov A. The Comparison of Advanced Electrospun Materials Based on Poly(-3-hydroxybutyrate) with Natural and Synthetic Additives. J Funct Biomater 2022; 13:23. [PMID: 35323223 PMCID: PMC8955504 DOI: 10.3390/jfb13010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/10/2022] Open
Abstract
The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl). The structure of these new materials was investigated by methods such as optical and scanning electron microscopy, X-ray diffraction analysis, Electron paramagnetic resonance method, and Differential scanning calorimetry. The properties of the electrospun materials were analyzed by mechanical and biological tests, and the wetting contact angle was measured. In this work, it was found that even small concentrations of porphyrin can increase the antimicrobial properties by 12 times, improve the physical and mechanical properties by at least 3.5 times, and vary hydrophobicity by at least 5%. At the same time, additives similar in the structure had an oppositely directed effect on the supramolecular structure, the composition of the crystalline, and the amorphous phases. The article considers assumptions about the nature of such differences due to the influence of Hmi and Fe(TPP)Cl) on the macromolecular and fibrous structure of PHB.
Collapse
Affiliation(s)
- Polina Tyubaeva
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Ivetta Varyan
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Alexey Krivandin
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Olga Shatalova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Svetlana Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Anton Lobanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Anatoly Olkhov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Anatoly Popov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| |
Collapse
|
9
|
Cai Z, Tan Z, Tian R, Chen X, Miao P, Yao C, Wang C, Yu Z, Gu Y. Acellular Vascular Scaffolds Preloaded With Heparin and Hepatocyte Growth Factor for Small-Diameter Vascular Grafts Might Inhibit Intimal Hyperplasia. Cell Transplant 2022; 31:9636897221134541. [DOI: 10.1177/09636897221134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To develop small-diameter (<6 mm) scaffolds capable of accelerating rapid endothelialization and improving long-term patency rate, we created acellular vascular scaffolds preloaded with heparin and hepatocyte growth factor (HGF). Heparin was conjugated to suppress thrombogenic responses, and HGF was immobilized to induce endothelial cells (ECs) proliferation and migration. The scaffolds immobilized with heparin exhibited highly effective localization and sustained release of HGF for 30 days in vitro. We implanted this modified scaffold into the carotid artery of a rabbit model to investigate the efficacy in vivo. The acellular vascular scaffold with heparin only was used as control. After transplantation, the patency of this modified scaffold was 91.67% at 1, 3, 6, and 12 months, while the patency rate in the group with grafted heparin only was 83.33% at 1, 3, 6, and 12 months. This modified scaffold significantly stimulated ECs proliferation and the endothelium aligned in the direction of flow after 12 months. In addition, intimal hyperplasia was significantly reduced in the grafts coated with HGF compared with the control grafts. The small-diameter vascular grafts with an inner diameter of 2.5 mm preloaded with heparin and HGF may be a substitute for autologous blood vessels in clinic.
Collapse
Affiliation(s)
- Zhiwen Cai
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhengli Tan
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ran Tian
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peng Miao
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chenliang Yao
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Zhengya Yu
- Department of Vascular Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Tyubaeva P, Varyan I, Lobanov A, Olkhov A, Popov A. Effect of the Hemin Molecular Complexes on the Structure and Properties of the Composite Electrospun Materials Based on Poly(3-hydroxybutyrate). Polymers (Basel) 2021; 13:4024. [PMID: 34833324 PMCID: PMC8622405 DOI: 10.3390/polym13224024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The creation of innovative fibrous materials based on biodegradable semicrystalline polymers and modifying additives is an urgent scientific problem. In particular, the development of biomedical materials based on molecular complexes and biopolymers with controlled properties is of great interest. The paper suggests an approach to modifying the structure and properties of the composite materials based on poly(3-hydroxybutyrate) (PHB) obtained by the electrospinning method using molecular complexes of hemin. The introduction of 1-5 wt. % of hemin has a significant effect on the supramolecular structure, morphology and properties of PHB-based fibers. Changes in the supramolecular structure intensified with the increasing hemin concentration. On the one hand, a decrease in the fraction of the crystalline phase by 8-10% was observed. At the same time, there is a decrease in the density of the amorphous phase by 15-70%. Moreover, the addition of hemin leads to an improvement in the strength characteristics of the material: the elongation at break increased by 1.5 times, and in the tensile strength, it increased by 3 times. The antimicrobial activity of the hemin-containing composite materials against Escherichia coli and Staphylococcus aureus was confirmed. The obtained materials are proposed to be used in the creation of composite systems for regenerative medicine.
Collapse
Affiliation(s)
- Polina Tyubaeva
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Ivetta Varyan
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anton Lobanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly Olkhov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly Popov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| |
Collapse
|
11
|
Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021; 65:569-585. [PMID: 34156062 DOI: 10.1042/ebc20200130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.
Collapse
|
12
|
Vijayan A, C K N, Vinod Kumar GS. ECM-mimicking nanofibrous scaffold enriched with dual growth factor carrying nanoparticles for diabetic wound healing. NANOSCALE ADVANCES 2021; 3:3085-3092. [PMID: 36133662 PMCID: PMC9416804 DOI: 10.1039/d0na00926a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/27/2021] [Indexed: 05/14/2023]
Abstract
Polymeric nanofibrous scaffolds provide fine-tuned structures with inter-connecting pores resembling the natural extracellular matrix (ECM) in tissues, and show good potential in assisting the creation of artificial functional tissue. Additional application of growth factors helps to regulate the cellular behaviors and tissue assembly in the scaffolds, which eases the healing process. In this study, we synthesized an electrospun polymer scaffold system enriched with nanoparticles containing growth factors for accelerated healing of diabetic wounds. BSA nanoparticles were synthesized by cross-linking with PEG aldehyde. To free the amino group of BSA, heparin was conjugated by EDC/NHS chemistry. The angiogenic growth factors bFGF and VEGF were bound to heparin by electrostatic interaction. These nanoparticles were adsorbed on to electrospun collagen/PLGA/chitosan nanofibers. The synthesized nanofiber system was evaluated in vitro for its cell viability and proliferation. In vivo experiments conducted in a streptozotocin-induced diabetic mice model showed accelerated wound healing. The excellent healing efficiency of this ECM-mimicking nanofiber scaffold makes it a great candidate for therapeutic application in diabetic wounds.
Collapse
Affiliation(s)
- Amritha Vijayan
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology Thycaud P.O Thiruvananthapuram Kerala India-695014
- Research Centre, University of Kerala Thiruvananthapuram Kerala India
| | - Nanditha C K
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology Thycaud P.O Thiruvananthapuram Kerala India-695014
- Research Centre, University of Kerala Thiruvananthapuram Kerala India
| | - G S Vinod Kumar
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology Thycaud P.O Thiruvananthapuram Kerala India-695014
| |
Collapse
|
13
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
14
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
15
|
Zhao Y, Kaltashov IA. Evaluation of top-down mass spectrometry and ion-mobility spectroscopy as a means of mapping protein-binding motifs within heparin chains. Analyst 2020; 145:3090-3099. [PMID: 32150181 PMCID: PMC7160044 DOI: 10.1039/d0an00097c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying structural elements within heparin (as well as other glycosaminoglycan) chains that enable their interaction with a specific client protein remains a challenging task due to the high degree of both intra- and inter-chain heterogeneity exhibited by this polysaccharide. The new experimental approach explored in this work is based on the assumption that the heparin chain segments bound to the protein surface will be less prone to collision-induced dissociation (CID) in the gas phase compared to the chain regions that are not involved in binding. Facile removal of the unbound chain segments from the protein/heparin complex should allow the length and the number of sulfate groups within the protein-binding segment of the heparin chain to be determined by measuring the mass of the truncated heparin chain that remains bound to the protein. Conformational integrity of the heparin-binding interface on the protein surface in the course of CID is ensured by monitoring the evolution of collisional cross-section (CCS) of the protein/heparin complexes as a function of collisional energy. A dramatic increase in CCS signals the occurrence of large-scale conformational changes within the protein and identifies the energy threshold, beyond which relevant information on the protein-binding segments of heparin chains is unlikely to be obtained. Testing this approach using a 1 : 1 complex formed by a recombinant form of an acidic fibroblast growth factor (FGF-1) and a synthetic pentasaccharide GlcNS,6S-GlcA-GlcNS,3S,6S-IdoA2S-GlcNS,6S-Me as a model system indicated that a tri-saccharide fragment is the minimal-length FGF-binding segment. Extension of this approach to a decameric heparin chain (dp10) allowed meaningful binding data to be obtained for a 1 : 1 protein/dp10 complex, while the ions representing the higher stoichiometry complex (2 : 1) underwent dissociation via asymmetric charge partitioning without generating truncated heparin chains that remain bound to the protein.
Collapse
Affiliation(s)
- Yunlong Zhao
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Levinson C, Lee M, Applegate LA, Zenobi-Wong M. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater 2019; 99:168-180. [PMID: 31536840 DOI: 10.1016/j.actbio.2019.09.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
Abstract
Cartilage lacks basic repair mechanisms and thus surgical interventions are necessary to treat lesions. Minimally-invasive arthroscopic procedures require the development of injectable biomaterials to support chondrogenesis of implanted cells. However, most cartilage tissue engineering approaches rely on pre-culture of scaffolds in media containing growth factors (GFs) such as transforming growth factor (TGF)-β1, which are crucial for cartilage formation and homeostasis. GFs media-supplementation is incompatible with injectable approaches and has led to a knowledge gap about optimal dose of GFs and release profiles needed to achieve chondrogenesis. This study aims to determine the optimal loading and release kinetics of TGF-β1 bound to an engineered GAG hydrogel to promote optimal cartilaginous matrix production in absence of TGF-β1 media-supplementation. We show that heparin, a GAG known to bind a wide range of GFs, covalently conjugated to a hyaluronan hydrogel, leads to a sustained release of TGF-β1. Using this heparin-conjugated hyaluronan hydrogel, 0.25 to 50 ng TGF-β1 per scaffold was loaded and cell viability, proliferation and cartilaginous matrix deposition of the encapsulated chondroprogenitor cells were measured. Excellent chondrogenesis was found when 5 ng TGF-β1 per scaffold and higher were used. We also demonstrate the necessity of a sustained release of TGF-β1, as no matrix deposition is observed upon a burst release. In conclusion, our biomaterial loaded with an optimal initial dose of 5 ng/scaffold TGF-β1 is a promising injectable material for cartilage repair, with potentially increased safety due to the low, locally administered GF dose. STATEMENT OF SIGNIFICANCE: Cartilage cell-based products are dependent on exogenous growth factor supplementation in order for proper tissue maturation. However, for a one-step repair of defects without need for expensive tissue maturation, an injectable, growth factor loaded formulation is required. Here we show development of an injectable hyaluronan hydrogel, which achieves a sustained release of TGF-β1 due to covalent conjugation of heparin. These grafts matured into cartilaginous tissue in the absence of growth factor supplementation. Additionally, this system allowed us to screen TGF-β1 concentrations to determine the mimimum amount of growth factor required for chondrogenesis. This study represents a critical step towards development of a minimally-invasive, arthroscopic treatment for cartilage lesions.
Collapse
|
17
|
Chopra P, Logun MT, White EM, Lu W, Locklin J, Karumbaiah L, Boons GJ. Fully Synthetic Heparan Sulfate-Based Neural Tissue Construct That Maintains the Undifferentiated State of Neural Stem Cells. ACS Chem Biol 2019; 14:1921-1929. [PMID: 31389687 DOI: 10.1021/acschembio.9b00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparin and heparan sulfate (HS) are attractive components for constructing biomaterials due to their ability to recruit and regulate the activity of growth factors. The structural and functional heterogeneity of naturally derived heparin and HS is, however, an impediment for the preparation of biomaterials for regenerative medicine. To address this problem, we have prepared hydrogels modified by well-defined synthetic HS-derived disaccharides. Human induced pluripotent cell-derived neural stem cells (HIP-NSCs) encapsulated in a polyethylene glycol-based hydrogel modified by a pendent HS disaccharide that is a known ligand for fibroblast growth factor-2 (FGF-2) exhibited a significant increase in proliferation and self-renewal. This observation is important because evidence is emerging that undifferentiated stems cells can yield significant therapeutic benefits via their paracrine signaling mechanisms. Our data indicate that the HS disaccharide protects FGF-2, which has a very short biological half-live, from degradation. It is anticipated that, by careful selection of a synthetic HS oligosaccharide, it will be possible to control retention and release of specific growth factor, which in turn will provide control over cell fate.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Meghan T. Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 422 River Road, Athens, Georgia 30602, United States
| | - Evan M. White
- New Material Institute, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Jason Locklin
- New Material Institute, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 422 River Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
18
|
Vijayan A, James PP, Nanditha CK, Kumar GSV. Multiple cargo deliveries of growth factors and antimicrobial peptide using biodegradable nanopolymer as a potential wound healing system. Int J Nanomedicine 2019; 14:2253-2263. [PMID: 30992665 PMCID: PMC6445221 DOI: 10.2147/ijn.s190321] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Treatment of wounds with the help of nanoparticles (NPs) is more effective and superior in comparison to traditional wound healing methods as it protects and sustains active drug release at the wound site thus enhancing the safety of the drug and reducing the possibility of side effects. The advantages of this method are the possibility of allowing a reduction in administered dose, limiting toxicity levels to the minimum, and increasing safety of topical delivery of the drug. Materials and methods We report the synthesis of a novel poly (lactic-co-glycolic acid) (PLGA) NP-based multicargo delivery system for growth factors and antimicrobial peptide. Growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were entrapped in PLGA NPs by solvent diffusion method and an antimicrobial peptide (K4) was conjugated to the NP by carbodiimide chemistry. The developed multiple cargo delivery systems with growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) were investigated and optimized for potential wound healing. Results The system showed a sustained release of growth factors and was evaluated for cytotoxicity by MTT and live/dead assay, which revealed that the bioactivity of the growth factor-entrapped NPs was higher than that of free growth factors, and it also induced enhanced cell proliferation in vitro. Conclusion The development of a system for the codelivery of growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) was investigated for potential wound healing application. The entrapment of growth factors with very high efficiency is an advantage in this method along with its sustained release from the nanoparticulate system, which will enhance the angiogenesis. Our system also displayed broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Amritha Vijayan
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| | - Pinky Prabha James
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| | - C K Nanditha
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| | - G S Vinod Kumar
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| |
Collapse
|
19
|
In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing. Eur J Pharmacol 2017; 814:45-55. [DOI: 10.1016/j.ejphar.2017.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
|
20
|
Choi WI, Sahu A, Vilos C, Kamaly N, Jo SM, Lee JH, Tae G. Bioinspired Heparin Nanosponge Prepared by Photo-crosslinking for Controlled Release of Growth Factors. Sci Rep 2017; 7:14351. [PMID: 29084990 PMCID: PMC5662564 DOI: 10.1038/s41598-017-14040-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Growth factors have great therapeutic potential for various disease therapy and tissue engineering applications. However, their clinical efficacy is hampered by low bioavailability, rapid degradation in vivo and non-specific biodistribution. Nanoparticle based delivery systems are being evaluated to overcome these limitations. Herein, we have developed a thermosensitive heparin nanosponge (Hep-NS) by a one step photopolymerization reaction between diacrylated pluronic and thiolated heparin molecules. The amount of heparin in Hep-NS was precisely controlled by varying the heparin amount in the reaction feed. Hep-NS with varying amounts of heparin showed similar size and shape properties, though surface charge decreased with an increase in the amount of heparin conjugation. The anticoagulant activity of the Hep-NS decreased by 65% compared to free heparin, however the Hep-NS retained their growth factor binding ability. Four different growth factors, bFGF, VEGF, BMP-2, and HGF were successfully encapsulated into Hep-NS. In vitro studies showed sustained release of all the growth factors for almost 60 days and the rate of release was directly dependent on the amount of heparin in Hep-NS. The released growth factors retained their bioactivity as assessed by a cell proliferation assay. This heparin nanosponge is therefore a promising nanocarrier for the loading and controlled release of growth factors.
Collapse
Affiliation(s)
- Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Cristian Vilos
- Universidad Andres Bello, Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Santiago, 8370071, Chile.,Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
| | - Nazila Kamaly
- Technical University of Denmark, Department of Micro and Nanotechnology, DTU Nanotech, Bioinspired Nanomaterials Lab, 2800, Kgs, Lyngby, Denmark
| | - Seong-Min Jo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jin Hyung Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
21
|
Smink AM, Li S, Swart DH, Hertsig DT, de Haan BJ, Kamps JAAM, Schwab L, van Apeldoorn AA, de Koning E, Faas MM, Lakey JRT, de Vos P. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia. J Biomed Mater Res A 2017; 105:2533-2542. [PMID: 28470672 PMCID: PMC5575460 DOI: 10.1002/jbm.a.36101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by applying liposomes for controlled release of angiogenic factors. The angiogenic capacity of platelet-derived growth factor, vascular endothelial growth factor, acidic fibroblast growth factor (aFGF), and basic FGF were compared in a tube formation assay. Furthermore, the release kinetics of different liposome compositions were tested. aFGF and L-α-phosphatidylcholine/cholesterol liposomes were selected to support vascularization. Two dosages of aFGF-liposomes (0.5 and 1.0 μg aFGF per injection) were administered weekly for a month after which islets were transplanted. We observed enhanced efficacy in the immediate post-transplant period compared to the untreated scaffolds. However, on the long-term, glucose levels of the aFGF treated animals started to increase to diabetic levels. These results suggest that injections with aFGF liposomes do improve vascularization and the immediate restoration of blood glucose levels but does not facilitate the long-term survival of islets. Our data emphasize the need for long-term studies to evaluate potential beneficial and adverse effects of vascularization protocols of scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2533-2542, 2017.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiri Li
- Department of Surgery, University of California Irvine, Orange
| | - Daniël H Swart
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Bart J de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Aart A van Apeldoorn
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Eelco de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange.,Department of Biomedical Engineering, University of California Irvine, Irvine
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Qi W, Yan J, Sun H, Wang H. Multifunctional Nanocomposite Films for Synergistic Delivery of bFGF and BMP-2. ACS OMEGA 2017; 2:899-909. [PMID: 30023619 PMCID: PMC6044765 DOI: 10.1021/acsomega.6b00420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 05/06/2023]
Abstract
The development of novel materials capable of delivering multiple growth factors is urgent and essential for rapid and effective tissue regeneration. In this study, a kind of composite film composed of poly-l-lysine (PLL), heparin (Hep), and Au nanoparitcles (Au nps) has been fabricated to deliver the basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) simultaneously. The films have been found to show enhanced mechanical property due to the incorporation of Au nps. They have also shown good anticoagulation activity with long activated partial thromboplastin time because of the contribution of Hep molecules. Moreover, the osteogenesis studies reveal that the loaded bFGF and BMP-2 in the composite films have a synergistic differentiation effect on mesenchymal stem cells, as indicated by alkaline phosphatase (ALP) activity assay and collagen type I (Col-I) gene expression. In contrast to the (PLL/Hep)6/BMP-2/(PLL/Au nps)6/(PLL/Hep)6 and (PLL/Hep)6/(PLL/Au nps)6/(PLL/Hep)6/bFGF films, the (PLL/Hep)6/BMP-2/(PLL/Au nps)6/(PLL/Hep)6/bFGF films have shown higher ALP activity and higher Col-I expression level. Therefore, the developed multifunctional films could be potentially used as osteoinductive coatings of biomaterials. Particularly, this simple and convenient strategy provides an effective approach for the immobilization of multiple growth factors, which may be extended to other bioactive systems for the development of novel multifunctional bioactive surfaces.
Collapse
Affiliation(s)
- Wei Qi
- College of Chemistry and
Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Jing Yan
- College of Chemistry and
Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Haifeng Sun
- College of Chemistry and
Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Hua Wang
- College of Chemistry and
Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu, Shandong 273165, China
| |
Collapse
|
23
|
Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, Latifi M. Nanofibrous and nanoparticle materials as drug-delivery systems. NANOSTRUCTURES FOR DRUG DELIVERY 2017:239-270. [DOI: 10.1016/b978-0-323-46143-6.00007-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
The use of heparin chemistry to improve dental osteogenesis associated with implants. Carbohydr Polym 2016; 157:1750-1758. [PMID: 27987891 DOI: 10.1016/j.carbpol.2016.11.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 01/06/2023]
Abstract
In this study, we designed a hybrid Ti by heparin modifying the Ti surface followed by Growth/differentiation factor-5 (GDF-5) loading. After that, products were characterized by physicochemical analysis. Quantitative analysis of functionalized groups was also confirmed. The release behavior of GDF-5 grafted samples was confirmed for up to 21days. The surface modification process was found to be successful and to effectively immobilize GDF-5 and provide for its sustained release behavior. As an in vitro test, GDF-5 loaded Ti showed significantly enhanced osteogenic differentiation with increased calcium deposition under nontoxic conditions against periodontal ligament stem cells (PDLSc). Furthermore, an in vivo result showed that GDF-5 loaded Ti had a significant influence on new bone formation in a rabbit model. These results clearly confirmed that our strategy may suggest a useful paradigm by inducing osseo-integration as a means to remodeling and healing of bone defects for restorative procedures in dentistry.
Collapse
|
25
|
Bae MS, Ko NR, Lee SJ, Lee JB, Heo DN, Byun W, Choi BJ, Jeon HB, Jang HJ, Ahn JY, Hwang DS, Jung BY, Kwon IK. Development of novel photopolymerizable hyaluronic acid/heparin-based hydrogel scaffolds with a controlled release of growth factors for enhanced bone regeneration. Macromol Res 2016. [DOI: 10.1007/s13233-016-4112-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Mantione D, Del Agua I, Schaafsma W, Diez-Garcia J, Castro B, Sardon H, Mecerreyes D. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Macromol Biosci 2016; 16:1227-38. [PMID: 27168277 DOI: 10.1002/mabi.201600059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/07/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED There is an actual need of advanced materials for the emerging field of bioelectronics. One commonly used material is the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT PSS) due to its general use in organic electronics. However, depending on the application in bioelectronics, PEDOT PSS is not fully biocompatible due to the high acidity of the residual sulfonate protons of PSS. In this paper, the synthesis and biocompatibility properties of new poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan ( PEDOT GAG) aqueous dispersions and its resulting films are shown. Thus, negatively charged GAGs as an alternative to PSS are presented. Three different commercially available GAGs, hyaluronic acid, heparin, and chondroitin sulfate are used. Indeed, PEDOT GAGs dispersions are prepared through an oxidative chemical polymerization in water. Biocompatibility assays of the PEDOT GAGs coatings are performed using SH-SY5Y and CCF-STTG1 cell lines and with ATP and Ca(2+) . Results show full biocompatibility and a pronounced anti-inflammatory effect. This last characteristic becomes crucial if implanted in the body. These materials can be used for in vivo applications, as transistor or electrode for electrical recording and for all the possible situations when there is contact between electronic circuits and living tissues.
Collapse
Affiliation(s)
- Daniele Mantione
- Institute for Polymer Materials (POLYMAT), University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-san, Sebastian, Spain
| | - Isabel Del Agua
- Institute for Polymer Materials (POLYMAT), University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-san, Sebastian, Spain
| | - Wandert Schaafsma
- Histocell, S.L, Science and Technology Park, 48170 Derio, Vizcaya, Spain
| | - Javier Diez-Garcia
- Histocell, S.L, Science and Technology Park, 48170 Derio, Vizcaya, Spain
| | - Begona Castro
- Histocell, S.L, Science and Technology Park, 48170 Derio, Vizcaya, Spain
| | - Haritz Sardon
- Institute for Polymer Materials (POLYMAT), University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-san, Sebastian, Spain
| | - David Mecerreyes
- Institute for Polymer Materials (POLYMAT), University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-san, Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain
| |
Collapse
|
27
|
Makhni MC, Caldwell JME, Saifi C, Fischer CR, Lehman RA, Lenke LG, Lee FY. Tissue engineering advances in spine surgery. Regen Med 2016; 11:211-22. [DOI: 10.2217/rme.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autograft, while currently the gold standard for bone grafting, has several significant disadvantages including limited supply, donor site pain, hematoma formation, nerve and vascular injury, and fracture. Bone allografts have their own disadvantages including reduced osteoinductive capability, lack of osteoprogenitor cells, immunogenicity and risk of disease transmission. Thus demand exists for tissue-engineered constructs that can produce viable bone while avoiding the complications associated with human tissue grafts. This review will focus on recent advancements in tissue-engineered bone graft substitutes utilizing nanoscale technology in spine surgery applications. An evaluation will be performed of bone graft substitutes, biomimetic 3D scaffolds, bone morphogenetic protein, mesenchymal stem cells and intervertebral disc regeneration strategies.
Collapse
Affiliation(s)
- Melvin C Makhni
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Jon-Michael E Caldwell
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Comron Saifi
- The Spine Hospital, Department of Orthopedic Surgery, New York-Presbyterian Healthcare System, Columbia University Medical Center, 5141 Broadway, New York, NY 10034, USA
| | - Charla R Fischer
- The Spine Hospital, Department of Orthopedic Surgery, New York-Presbyterian Healthcare System, Columbia University Medical Center, 5141 Broadway, New York, NY 10034, USA
| | - Ronald A Lehman
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Lawrence G Lenke
- The Spine Hospital, Department of Orthopedic Surgery, New York-Presbyterian Healthcare System, Columbia University Medical Center, 5141 Broadway, New York, NY 10034, USA
| | - Francis Y Lee
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
28
|
Parker J, Mitrousis N, Shoichet MS. Hydrogel for Simultaneous Tunable Growth Factor Delivery and Enhanced Viability of Encapsulated Cells in Vitro. Biomacromolecules 2016; 17:476-84. [DOI: 10.1021/acs.biomac.5b01366] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- James Parker
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly
Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Nikolaos Mitrousis
- Donnelly
Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Molly S. Shoichet
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly
Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
29
|
Zhao Y, Abzalimov RR, Kaltashov IA. Interactions of Intact Unfractionated Heparin with Its Client Proteins Can Be Probed Directly Using Native Electrospray Ionization Mass Spectrometry. Anal Chem 2016; 88:1711-8. [DOI: 10.1021/acs.analchem.5b03792] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunlong Zhao
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Rinat R. Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Kootala S, Zhang Y, Ghalib S, Tolmachev V, Hilborn J, Ossipov DA. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Biomater Sci 2016; 4:250-4. [DOI: 10.1039/c5bm00355e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequestration and active release of BMP-2 in HA-BP hydrogels to precursor cells aid rapid differentiation to osteoblasts.
Collapse
Affiliation(s)
- Sujit Kootala
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Yu Zhang
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Sara Ghalib
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences
- Rudbeck Laboratory
- Uppsala University
- S-75121 Uppsala
- Sweden
| | - Jöns Hilborn
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Dmitri A. Ossipov
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
31
|
Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 2015; 84:45-67. [PMID: 25445719 PMCID: PMC4428953 DOI: 10.1016/j.addr.2014.11.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
Abstract
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo.
Collapse
Affiliation(s)
- Julia E Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
32
|
Inozemtseva OA, Salkovskiy YE, Severyukhina AN, Vidyasheva IV, Petrova NV, Metwally HA, Stetciura IY, Gorin DA. Electrospinning of functional materials for biomedicine and tissue engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Shin YM, La WG, Lee MS, Yang HS, Lim YM. Extracellular matrix-inspired BMP-2-delivering biodegradable fibrous particles for bone tissue engineering. J Mater Chem B 2015; 3:8375-8382. [DOI: 10.1039/c5tb01310k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A heparin conjugated fibrous particle resembling the structure of an extracellular matrix was developed. The BMP-2 loaded particles promoted osteogenic differentiation and healing of a bone defect, in vitro and in vivo.
Collapse
Affiliation(s)
- Young Min Shin
- Research Division for Industry and Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute
- 580-185 Republic of Korea
| | - Wan-Geun La
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Youn-Mook Lim
- Research Division for Industry and Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute
- 580-185 Republic of Korea
| |
Collapse
|
34
|
Kirchmajer DM, Gorkin III R, in het Panhuis M. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B 2015; 3:4105-4117. [DOI: 10.1039/c5tb00393h] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review hydrogel-forming polymers that are suitable for extrusion-based 3D printing are evaluated.
Collapse
Affiliation(s)
- D. M. Kirchmajer
- Soft Materials Group
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - R. Gorkin III
- Intelligent Polymer Research Institute
- ARC Centre of Excellence for Electromaterials Science
- AIIM Facility
- University of Wollongong
- Australia
| | - M. in het Panhuis
- Soft Materials Group
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
35
|
Zieris A, Dockhorn R, Röhrich A, Zimmermann R, Müller M, Welzel PB, Tsurkan MV, Sommer JU, Freudenberg U, Werner C. Biohybrid Networks of Selectively Desulfated Glycosaminoglycans for Tunable Growth Factor Delivery. Biomacromolecules 2014; 15:4439-46. [DOI: 10.1021/bm5012294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Zieris
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Ron Dockhorn
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Institute
for Theoretical Physics, Technische Universität Dresden, Zellescher Weg
17, 01069 Dresden, Germany
| | - Anika Röhrich
- B CUBE
Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Petra B. Welzel
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Mikhail V. Tsurkan
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Institute
for Theoretical Physics, Technische Universität Dresden, Zellescher Weg
17, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Center
for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Center
for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
36
|
Abstract
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
Collapse
|
37
|
Han B, Yang Z, Fang JY, Kuwahara K, Nimni M, Thanasukarn J, Tayag C. The Effects of Heparin Binding Proteins in Platelet Releasate on Bone Formation. Tissue Eng Part A 2014; 20:1263-70. [DOI: 10.1089/ten.tea.2013.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Bo Han
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Zhi Yang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Josephine Y. Fang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Kenric Kuwahara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Marcel Nimni
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - John Thanasukarn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| | - Charisse Tayag
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Southern California, Los Angeles, California
| |
Collapse
|
38
|
|
39
|
Signaling pathways regulating dose-dependent dual effects of TNF-α on primary cultured Schwann cells. Mol Cell Biochem 2013; 378:237-46. [PMID: 23479382 DOI: 10.1007/s11010-013-1614-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
After peripheral nerve injury, Schwann cells are rapidly activated to participate in the regenerative process and modulate local immune reactions. Tumor necrosis factor-α (TNF-α), one of the major initiators of the inflammatory cascade, has been known to exert pleiotropic functions during peripheral nerve injury and regeneration. In this study, we aimed to investigate the in vitro effects of TNF-α on peripheral neural cells. First, gene-microarray analysis was applied to the RNA samples extracted from injured peripheral nerves, providing the information of gene interactions post nerve injury. Then, after primary cultured Schwann cells were treated with increasing dosages (0-40 ng/ml) of TNF-α, cell proliferation and migration were examined by EdU incorporation and a transwell-based assay, and cell apoptosis was observed and quantified by electron microscopy and Annexin V-FITC assay, respectively. The results showed that lower dosages of TNF-α increased cell proliferation and migration, whereas higher dosages of TNF-α decreased cell proliferation and migration and enhanced cell apoptosis. The tests using a chemical inhibitor of TNF-α further confirmed the above effects of TNF-α. To understand how TNF-α produced the dose-dependent dual effects on primary cultured Schwann cells, we performed co-immunoprecipitation, Western blot analysis, and immunocytochemistry to decipher the complex network of biochemical pathways involving many signaling molecules, i.e., TNF receptor-associated death domain, Fas-associated death domain, receptor interacting protein, JNK, NF-κB p65, and caspases, thus assuming the mechanisms by which TNF-α activated the death and survival pathways and achieved a balance between the two opposite actions in primary cultured Schwann cells.
Collapse
|
40
|
Lin TC, Chen JH, Chen YH, Teng TM, Su CH, Hsu SH. Biodegradable micelles from a hyaluronan-poly(ε-caprolactone) graft copolymer as nanocarriers for fibroblast growth factor 1. J Mater Chem B 2013; 1:5977-5987. [DOI: 10.1039/c3tb21134g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Lauzon MA, Bergeron É, Marcos B, Faucheux N. Bone repair: New developments in growth factor delivery systems and their mathematical modeling. J Control Release 2012; 162:502-20. [DOI: 10.1016/j.jconrel.2012.07.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/29/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
42
|
Princz M, Sheardown H. Heparin-modified dendrimer crosslinked collagen matrices for the delivery of heparin-binding epidermal growth factor. J Biomed Mater Res A 2012; 100:1929-37. [DOI: 10.1002/jbm.a.34128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/23/2023]
|
43
|
Purpura KA, Bratt-Leal AM, Hammersmith KA, McDevitt TC, Zandstra PW. Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 2012; 33:1271-80. [PMID: 22079776 PMCID: PMC4280365 DOI: 10.1016/j.biomaterials.2011.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 01/23/2023]
Abstract
Pluripotent stem cells (PSC) provide insight into development and may underpin new cell therapies, yet controlling PSC differentiation to generate functional cells remains a significant challenge. In this study we explored the concept that mimicking the local in vivo microenvironment during mesoderm specification could promote the emergence of hematopoietic progenitor cells from embryonic stem cells (ESCs). First, we assessed the expression of early phenotypic markers of mesoderm differentiation (E-cadherin, brachyury (T-GFP), PDGFRα, and Flk1: +/-ETPF) to reveal that E-T+P+F+ cells have the highest capacity for hematopoiesis. Second, we determined how initial aggregate size influences the emergence of mesodermal phenotypes (E-T+P+F+, E-T-P+/-F+, and E-T-P+F-) and discovered that colony forming cell (CFC) output was maximal with ~100 cells per PSC aggregate. Finally, we introduced these 100-cell PSC aggregates into a low oxygen environment (5%; to upregulate endogenous VEGF secretion) and delivered two potent blood-inductive molecules, BMP4 and TPO (bone morphogenetic protein-4 and thrombopoietin), locally from microparticles to obtain a more robust differentiation response than soluble delivery methods alone. Approximately 1.7-fold more CFCs were generated with localized delivery in comparison to exogenous delivery, while combined growth factor use was reduced ~14.2-fold. By systematically engineering the complex and dynamic environmental signals associated with the in vivo blood developmental niche we demonstrate a significant role for inductive endogenous signaling and introduce a tunable platform for enhancing PSC differentiation efficiency to specific lineages.
Collapse
Affiliation(s)
- Kelly A. Purpura
- The Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Andrés M. Bratt-Leal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Katy A. Hammersmith
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter W. Zandstra
- The Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| |
Collapse
|
44
|
Abstract
Heparin and glycosaminoglycans (GAGs) related structurally to heparin, notably heparan sulphate, bind to most, if not all, chemokines and many growth factors. The chemokine and growth factor interactions with GAGs localise the peptide mediators to specific sites in tissues and influence their stability and function. This chapter discusses the nature of these interactions and the effect on the function of a number of chemokines (PF-4, interleukin-8, RANTES and SDF-1) and growth factors (FGF, HGF, VEGF) in normal physiology and the disease setting. Novel therapeutic interventions that target chemokine and growth factor interactions with GAGs are also discussed.
Collapse
|
45
|
Du F, Wang H, Zhao W, Li D, Kong D, Yang J, Zhang Y. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 2012; 33:762-70. [DOI: 10.1016/j.biomaterials.2011.10.037] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
|
46
|
Sustained Cytoplasmic Delivery and Anti-viral Effect of PLGA Nanoparticles Carrying a Nucleic Acid-Hydrolyzing Monoclonal Antibody. Pharm Res 2011; 29:932-42. [DOI: 10.1007/s11095-011-0633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 11/21/2011] [Indexed: 12/17/2022]
|
47
|
Pereira DR, Silva-Correia J, Oliveira JM, Reis RL. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration. J Tissue Eng Regen Med 2011; 7:85-98. [PMID: 22072398 DOI: 10.1002/term.500] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
Abstract
Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE&RM) strategies are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP substitutes will be addressed due to their similarities to NP mechanical properties and extracellular matrix. These hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich plasma and their potential clinical applications.
Collapse
Affiliation(s)
- D R Pereira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal.
| | | | | | | |
Collapse
|
48
|
Anderson SM, Siegman SN, Segura T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 2011; 32:7432-43. [PMID: 21783250 DOI: 10.1016/j.biomaterials.2011.06.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
Vascular endothelial growth factor (VEGF) has been extensively investigated to promote vascularization at damaged or diseased sites and in tissue implants. Here we are interested in determining if the manner in which VEGF is presented from a scaffold to endothelial cells influences the architecture of the blood vessels formed. We bound VEGF to nanoparticles and placed these nanoparticles inside fibrin hydrogels, which contained human umbilical vein endothelial cells (HUVECs) bound to cytodex beads. Fibroblast cells are plated on top of the fibrin gel to further mimic a physiologic environment. In addition, we used a chorioallantoic membrane (CAM) assay to determine the role of VEGF presentation on angiogenesis in vivo. We tested VEGF bound in high density and low density to study differences between growth factor presentation in heterogeneous nanodomains and homogenous distribution. VEGF covalently bound to nanoparticles at high density led to an increase in HUVEC tube branching, thickness, and total vessel network length compared to soluble VEGF. While VEGF bound electrostatically exhibited no significant difference with covalently bound VEGF in the tube formation assay, this method failed to promote host vessel infiltration into the fibrin implant on the CAM. Together our data suggest that the mode of VEGF presentation to endothelial cells influences the vessel architecture and vascularization of implants in vivo.
Collapse
Affiliation(s)
- Sean M Anderson
- University of California, Chemical and Biomolecular Engineering Department, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
49
|
Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release 2011; 154:258-66. [PMID: 21745508 DOI: 10.1016/j.jconrel.2011.06.027] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/26/2011] [Accepted: 06/18/2011] [Indexed: 12/28/2022]
Abstract
Photocrosslinkable biomaterials are promising for tissue engineering applications due to their capacity to be injected and form hydrogels in situ in a minimally invasive manner. Our group recently reported on the development of photocrosslinked alginate hydrogels with controlled biodegradation rates, mechanical properties, and cell adhesive properties. In this study, we present an affinity-based growth factor delivery system by incorporating heparin into photocrosslinkable alginate hydrogels (HP-ALG), which allows for controlled, prolonged release of therapeutic proteins. Heparin modification had minimal effect on the biodegradation profiles, swelling ratios, and elastic moduli of the hydrogels in media. The release profiles of growth factors from this affinity-based platform were sustained for 3weeks with no initial burst release, and the released growth factors retained their biological activity. Implantation of bone morphogenetic protein-2 (BMP-2)-loaded photocrosslinked alginate hydrogels induced moderate bone formation around the implant periphery. Importantly, BMP-2-loaded photocrosslinked HP-ALG hydrogels induced significantly more osteogenesis than BMP-2-loaded photocrosslinked unmodified alginate hydrogels, with 1.9-fold greater peripheral bone formation and 1.3-fold greater calcium content in the BMP-2-loaded photocrosslinked HP-ALG hydrogels compared to the BMP-2-loaded photocrosslinked unmodified alginate hydrogels after 8weeks implantation. This sustained and controllable growth factor delivery system, with independently controllable physical and cell adhesive properties, may provide a powerful modality for a variety of therapeutic applications.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
50
|
Tran NQ, Joung YK, Lih E, Park KD. In Situ Forming and Rutin-Releasing Chitosan Hydrogels As Injectable Dressings for Dermal Wound Healing. Biomacromolecules 2011; 12:2872-80. [DOI: 10.1021/bm200326g] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ngoc Quyen Tran
- Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, Republic of Korea
| | - Yoon Ki Joung
- Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, Republic of Korea
| | - Eugene Lih
- Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, Republic of Korea
| |
Collapse
|