1
|
Sangsawang P, Wisuttirattanamanee C, Aueng-Aree N, Thivasasith A, Ittisanronnachai S, Kaiyasuan C, Ngamroj P, Phophuttharaksa N, Tanalikhit P, Chavanalikigorn N, Mueanngern Y. Bifunctional metavanadate promoted chitosan/cassava biopolymer films with photo-switchable wetting properties: unveiling the surface restructuring mechanism. RSC Adv 2025; 15:7758-7768. [PMID: 40070393 PMCID: PMC11895528 DOI: 10.1039/d4ra08196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Biopolymer films derived from starch and chitosan were soaked in vanadium salt solutions to produce vanadium metallopolymer films. Visible light irradiation induces significant color shifts from yellow to green due to changes in the oxidation state of vanadium. The material was observed to undergo dramatic structural changes upon incorporation of vanadium, with further restructuring occurring after visible light illumination. Metallopolymer films exhibited enhanced hydrophobic properties, which were further amplified when the material was irradiated with visible light, resulting in water contact angles up to 103°. X-ray photoelectron spectroscopy (XPS) measurements reveal that photoirradiation reduces vanadium metal from the 5+ (VO3 -) oxidation state to lower oxidation states. Initially, V5+ (VO3 -) interacts electrostatically with -NH3 + moieties in chitosan. These interactions were diminished following photoreduction as the formation of reduced species such as V4+ (VO2+) decreases the interaction of vanadium (previously V5+) with -NH3 +. As the biopolymer chain breaks free from vanadium, interactions between neighboring polymer strands increase, leading to significant shifts in biopolymer surface structuring. Atomic force microscopy (AFM) measurements showed high root mean square (RMS) roughness values in starch-chitosan control films due to free interactions between biopolymer chains. Upon vanadium soaking, the chains were pulled inward by electrostatic attraction, which created a constraint that reduced the configurational states of the polymer and prevented the chains from interacting with neighboring polymer chains, significantly lowering RMS roughness. After photoirradiation, the electrostatic forces became repulsive, which released the polymer from this constraint and led to a slight increase in RMS roughness. The newly structured surface, dominated by high-frequency features, aligns well with the hydrophobicity model being developed in this work. To verify the reversible nature of the film's surface properties, irradiation and oxidative treatment cycles were conducted, and the contact angle of water was shown to drastically cycle from >100° following irradiation to ≈60° after oxidative treatments. This reversible property provides prospects and design parameters for the fabrication of future smart photo-switchable biopolymer films.
Collapse
Affiliation(s)
- Pongpop Sangsawang
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Chayada Wisuttirattanamanee
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Nichaphat Aueng-Aree
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Anawat Thivasasith
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Chokchai Kaiyasuan
- School of Molecular Science and Engineering (MSE), Vidyasirimedhi Institute of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Pawarisa Ngamroj
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Natthakit Phophuttharaksa
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Pattarapon Tanalikhit
- Department of Physics, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Natputthiya Chavanalikigorn
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| | - Yutichai Mueanngern
- Department of Chemistry, Kamnoetvidya Science Academy 999 Moo 1, Pa Yup Nai, Wang Chan Rayong 21210 Thailand
| |
Collapse
|
2
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
3
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
4
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Illanes-Bordomás C, Landin M, García-González CA. Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery. Pharmaceutics 2023; 15:2639. [PMID: 38004617 PMCID: PMC10674668 DOI: 10.3390/pharmaceutics15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.
Collapse
Affiliation(s)
| | - Mariana Landin
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| |
Collapse
|
6
|
Jing S, Chen H, Liu E, Zhang M, Zeng F, Shen H, Fang Y, Muhitdinov B, Huang Y. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydr Polym 2023; 316:121025. [PMID: 37321723 DOI: 10.1016/j.carbpol.2023.121025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, life quality-reducing disease with no cures available yet. To develop an effective medication suitable for long-term use is an urgent but unmet need. Quercetin (QT) is a natural dietary flavonoid with good safety and multifaceted pharmacological activities against inflammation. However, orally administrated quercetin yields unproductive outcomes for IBD treatment because of its poor solubility and extensive metabolism in the gastrointestinal tract. In this work, a colon-targeted QT delivery system (termed COS-CaP-QT) was developed, of which the pectin (PEC)/Ca2+ microspheres were prepared and then crosslinked by oligochitosan (COS). The drug release profile of COS-CaP-QT was pH-dependent and colon microenvironment-responsive, and COS-CaP-QT showed preferential distribution in the colon. The mechanism study showed that QT triggered the Notch pathway to regulate the proliferation of T helper 2 (Th2) cells and group 3 innate lymphoid cells (ILC3s) and the inflammatory microenvironment was remodeled. The in vivo therapeutic results revealed that COS-CaP-QT could relieve the colitis symptoms and maintain the colon length and intestinal barrier integrity.
Collapse
Affiliation(s)
- Shisuo Jing
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Huayuan Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Feng Zeng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bahtiyor Muhitdinov
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China; Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Yongzhuo Huang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.
| |
Collapse
|
7
|
Ahualli S, Orozco-Barrera S, Medina Castillo A, Delgado A. Effect of coating nanostructure on the electrokinetics of polyelectrolyte-coated particles. Grafted vs adsorbed polymer. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Influence of free and immobilized chitosan on a defined human gut microbial ecosystem. Food Res Int 2022; 161:111890. [DOI: 10.1016/j.foodres.2022.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
9
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
10
|
Alhodieb FS, Barkat MA, Barkat HA, Hadi HA, Khan MI, Ashfaq F, Rahman MA, Hassan MZ, Alanezi AA. Chitosan-modified nanocarriers as carriers for anticancer drug delivery: Promises and hurdles. Int J Biol Macromol 2022; 217:457-469. [PMID: 35798082 DOI: 10.1016/j.ijbiomac.2022.06.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
With the advent of drug delivery, various polymeric materials are being explored to fabricate numerous nanocarriers. Each polymer is associated with a few characteristics attributes which further facilitate its usage in drug delivery. One such polymer is chitosan (CS), which is extensively employed to deliver a variety of drugs to various targets, especially to cancer cells. The desired properties like biological origin, bio-adhesive, biocompatibility, the scope of chemical modification, biodegradability and controlled drug release make it a highly rough after polymer in pharmaceutical nanotechnology. The present review attempts to compile various chemical modifications on CS and showcase the outcomes of the derived nanocarriers, especially in cancer chemotherapy and drug delivery.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arrass, Qassim University, P.O. BOX:6666, Buraidah, 51452, Saudi Arabia.
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia.
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia; Dermatopharmaceutics Research Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia.
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia.
| | - Muhammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arrass, Qassim University, P.O. BOX:6666, Buraidah, 51452, Saudi Arabia.
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | | | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Abdulkareem A Alanezi
- Department of Pharmaceuics, College of pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al-Batin 39524, Saudi Arabia.
| |
Collapse
|
11
|
Vu THN, Morozkina SN, Uspenskaya MV. Study of the Nanofibers Fabrication Conditions from the Mixture of Poly(vinyl alcohol) and Chitosan by Electrospinning Method. Polymers (Basel) 2022; 14:811. [PMID: 35215724 PMCID: PMC8963080 DOI: 10.3390/polym14040811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nanofiber fabrication is attracting great attention from scientists and technologists due to its applications in many fields of life. In order to design a nanosized polymer-based drug delivery system, we studied the conditions for the fabrication of electrospun nanofibers from poly (vinyl alcohol) (PVA) and chitosan (CS), which are well-known as biocompatible, biodegradable and non-toxic polymers that are widely used in the medical field. Aiming to develop nanofibers that can directly target diseased cells for treatment, such as cancerous cells, the ideal choice would be a system that contains the highest CS content as well as high quality fibers. In the present manuscript, it is expected to become the basis for improving the low bioavailability of medicinal drugs limited by poor solubility and low permeability. PVA-CS nanofibers were obtained by electrospinning at a PVA:CS ratio of 5:5 in a 60% (w/w) acetic acid solution under the following parameters: voltage 30 kV, feed rate 0.2 mL/h, needle-collector distance 14 cm. The obtained fibers were relatively uniform, with a diameter range of 77-292 nm and average diameter of 153 nm. The nanofiber system holds promise as a potential material for the integration of therapeutic drugs.
Collapse
Affiliation(s)
- Thi Hong Nhung Vu
- Chemical Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia; (S.N.M.); (M.V.U.)
| | | | | |
Collapse
|
12
|
Sriwidodo, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022; 8:e08934. [PMID: 35243059 PMCID: PMC8861389 DOI: 10.1016/j.heliyon.2022.e08934] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes have been used extensively as micro- and nanocarriers for hydrophobic or hydrophilic molecules. However, conventional liposomes are biodegradable and quickly eliminated, making it difficult to be used for delivery in specific routes, such as the oral and systemic routes. One way to overcome this problem is through complexation with polymers, which is referred to as a liposome complex. The use of polymers can increase the stability of liposome with regard to pH, chemicals, enzymes, and the immune system. In some cases, specific polymers can condition the properties of liposomes to be explicitly used in drug delivery, such as targeted delivery and controlled release. These properties are influenced by the type of polymer, crosslinker, interaction, and bond in the complexation process. Therefore, it is crucial to study and review these parameters for the development of more optimal forms and properties of the liposome complex. This article discusses the use of natural and synthetic polymers, ways of interaction between polymers and liposomes (on the surface, incorporation in lamellar chains, and within liposomes), types of bonds, evaluation standards, and their effects on the stability and pharmacokinetic profile of the liposome complex, drugs, and vaccines. This article concludes that both natural and synthetic polymers can be used in modifying the structure and physicochemical properties of liposomes to specify their use in targeted delivery, controlled release, and stabilizing drugs and vaccines.
Collapse
Affiliation(s)
- Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjoy Das
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Tang L, Chen YH, Wang Q, Wang XH, Wu QX, Ding ZF. Microencapsulation of functional ovalbumin and bovine serum albumin with polylysine-alginate complex for sustained protein vehicle's development. Food Chem 2022; 368:130902. [PMID: 34438176 DOI: 10.1016/j.foodchem.2021.130902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Overcoming harsh gastric environment is still a challenging to bioactive proteins, microencapsulation provides one strategy in designing this protection barrier. In this work, bovine serum albumin and ovalbumin were chosen as model proteins, while polylysine-alginate complex was fabricated for microencapsulation purpose. Both of the protein-loaded microcapsules had regular internal microstructures. The model protein's embedding increased the thermal stability of the microcapsules. Both of the protein-loaded microcapsules had a slow release rate in simulated gastric fluids (pH 3.0), while a sustained release profile in simulated intestinal fluids (pH 6.4), indicating an excellent tolerance to the acidic gastric environment. The microencapsulation process was mild and had no influence on the protein's molecular weight, while a slight peak shifting occurred in the secondary structure of the released proteins. The developed microcapsules could be explored as a kind of vehicle for bioactive proteins applied in functional foods, health care products and medical formulations.
Collapse
Affiliation(s)
- Ling Tang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yi-Hong Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Qiong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiao-Hui Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, Anhui 230601, China; Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | - Zhi-Feng Ding
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Development and Characterization of 5-Fluorouracil Solid Lipid Nanoparticles for Treatment of Colorectal Cancer. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: Update 2020. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Patil P, Killedar S. Green Approach Towards Synthesis and Characterization of GMO/Chitosan Nanoparticles for In Vitro Release of Quercetin: Isolated from Peels of Pomegranate Fruit. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
A systematic study on chitosan-liposome based systems for biomedical applications. Int J Biol Macromol 2020; 160:470-481. [DOI: 10.1016/j.ijbiomac.2020.05.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
|
18
|
Ahualli S, Bermúdez S, Carrique F, Jiménez ML, Delgado ÁV. AC Electrokinetics of Salt-Free Multilayered Polymer-Grafted Particles. Polymers (Basel) 2020; 12:E2097. [PMID: 32942664 PMCID: PMC7569943 DOI: 10.3390/polym12092097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022] Open
Abstract
Interest in the electrical properties of the interface between soft (or polymer-grafted) nanoparticles and solutions is considerable. Of particular significance is the case of polyelectrolyte-coated particles, mainly taking into account that the layer-by-layer procedure allows the control of the thickness and permeability of the layer, and the overall charge of the coated particle. Like in simpler systems, electrokinetic determinations in AC fields (including dielectric dispersion in the 1 kHz-1 MHz frequency range and dynamic electrophoresis by electroacoustic methods in the 1-18 MHz range) provide a large amount of information about the physics of the interface. Different models have dealt with the electrokinetics of particles coated by a single polymer layer, but studies regarding multi-layered particles are far scarcer. This is even more significant in the case of so-called salt-free systems; ideally, the only charges existing in this case consist of the charge in the layer(s) and the core particle itself, and their corresponding countercharges, with no other ions added. The aims of this paper are as follows: (i) the elaboration of a model for the evaluation of the electrokinetics of multi-grafted polymer particles in the presence of alternating electric fields, in dispersion media where no salts are added; (ii) to carry out an experimental evaluation of the frequency dependence of the dynamic (or AC) electrophoretic mobility and the dielectric permittivity of suspensions of polystyrene latex spherical particles coated with successive layers of cationic, anionic, and neutral polymers; and (iii) finally, to perform a comparison between predictions and experimental results, so that it can be demonstrated that the electrokinetic analysis is a useful tool for the in situ characterization of multilayered particles.
Collapse
Affiliation(s)
- Silvia Ahualli
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| | - Sara Bermúdez
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| | - Félix Carrique
- Department of Applied Physics I, School of Sciences, University of Málaga, 23071 Málaga, Spain;
| | - María L. Jiménez
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| | - Ángel V. Delgado
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| |
Collapse
|
19
|
Souza MPCD, Sábio RM, Ribeiro TDC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020; 159:804-822. [PMID: 32425271 PMCID: PMC7232078 DOI: 10.1016/j.ijbiomac.2020.05.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems. For a better understanding of the gastric retention mechanisms, we highlighted expandable, density-based, magnetic, mucoadhesive and superporous systems. The biological and chemical properties of CS, anatomophysiological aspects related to gastrointestinal tract (GIT) and some applications of these systems are also described here. Overall, this review may assist researchers to explore new strategies to design safe and efficient gastroretentive systems in order to popularize them in the treatment of diseases and clinical practices.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Tais de Cassia Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
20
|
Vinayak M, Maurya AK. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer Agents Med Chem 2020; 19:1560-1576. [PMID: 31284873 DOI: 10.2174/1871520619666190705150214] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.
Collapse
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Akhilendra K Maurya
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
21
|
Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydr Polym 2020; 230:115617. [DOI: 10.1016/j.carbpol.2019.115617] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
|
22
|
Wu Y, Sun M, Wang D, Li G, Huang J, Tan S, Bao L, Li Q, Li G, Si L. A PepT1 mediated medicinal nano-system for targeted delivery of cyclosporine A to alleviate acute severe ulcerative colitis. Biomater Sci 2019; 7:4299-4309. [PMID: 31408067 DOI: 10.1039/c9bm00925f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
To effectively alleviate acute severe ulcerative colitis (ASUC), we developed a colon-specific delivery system-PLGA-KPV/MMT/CS multifunctional medicinal nanoparticles loaded with cyclosporine A (CyA). The lysine-proline-valine (KPV) tripeptide, which possesses anti-inflammatory properties and high affinity to peptide transporter 1 (PepT1), can target therapy-related cells (colonic epithelial cells and macrophages) via overexpression of PepT1. Montmorillonite (MMT)/chitosan (CS) coating can reduce CyA leakage in the upper gastrointestinal tract (GIT) and enhance nanoparticle adhesion to the inflamed colon. The bio-distribution demonstrated that nanoparticles can specifically accumulate in the inflamed tissues and can be retained for up to 36 h. After being treated with the CyA-PLGA-KPV/MMT/CS nanoparticles (PKMCN), the mice with DSS-induced ulcerative colitis exhibited significant improvements in body weight, colon length, and disease activity index. Moreover, biochemistry and immunohistochemical analysis showed that the PKMCN treatment group performed as well as the healthy group. Intriguingly, PKMCN without CyA also presented marked therapeutic effects. Our results suggested that PKMCN could be a promising drug delivery system for ASUC therapy by targeting inflamed cells, prolonging curative time, and mitigating colitis.
Collapse
Affiliation(s)
- Ya Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Minghui Sun
- Department of Pharmacy, Affiliated Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Genyun Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Songwei Tan
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Lin Bao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Qian Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China.
| |
Collapse
|
23
|
Yuan D, O'Riordan ED, Jacquier JC. Development of a first order derivative spectrophotometry method to rapidly quantify protein in the presence of chitosan and its application in protein encapsulation systems. Food Chem 2019; 289:1-6. [DOI: 10.1016/j.foodchem.2019.02.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/27/2022]
|
24
|
Rashedi J, Ghorbani Haghjo A, Mesgari Abbasi M, Dastranj Tabrizi A, Yaqoubi S, Sanajou D, Ashrafi Jigheh Z, Namvaran A, Mohammadi A, Mohammadi Khoshraj J, Baradaran B. Anti-tumor Effect of Quercetin Loaded Chitosan Nanoparticles on Induced Colon Cancer in Wistar Rats. Adv Pharm Bull 2019; 9:409-415. [PMID: 31592135 PMCID: PMC6773937 DOI: 10.15171/apb.2019.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: This study was aimed to evaluate the site-specific drug delivery of 5-FU with chitosan (CS) as a carrier and quercetin (Qu) against induced colon cancer in Wistar rats. Methods: Cross-linked CS-Qu nanoparticles (NPs) were prepared by ionotropic gelation method. Physicochemical characterization of NPs was performed by Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), in vitro drug release, and drug loading efficiency (LE). 1, 2-Dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) were applied to induce adenocarcinoma tumors on inbred male Wistar rats' colon. The treatment group of rats was administered through enema with NPs dispersion. Hematoxylin and eosin staining were performed to the histopathological examination of tumors. Results: Zeta potential and particle size for NPs were +53.5 ± 5 mV and 179 ± 28 nm, respectively. About 96% Qu LE was obtained with a maximum release of 5.63 ±1.59% and 4.62 ± 1.33% after 24 hours in PB solution with pH values of 6 and 7.4, respectively. The numbers of 8 to 21 tumors were observed in all rats administered with DMH and DSS. Significantly decreasing of microvascular density and mitosis count was detected in the treatment group in comparison with cancerous group (P = 0.032 for the former compared to P = 0.016 for the later), respectively. Furthermore, the treatment group showed a high apoptosis rate (P = 0.038). Conclusion: The developed Qu-loaded CS NPs were good candidates for site-specific and sustained drug release in enema treatment. Decreasing of microvascular density and mitosis count, along with increasing the apoptosis percent in the treatment group proved that the NPs could have promising results in site-specific and sustained drug delivery against colorectal cancer.
Collapse
Affiliation(s)
- Jalil Rashedi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Dastranj Tabrizi
- Women’s Reproduction Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Yaqoubi
- Biotechnology Research Center and Faculty Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ashrafi Jigheh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Namvaran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
26
|
Chitosan - Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Maestrelli F, Mura P, González-Rodríguez ML, Cózar-Bernal MJ, Rabasco AM, Di Cesare Mannelli L, Ghelardini C. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus. Int J Pharm 2017; 530:430-439. [DOI: 10.1016/j.ijpharm.2017.07.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
28
|
Chen S, Guo F, Deng T, Zhu S, Liu W, Zhong H, Yu H, Luo R, Deng Z. Eudragit S100-Coated Chitosan Nanoparticles Co-loading Tat for Enhanced Oral Colon Absorption of Insulin. AAPS PharmSciTech 2017; 18:1277-1287. [PMID: 27480441 DOI: 10.1208/s12249-016-0594-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.
Collapse
|
29
|
Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int J Biol Macromol 2017; 97:16-22. [DOI: 10.1016/j.ijbiomac.2016.12.087] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023]
|
30
|
Andishmand H, Hamishehkar H, Babazadeh A, Taghvimi A, Mohammadifar MA, Tabibiazar M. A Colon Targeted Delivery System for Resveratrol Enriching in pH Responsive-Model. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
31
|
Liu J, Chen Y, Liu D, Liu W, Hu S, Zhou N, Xie Y. Ectopic expression of SIGIRR in the colon ameliorates colitis in mice by downregulating TLR4/NF-κB overactivation. Immunol Lett 2017; 183:52-61. [DOI: 10.1016/j.imlet.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/25/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
|
32
|
Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydr Polym 2017; 157:1853-1861. [DOI: 10.1016/j.carbpol.2016.11.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
|
33
|
Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms. Int J Pharm 2016; 513:464-472. [DOI: 10.1016/j.ijpharm.2016.09.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
|
34
|
Yue W, Yan F, Zhang YL, Liu SL, Hou SP, Mao GC, Liu N, Ji Y. Differentiation of Rat Bone Marrow Mesenchymal Stem Cells Into Neuron-Like Cells In Vitro and Co-Cultured with Biological Scaffold as Transplantation Carrier. Med Sci Monit 2016; 22:1766-72. [PMID: 27225035 PMCID: PMC4917310 DOI: 10.12659/msm.898441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Autograft and allograft transplantation are used to prompt the regeneration of axons after nerve injury. However, the poor self-regeneration caused by the glial scar and growth inhibitory factors after neuronal necrosis limit the efficacy of these methods. The purpose of this study was to develop a new chitosan porous scaffold for cell seeding. MATERIAL AND METHODS The bone marrow mesenchymal stem cells (BMSCs) and tissue-engineered biomaterial scaffold compound were constructed and co-cultured in vitro with the differentiated BMSCs of Wistar rats and chitosan scaffold in a 3D environment. The purity of the third-generation BMSCs culture was identified using flow cytometry and assessment of induced neuronal differentiation. The scaffolds were prepared by the freeze-drying method. The internal structure of scaffolds and the change of cells' growth and morphology were observed under a scanning electron microscope. The proliferation of cells was detected with the MTT method. RESULTS On day 5 there was a significant difference in the absorbance value of the experimental group (0.549±0.0256) and the control group (0.487±0.0357) (P>0.05); but on day 7 there was no significant difference in the proliferation of the experimental group (0.751±0.011) and the control group and (0.78±0.017) (P>0.05). CONCLUSIONS Tissue engineering technology can provide a carrier for cells seeding and is expected to become an effective method for the regeneration and repair of nerve cells. Our study showed that chitosan porous scaffolds can be used for such purposes.
Collapse
Affiliation(s)
- Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Feng Yan
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Yue-Lin Zhang
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Shu-Ling Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Shu-Ping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Guo-Chao Mao
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Ning Liu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| |
Collapse
|
35
|
Wu QX, Lin DQ, Yao SJ. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:909-915. [DOI: 10.1016/j.msec.2015.10.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/03/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
|
36
|
Saneja A, Nehate C, Alam N, Gupta PN. Recent Advances in Chitosan-Based Nanomedicines for Cancer Chemotherapy. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2016. [DOI: 10.1007/978-81-322-2511-9_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Caddeo C, Díez-Sales O, Pons R, Carbone C, Ennas G, Puglisi G, Fadda AM, Manconi M. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J Colloid Interface Sci 2016; 461:69-78. [DOI: 10.1016/j.jcis.2015.09.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
38
|
Guo F, Zhang M, Gao Y, Zhu S, Chen S, Liu W, Zhong H, Liu J. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation. Drug Deliv 2015; 23:2003-14. [DOI: 10.3109/10717544.2015.1048489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
39
|
Newton AMJ, Indana VL, Kumar J. Chronotherapeutic drug delivery of Tamarind gum, Chitosan and Okra gum controlled release colon targeted directly compressed Propranolol HCl matrix tablets and in-vitro evaluation. Int J Biol Macromol 2015; 79:290-9. [PMID: 25936283 DOI: 10.1016/j.ijbiomac.2015.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/10/2015] [Accepted: 03/24/2015] [Indexed: 02/05/2023]
Abstract
The main objective of this investigation is to develop a chronotherapeutic drug delivery of various natural polymers based colon targeted drug delivery systems to treat early morning sign in BP. The polymers such as Tamarind gum, Okra gum and Chitosan were used in the formulation design. A model drug Propranolol HCl was incorporated in the formulation in order to assess the controlled release and time dependent release potential of various natural polymers. A novel polymer Tamarind gum was extracted and used as a prime polymer in this study to prove the superiority of this polymer over other leading natural polymer. Propranolol HCl was used as a model drug which undergoes hepatic metabolism and witnesses the poor bioavailability. The matrix tablets of Propranolol HCl were prepared by direct compression. The tablets were evaluated for various quality control parameters and found to be within the limits. Carbopol 940 was used as an auxiliary polymer to modify the drug release and physicochemical characteristics of the tablets. The in vitro release studies were performed in 0.1N HCl for 1.5h, followed by pH 6.8 phosphate buffer for 2h and pH 7.4 phosphate buffer till maximum amount of drug release. The in vitro release profile of the formulations were fitted with various pharmacokinetic mathematical models and analyzed for release profile. The formulations prepared with Tamarind gum prolonged the release for an extended period of time compared to other polymer based formulation and showed an excellent compression characteristic.
Collapse
Affiliation(s)
- A M J Newton
- Rayat Bahra Institute of Pharmacy, Rayat Bahra University, Punjab, India; Research and Development Department, Jawaharlal Nehru Technological University, Hyderabad, India.
| | - V L Indana
- Nirmala College of Pharmacy, Andhra Pradesh, India
| | - Jatinder Kumar
- Rayat Bahra Institute of Pharmacy, Rayat Bahra University, Punjab, India
| |
Collapse
|
40
|
Palugan L, Cerea M, Zema L, Gazzaniga A, Maroni A. Coated pellets for oral colon delivery. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2014.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Wu QX, Lin DQ, Yao SJ. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar Drugs 2014; 12:6236-53. [PMID: 25532565 PMCID: PMC4278227 DOI: 10.3390/md12126236] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/04/2023] Open
Abstract
Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.
Collapse
Affiliation(s)
- Qing-Xi Wu
- Integrated Biotechnology Laboratory, School of Life Science, Anhui University, Hefei 230601, China.
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
42
|
|
43
|
Elviri L, DeRobertis S, Baldassarre S, Bettini R. Desorption electrospray ionization high-resolution mass spectrometry for the fast investigation of natural polysaccharide interactions with a model drug in controlled release systems. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1544-1552. [PMID: 24861606 DOI: 10.1002/rcm.6932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The control of drug release involves gaining an understanding of the complex interaction networks among drug-excipients-matrix-biological fluids. Thus, novel analytical methods that will lead to a better understanding of these interaction networks are urgently required. METHODS Desorption electrospray ionization high-resolution mass spectrometry (DESI-HRMS) was used to evaluate the behaviour of four biocompatible polysaccharides (chondroitin sulfate, chitosan, sodium alginate and λ-carrageenan) in the release of atenolol (ATN) from drug tablets. An aqueous solution at three different pH values (pH 7.4, 4.5 and 1.2) was electrosprayed onto the tablets, allowing direct, fast, sensitive detection of atenolol as the protonated molecule in positive ion mode. Information about the desorption mechanism was obtained by analyzing the ATN [M+H](+) ion signal as a function of time. ATN-polymer interactions in the drug/polymer mixtures were also studied by Horizontal Attenuated Total Reflectance (HATR) Fourier transform infrared (FTIR) spectroscopy. RESULTS The DESI-MS results revealed statistically different ATN desorption trends as a function of the polysaccharide investigated and the pH of the desorbing solution. Different release kinetics were ascribed to the drug-polymer interactions, and to the diffusion process of the drug through the hydrated polymer mesh. In particular, the alginate and λ-carrageenan matrices were able to sustain drug release from the tablet even for a highly soluble drug. The HATR results confirmed the presence of ATN-polymer interactions that, depending on the polymer-drug-solvent combination used, might affect ATN diffusion. CONCLUSIONS These results suggest that DESI-MS has a potential role for the micro-environmental analysis of drug diffusion and surface distribution in polymeric matrices.
Collapse
Affiliation(s)
- Lisa Elviri
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | | | | |
Collapse
|
44
|
Wei X, Lu Y, Qi J, Wu B, Chen J, Xu H, Wu W. An in situ crosslinked compression coat comprised of pectin and calcium chloride for colon-specific delivery of indomethacin. Drug Deliv 2014; 22:298-305. [PMID: 24471938 DOI: 10.3109/10717544.2013.879965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of pectin for colon-specific drug delivery has been extensively investigated; however, when used alone, pectin is often compromised due to its high solubility. This study explored the feasibility of using an in situ compression-coated crosslinking system, composed of pectin and calcium chloride, for colon-specific drug delivery. A pectin/calcium chloride (P/Ca) coating was compressed onto a core tablet. The colon specificity of the compression-coated tablet was verified by dissolution, pharmacokinetics and scintigraphy with (99m)Tc labeling. The in situ pectin and calcium chloride gel slowed the release of indomethacin. The lag time varied between 3 h and 7 h depending on the amount of calcium chloride and the coating weight. Pectinase triggered the release of indomethacin from the compression-coated tablet, which was then accelerated by the calcium chloride in the coating layer. The compression-coated tablet had a prolonged tmax and apparent t1/2, as well as a decreased Cmax and AUC0-t, compared with the core tablet counterpart. Evaluation with γ-scintigraphy verified colon-specific delivery of the compression-coated tablet. In conclusion, the P/Ca in situ crosslinking system worked well for colon-specific drug delivery.
Collapse
Affiliation(s)
- Xiuli Wei
- Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, School of Pharmacy, Fudan University , Shanghai , China and
| | | | | | | | | | | | | |
Collapse
|
45
|
Film coatings for oral colon delivery. Int J Pharm 2013; 457:372-94. [DOI: 10.1016/j.ijpharm.2013.05.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/07/2023]
|
46
|
|
47
|
Hartzell AL, Maldonado-Gómez MX, Yang J, Hutkins RW, Rose DJ. In vitro digestion and fermentation of 5-formyl-aminosailcylate-inulin: A potential prodrug of 5-aminosalicylic acid. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/28/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Division of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody's Lane, Knoxville, TN 37931, USA
| | | | | | | | | |
Collapse
|
49
|
Nguyen C, Christensen JM, Ayres JW. Compression of coated drug beads for sustained release tablet of glipizide: formulation, and dissolution. Pharm Dev Technol 2012; 19:10-20. [DOI: 10.3109/10837450.2012.751402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|