1
|
Yang A, Hu Z, Hu C, Liu J, Fan J, Gong L, Jiang L, Huang X, Xie Y, Liu J. Pharmacokinetics and tissue distribution of intranasal administration of rapamycin in rats. Xenobiotica 2025:1-14. [PMID: 40298946 DOI: 10.1080/00498254.2025.2498009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
1. Rapamycin has been shown to be effective in the treatment for a variety of neurological disorders, including epilepsy. Intranasal drug administration is a novel mode of drug delivery that bypasses the blood-brain barrier and numerous biological effects thereby entering the central nervous system directly. Thus, the objective of this study was to investigate the brain entrance efficacy of rapamycin following intranasal administration of rapamycin.2. First, we found that acute high-dose administration with a total dose of 0.326 mg of rapamycin in a novel dosage form produced few side effects on body weight, various organs and nasal mucosa in rats. Then, we examined the distribution of drug concentrations in the brain, nasal mucosa, and blood using the above dosage form administered intranasally to rats at 0.04 mg/kg. We found that intranasal administration was significantly more efficacious than oral administration for rapamycin brain delivery. We also discovered gender differences in drug absorption following intranasal administration of rapamycin, wherein rapamycin exhibited faster systemic absorption in female rats compared to males. Our study demonstrated that intranasal administration of rapamycin is highly effective and low toxic, which may provide a new delivery option for rapamycin therapy in brain diseases.
Collapse
Affiliation(s)
- Anqi Yang
- Department of Neurology and Department of ENT and Head & Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, 310052, China
| | - Zhe Hu
- Department of Neurology and Department of ENT and Head & Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, 310052, China
| | - Chengyu Hu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Jiayi Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Jianchen Fan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Lifen Gong
- Department of Neurosurgery and Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Liqun Jiang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Huang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yicheng Xie
- Department of Neurology and Department of ENT and Head & Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, 310052, China
| | - Jia Liu
- Department of Neurology and Department of ENT and Head & Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, 310052, China
| |
Collapse
|
2
|
Narang B, Barve K, Wairkar S. Thermosensitive, mucoadhesive brivaracetam nasal gel: a promising strategy for targeted relief of epilepsy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04172-1. [PMID: 40285836 DOI: 10.1007/s00210-025-04172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
This study aimed to develop a mucoadhesive thermosensitive in situ nasal gel of brivaracetam (BRIVA-gel) to treat epilepsy. A BRIVA-gel was statistically optimized using 32 factorial design varying amounts of Poloxamer 407 and Carbopol 934. The formulation was subjected to nasal ciliotoxicity studies. A comparative pharmacokinetic and brain distribution study was also conducted on BRIVA-gel and oral-marketed tablets in rats. The final BRIVA-gel was clear in the sol form and transformed into a gel at 32-34 °C with a gelling time between 49 and 154 s. The drug release studies demonstrated the sustained release of BRIVA-gel up to 4 h. Stability studies confirmed the BRIVA-gel was stable over a 3-month testing period at refrigerated conditions. BRIVA-gel did not show any nasal toxicity and was considered safe for intranasal delivery. The pharmacokinetic study in rats exhibited a twofold increase in AUC by BRIVA-gel (25.907 µg/mL.h) than the oral-marketed tablets (11.844 ng/mL.h). The brain biodistribution revealed significantly improved drug content in the brain by nasal BRIVA-gel than oral tablets. These findings suggested that thermosensitive in situ nasal BRIVA-gel has the potential to serve as a targeted delivery system to the brain, overcoming the challenges of first-pass metabolism and gastric degradation.
Collapse
Affiliation(s)
- Bhavya Narang
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Kalyani Barve
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India.
| |
Collapse
|
3
|
Sheikholeslami S, Baghaei A, Amiri-Andebili M, Salmannejad F, Ahmadian-Attari MM. Formulation and evaluation of a smart mucoadhesive nasal gel containing oregano, chamomile, and lavender for seizure control in PTZ-induced seizure model in rats. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00046-X. [PMID: 40118145 DOI: 10.1016/j.pharma.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Epilepsy is a prevalent neurological disorder characterized by recurrent seizures, affecting approximately 1% of the global population. Despite the availability of antiepileptic drugs, a significant proportion of patients experience uncontrolled seizures, which necessitates the development of alternative therapeutic strategies. Herbal medicine has gained attention due to its potential anticonvulsant properties. OBJECTIVES This study aimed to assess the anticonvulsant effects of hydroalcoholic extracts of oregano, chamomile, and lavender in rats' pentylenetetrazol (PTZ)- induced seizure model. Furthermore, it sought to formulate and evaluate a mucoadhesive nasal hydrogel containing these extracts. METHODS The herbal extracts were prepared using ethanol (70%) through maceration and analyzed based on the Iranian Herbal Pharmacopeia standards. Total phenolic content (TPC) was quantified using the spectrophotometric method to standardize the extracts. Using various gelling agents, the nasal hydrogel formulation was optimized for mucoadhesion and gelation properties. The anticonvulsant activity was evaluated in vivo using seizure models induced by pentylenetetrazol (PTZ). RESULTS The herbal extracts met the pharmacopeial standards, and the nasal hydrogel formulation demonstrated favorable physicochemical properties, including optimal pH and mucoadhesive strength. In vivo studies showed that intranasal administration of the herbal extracts significantly delayed seizure onset and reduced seizure intensity at a dose of 34mg/kg, compared to the negative control group (P<0.001). CONCLUSION The smart mucoadhesive nasal hydrogel containing oregano, chamomile, and lavender extracts exhibited promising anticonvulsant activity, suggesting its potential as a novel, non-invasive alternative for epilepsy management.
Collapse
Affiliation(s)
- Samin Sheikholeslami
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Next to Imam Ali Hospital, Vali-e Asr St., Shura Blvd., Karaj 3154686689, Iran
| | - Amir Baghaei
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Marziyeh Amiri-Andebili
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Faranak Salmannejad
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Next to Imam Ali Hospital, Vali-e Asr St., Shura Blvd., Karaj 3154686689, Iran.
| | - Mohammad Mahdi Ahmadian-Attari
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Next to Imam Ali Hospital, Vali-e Asr St., Shura Blvd., Karaj 3154686689, Iran.
| |
Collapse
|
4
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
5
|
Diddi SL, Lohidasan S, S A, Dhapte-Pawar V, Mahadik KR. In-situ polyherbal gel as biomedicine in the management of Alzheimer's disease: Understanding ameliorative potential in Trimethyltin induced neurodegeneration. J Pharmacol Toxicol Methods 2024; 130:107567. [PMID: 39393715 DOI: 10.1016/j.vascn.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/21/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Alzheimer's disease (AD), classified as neurodegenerative disorder that progresses over a period of time, is characterized by intracellular neurofibrillary tangles and extracellular amyloid plaques. This present research work was designed to develop a polyherbal gel for the treatment of AD. This research study is aimed to confirm the impact and validation of polyherbal gel on tauopathy and neurodegeneration that had been induced by intraperitoneal trimethyltin (TMT) injection to rats. Polyherbal loaded gel was prepared by cold method, and characterized for gel strength, viscosity, permeation and pH. Subsequently, 5 marker based standardized plant materials of Kalyanka ghrita were incorporated in gellan gum and xanthan gum. Finally, an in-vivo investigation employing rats with TMT-induced neurological disease were used to assess the efficacy of the optimized gel. On day 7, the Wistar rats received intraperitoneal injections of TMT. From day 14 to day 35, the corresponding groups received intranasal administration of polyherbal gel. In addition to the molecular parameters such as brain acetyl cholinesterase activity, BDNF (Rat brain derived neurotropic factor), protein phosphatase 2 A, antioxidant parameters, and oxidative stress markers, the behavioral parameters were also determined. Studies were conducted on the brain's monoamine levels and histology. RESULTS: Higher permeation over the nasal mucosa was demonstrated by the optimized In-situ polyherbal gel. Significant improvement in cognition was observed from the reduced escape latency, longer paths, and increased social or novel object recognition tests post polyherbal gel treatment. A documented HPLC technique helped in optimization and standardization of the polyherbal gel. The polyherbal treatment groups exhibited a considerable rise in the levels of monoamines, including norepinephrine, dopamine, and 5-hydroxy tryptamine. CONCLUSION: According to the current study, treating Alzheimer's disease (AD) with a polyherbal gel formulation may be a viable option for successful therapy.
Collapse
Affiliation(s)
- Sneha Latha Diddi
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| | - Arulmozhi S
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India.
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| | - Kakasaheb R Mahadik
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune 411038, India
| |
Collapse
|
6
|
Hong S, Lin C, Hu J, Piao J, Piao MG. Octa-Arginine-Conjugated Liposomal Nimodipine Incorporated in a Temperature-Responsive Gel for Nasoencephalic Delivery. Mol Pharm 2024; 21:5217-5237. [PMID: 39185610 DOI: 10.1021/acs.molpharmaceut.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nimodipine is the primary clinical drug used to treat cerebral vasospasm following subarachnoid hemorrhage. Currently, tablets have low bioavailability when taken orally, and injections contain ethanol. Therefore, we investigated a new method of nimodipine administration, namely, nasoencephalic administration. Nasal administration of nimodipine was carried out by attaching the cell-penetrating peptide octa-arginine (R8) to liposomes of nimodipine and incorporating it into a temperature-sensitive in situ gel. The prepared liposomes and gels underwent separate evaluations for in vitro characterization. In vitro release exhibited a significant slow-release effect. In vitro toad maxillary cilia model, RPMI 2650 cytotoxicity, and in vivo SD rat pathological histotoxicity experiments showed that all the dosage from the groups had no significant toxicity to toad maxillary cilia, RPMI 2650 cells, and SD rat tissues and organs, and the cilia continued to oscillate up to 694 ± 10.15 min, with the survival rate of the cells being above 85%. A transwell nasal mucosa cell model and an isolated porcine nasal mucosa model were established, and the results showed that the osmolality of the R8-modified nimodipine liposomal gel to nasal mucosal cells and isolated porcine nasal mucosa was 30.41 ± 2.14 and 65.9 ± 7.34 μg/mL, respectively, which was significantly higher than that of the NM-Solution and PEGylated nimodipine liposome gel groups. Animal fluorescence imaging studies revealed that the R8-modified nimodipine liposomal gel displayed increased brain fluorescence intensity compared to the normal liposomal gel. Pharmacokinetic results showed that after transnasal administration, the AUC(0-∞) of the R8-modified nimodipine liposomal gel was 11.662 ± 1.97 μg·mL-1, which was significantly higher than that of the plain nimodipine liposomal gel (5.499 ± 2.89 μg·mL-1). Brain-targeting experiments showed that the brain-targeting efficiencies of the PEGylated nimodipine liposome gel and R8-modified PEGylated nimodipine liposome gels were 20.44 and 33.45, respectively, suggesting that R8/PEG/Lip-NM-TSG significantly increased the brain-targeting of the drug.
Collapse
Affiliation(s)
- Shuai Hong
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Changxiu Lin
- Central Laboratory of the Affiliated Hospital, Yanbian University, Yanji 133000, Jilin, China
| | - Junsheng Hu
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Ming Guan Piao
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, Jilin, China
| |
Collapse
|
7
|
Jadhav K, Jhilta A, Singh R, Ray E, Kumar V, Yadav AB, Singh AK, Verma RK. Effective cerebral tuberculosis treatment via nose-to-brain transport of anti-TB drugs using mucoadhesive nano-aggregates. NANOSCALE 2024; 16:16485-16499. [PMID: 39135488 DOI: 10.1039/d4nr02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Central nervous system tuberculosis (CNS-TB) is a severe form of extra-pulmonary tuberculosis with high mortality and morbidity rates. The standard treatment regimen for CNS-TB parallels that of pulmonary TB, despite the challenge posed by the blood-brain barrier (BBB), which limits the efficacy of first-line anti-TB drugs (ATDs). Nose-to-brain (N2B) drug delivery offers a promising solution for achieving high ATD concentrations directly at infection sites in the brain while bypassing the BBB. This study aimed to develop chitosan nanoparticles encapsulating ATDs, specifically isoniazid (INH) and rifampicin (RIF). These nanoparticles were further processed into micro-sized chitosan nano-aggregates (NA) via spray drying. Both INH-NA and RIF-NA showed strong mucoadhesion and significantly higher permeation rates across RPMI 2650 cells compared to free ATDs. Intranasal administration of these NAs to TB-infected mice for four weeks resulted in a significant reduction of mycobacterial load by approximately ∼2.86 Log 10 CFU compared to the untreated group. This preclinical data highlights the efficacy of intranasal chitosan nano-aggregates in treating CNS-TB, demonstrating high therapeutic potential, and addressing brain inflammation challenges. To our knowledge, this study is the first to show nasal delivery of ATD nano-formulations for CNS-TB management.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Awadh Bihari Yadav
- Center of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj-211002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
8
|
Boraste SV, Patil SB. Formulation development and evaluation of nasal in situ gel of promethazine hydrochloride. Drug Dev Ind Pharm 2024; 50:11-22. [PMID: 38054848 DOI: 10.1080/03639045.2023.2291463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE The present work aims to develop mucoadhesive thermosensitive nasal in situ gel for Promethazine hydrochloride using quality by design (QbD) approach. It can reduce nasal mucociliary clearance (MCC) and increase residence of the drug on nasal mucosa. This might increase drug absorption to improve bioavailability of the drug as compared to oral dosage form. SIGNIFICANCE Promethazine hydrochloride is an antiemetic drug administered by oral, parenteral and rectal routes. These routes have poor patient compliance or low bioavailability. Nasal route is a better alternative as it has large surface area, high drug absorption rate and no first pass effect. Its only limitation is short drug retention time due to MCC. By formulating a mucoadhesive in situ gel, the MCC can be reduced, and drug absorption will be prolonged. Thus, improving bioavailability. METHOD In-situ gel was prepared by cold method having material attributes as concentration of Poloxamer 407 (X1) as gelling agent and hydroxypropyl methyl cellulose K4M (X2) as mucoadhesive agent. Critical Quality Attributes (CQA) were gelation temperature, mucoadhesive force and ex-vivo diffusion. Central composite design (CCD) was adopted for optimization. RESULT Optimized formulation satisfied all the CQA significant for nasal administration. Moreover, the formulation was found to be stable in accelerated stability studies for 3 months. CONCLUSION It can be concluded that since the drug can easily permeate through nasal mucosa and can gain access directly in the brain without undergoing first pass metabolism along with increased residence due to mucoadhesion, mucoadhesive in situ gel has potential to increase drug bioavailability.
Collapse
Affiliation(s)
- Surabhi V Boraste
- SNJB'S Shriman Suresh Dada Jain College of Pharmacy, Chandwad, Maharashtra, India
| | - Sanjay B Patil
- SNJB'S Shriman Suresh Dada Jain College of Pharmacy, Chandwad, Maharashtra, India
| |
Collapse
|
9
|
Zhao X, Ni S, Song Y, Hu K. Intranasal delivery of Borneol/R8dGR peptide modified PLGA nanoparticles co-loaded with curcumin and cisplatin alleviate hypoxia in pediatric brainstem glioma which improves the synergistic therapy. J Control Release 2023; 362:121-137. [PMID: 37633362 DOI: 10.1016/j.jconrel.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Cisplatin (cis) is a first-line chemotherapeutic used for the treatment of intractable pediatric brainstem glioma (PBSG). Its therapeutic effect in PBSG is, however, critically challenged by the hypoxic microenvironment of the tumor and the presence of the blood brain barrier (BBB). Herein, we report on the intranasal administration of borneol (Bo)/R8dGR peptide modified PLGA based nanoparticles (NP) co-loaded with curcumin and cisplatin (cur/cis). We observed that borneol modification improved the brain penetration of the nanoparticles by reduction of the expression of ZO-1 and occludin in nasal mucosa, while the R8dGR peptide modification allowed the targeting of the NP through the binding on integrin αvβ3 receptors which are present on PBSG cells. Following intranasal administration, BoR-cur/cis-NP attenuated hypoxia in the PBSG microenvironment and reduced angiogenesis, which prolonged survival of GL261-bearing PBSG mice. Therefore, intranasal administration of BoR-cur/cis-NP, which deeply penetrate PBSG, is an encouraging strategy to attenuate hypoxia which potentiates the efficacy of cisplatin in the treatment of PBSG.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
10
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, Luppi B. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci 2022; 179:106294. [PMID: 36116696 DOI: 10.1016/j.ejps.2022.106294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
The objective of this work was to optimize a thermosensitive in situ gelling formulation to improve intranasal and nose-to-brain delivery of the antiepileptic drug carbamazepine (CBZ). A preliminary procedure of vehicles obtained just mixing different fractions of poloxamer 407 (P407) and poloxamer 188 (P188) revealed preparations with phase transition temperatures, times to gelation and pH values suitable for nasal delivery. Subsequently, the mucoadhesive properties of the most promising formulations were tuned by adding hydroxypropylmethylcellulose types of different viscosity grades, and the effect of the adhesive polymers was evaluated by testing in vitro time and strength of mucoadhesion on specimens of sheep nasal mucosa. The formulation that showed the greatest mucoadhesive potential in vitro, with a time and force of mucoadhesion equal to 1746,75 s and 3.66 × 10-4 N, respectively, was that composed of 22% P407, 5% P188 and 0.8% HPMC low-viscous and it was further investigated for its ability to increase drug solubility and to control the release of the drug. Lastly, the capability of the candidate vehicle to ensure drug permeation across the biomimetic membrane Permeapad®, an artificial phospholipid-based barrier with a stratified architecture, and the same barrier enriched with a mucin layer was verified. The final formulation was characterized by a pH value of 6.0, underwent gelation at 32.33°C in 37.85 s, thus showing all the features required by in situ gelling thermosensitive preparations designed for nasal delivery and, more notably, it conserved the ability to favor drug permeation in the presence of mucin. These findings suggest that the optimized gelling system could be a promising and easy to realize strategy to improve CBZ delivery to the brain exploiting both a direct and indirect pathway.
Collapse
Affiliation(s)
- Elisa Corazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, Oslo 0371, Norway.
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
12
|
McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release 2022; 345:334-353. [DOI: 10.1016/j.jconrel.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
13
|
Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 2021; 608:121068. [PMID: 34481011 DOI: 10.1016/j.ijpharm.2021.121068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder defined by higher blood glucose levels in the body generally controlled by antidiabetic agents (oral) and insulin (subcutaneous). To avoid the limitations of the conventional routes such as lower bioavailability and pain at the site of injection in case of parenteral route modified delivery systems are proposed like transdermal, pulmonary and inhalation delivery and among the other delivery systems nasal drug delivery system that shows the advantages such as reduced frequency of dose, higher patient compliance, safety, ease of administration, prolonged residence time, improved absorption of drug in the body, higher bioavailability and stability. This review article discusses the strategies adopted for the delivery of antidiabetic drugs by the intranasal delivery system. The insulin and glucagon-like peptides on experimentation show results of improved therapeutic levels and patient compliance. The drugs are transported by the paracellular route and absorbed through the epithelial tight junctions successfully by utilising different strategies. The limitations of the nasal delivery such as irritation or burning on administration, degradation by the enzymes, mucociliary clearance, lesser volume of the nasal cavity and permeation through the nasal mucosa. To overcome the challenges different strategies for the nasal administration are studied such as polymers, particulate delivery systems, complexation with peptides and smart delivery using glucose-responsive systems. A vast scope of intranasal preparations exists for antidiabetic drugs in the future for the management of diabetes and more clinical studies are the requirement for the societal impact to battle against diabetes.
Collapse
Affiliation(s)
- Jheel Dholakia
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
14
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Wu H, Zhou Y, Wang Y, Tong L, Wang F, Song S, Xu L, Liu B, Yan H, Sun Z. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Front Pharmacol 2021; 12:717192. [PMID: 34322030 PMCID: PMC8311521 DOI: 10.3389/fphar.2021.717192] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The management of various central nervous system (CNS) disorders has been challenging, due to highly compact blood-brain barrier (BBB) impedes the access of most pharmacological agents to the brain. Among multiple strategies proposed to circumvent this challenge, intranasal delivery route has sparked great interest for brain targeting in the past decades. The aim of this study was to apply scientometric method to estimate the current status and future trends of the field from a holistic perspective. Methods: All relevant publications during 1998–2020 were retrieved from the Web of Science Core Collection (SCIE, 1998-present). Two different scientometric software including VOS viewer and CiteSpace, and one online platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of journals, countries, institutes, authors, references and keywords. Results: A total of 2,928 documents, including 2,456 original articles and 472 reviews, were retrieved. Our analysis revealed a significant increasing trend in the total number of scientific publications over the past 2 decades (R2 = 0.98). The United States dominated the field, reflecting in the largest amount of publications (971), the highest H-index (99), and extensive international collaboration. Jamia Hamdard contributed to most publications. Frey WH and Illum L were key researchers with the highest number of publications and citations, respectively. The International Journal of Pharmaceutics was the most influential academic journal, and Pharmacology/Pharmacy and Neurosciences/Neurology were the hottest research categories in this field. Based on keywords occurrence analysis, four main topics were identified, and the current research focus of this field has shifted from cluster 4 (pathways and mechanisms of intranasal delivery) to cluster 2 (the study of nasal drug delivery systems), especially the nanostructured and nano-sized carrier systems. Keywords burst detection revealed that the research focus on oxidative stress, drug delivery, neuroinflammation, nanostructured lipid carrier, and formulation deserves our continued attention. Conclusion: To the authors’ knowledge, this is the first scientometric analysis regarding intranasal delivery research. This study has demonstrated a comprehensive knowledge map, development landscape and future directions of intranasal delivery research, which provides a practical and valuable reference for scholars and policymakers in this field.
Collapse
Affiliation(s)
- Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Baolong Liu
- Department of Ultrasound, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Spine and Spinal Cord, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
16
|
Cirri M, Maestrelli F, Nerli G, Mennini N, D’Ambrosio M, Luceri C, Mura PA. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics 2021; 13:pharmaceutics13070969. [PMID: 34206967 PMCID: PMC8309035 DOI: 10.3390/pharmaceutics13070969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
A thermosensitive, mucoadhesive in-situ gel for clonazepam (CLZ) intranasal delivery was developed, which aimed to achieve prolonged in-situ residence and controlled drug release, overcoming problems associated with its oral or parenteral administration. Poloxamer was selected as a thermosensitive polymer and chitosan glutamate and sodium hyaluronate as mucoadhesive and permeation enhancer. Moreover, randomly methylated β-Cyclodextrin (RAMEB) was used to improve the low drug solubility. A screening DoE was applied for a systematic examination of the effect of varying the formulation components proportions on gelation temperature, gelation time and pH. Drug-loaded gels at different clonazepam-RAMEB concentrations were then prepared and characterized for gelation temperature, gelation time, gel strength, mucoadhesive strength, mucoadhesion time, and drug release properties. All formulations showed suitable gelation temperature (29-30.5 °C) and time (50-65 s), but the one with the highest drug-RAMEB concentration showed the best mucoadhesive strength, longest mucoadhesion time (6 h), and greatest release rate. Therefore, it was selected for cytotoxicity and permeation studies through Caco-2 cells, compared with an analogous formulation without RAMEB and a drug solution. Both gels were significantly more effective than the solution. However, RAMEB was essential not only to promote drug release, but also to reduce drug cytotoxicity and further improve its permeability.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
- Correspondence: ; Tel.: +39-(0)5-5457-3711
| | - Giulia Nerli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Natascia Mennini
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Mario D’Ambrosio
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Cristina Luceri
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Paola Angela Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| |
Collapse
|
17
|
El-Shenawy AA, Mahmoud RA, Mahmoud EA, Mohamed MS. Intranasal In Situ Gel of Apixaban-Loaded Nanoethosomes: Preparation, Optimization, and In Vivo Evaluation. AAPS PharmSciTech 2021; 22:147. [PMID: 33948767 DOI: 10.1208/s12249-021-02020-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
The present study was conducted to formulate ethosomal thermoreversible in situ gel of apixaban, an anticoagulant drug, for nasal delivery. Ethosomes were formed, of lecithin, cholesterol, and ethanol, by using thin-film hydration method. The prepared ethosomes were characterized by Zetasizer, transmission electron microscope, entrapment efficiency, and in vitro study. The selected ethosomal formula (API-ETHO2) was incorporated in gel using P407 and P188 as thermoreversible agents and carbopol 934 as mucoadhesive agent. Box-Behnken design was used to study the effect of independent variables (concentration of P407, P188, and carbopol 934) on gelation temperature, mucoadhesive strength, and in vitro cumulative percent drug released at 12h (response variables). The optimized formulation was subjected to compatibility study, ex vivo permeation, histopathological examination for the nasal mucosa, and in vivo study. API-ETHO2 was spherical with an average size of 145.1±12.3 nm, zeta potential of -20±4 mV, entrapment efficiency of 67.11%±3.26, and in vitro % release of 79.54%±4.1. All gel formulations exhibited an acceptable pH and drug content. The optimum gel offered 32.3°C, 1226.3 dyne/cm2, and 53.50% for gelation temperature, mucoadhesive strength, and in vitro percent released, respectively. Apixaban ethosomal in situ gel evolved higher ex vivo permeation (1.499±0.11 μg/cm2h) through the nasal mucosa than pure apixaban gel. Histopathological study assured that there is no necrosis or tearing of the nasal mucosa happened by ethosomal gel. The pharmacokinetic parameters in rabbit plasma showed that intranasal administration of optimized API-ethosomal in situ gel achieved higher Cmax and AUC0-∞ than unprocessed API nasal gel, nasal suspension, and oral suspension. The ethosomal thermoreversible nasal gel established its potential to improve nasal permeation and prolong anticoagulant effect of apixaban.
Collapse
|
18
|
Cassano R, Servidio C, Trombino S. Biomaterials for Drugs Nose-Brain Transport: A New Therapeutic Approach for Neurological Diseases. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1802. [PMID: 33917404 PMCID: PMC8038678 DOI: 10.3390/ma14071802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
In the last years, neurological diseases have resulted in a global health issue, representing the first cause of disability worldwide. Current therapeutic approaches against neurological disorders include oral, topical, or intravenous administration of drugs and more invasive techniques such as surgery and brain implants. Unfortunately, at present, there are no fully effective treatments against neurodegenerative diseases, because they are not associated with a regeneration of the neural tissue but rather act on slowing the neurodegenerative process. The main limitation of central nervous system therapeutics is related to their delivery to the nervous system in therapeutic quantities due to the presence of the blood-brain barrier. In this regard, recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood-brain barrier, consequently increasing drug cerebral bioavailability. This review provides an overview of the nose-to-brain route: first, we summarize the anatomy of this route, focusing on the neural mechanisms responsible for the delivery of central nervous system therapeutics to the brain, and then we discuss the recent advances made on the design of intranasal drug delivery systems of central nervous system therapeutics to the brain, focusing in particular on stimuli-responsive hydrogels.
Collapse
Affiliation(s)
| | | | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (C.S.)
| |
Collapse
|
19
|
Thakkar H, Vaghela D, Patel BP. Brain targeted intranasal in-situ gelling spray of paroxetine: Formulation, characterization and in-vivo evaluation". J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254:117324. [DOI: 10.1016/j.carbpol.2020.117324] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
|
21
|
Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur J Med Chem 2021; 209:112905. [PMID: 33069435 PMCID: PMC7548078 DOI: 10.1016/j.ejmech.2020.112905] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
There are several routes of administration to the brain, including intraparenchymal, intraventricular, and subarachnoid injections. The blood-brain barrier (BBB) impedes the permeation and access of most drugs to the central nervous system (CNS), and consequently, many neurological diseases remain undertreated. For past decades, to circumvent this effect, several nanocarriers have been developed to deliver drugs to the brain. Importantly, intranasal (IN) administration can allow direct delivery of drugs into the brain through the anatomical connection between the nasal cavity and brain without crossing the BBB. In this regard, dendrimers may possess great potential to deliver drugs to the brain by IN administration, bypassing the BBB and reducing systemic exposure and side effects, to treat diseases of the CNS. In this original concise review, we highlighted the few examples advocated regarding the use of dendrimers to deliver CNS drugs directly via IN. This review highlighed the few examples of the association of dendrimer encapsulating drugs (e.g., small compounds: haloperidol and paeonol; macromolecular compounds: dextran, insulin and calcitonin; and siRNA) using IN administration. Good efficiencies were observed. In addition, we will present the in vivo effects of PAMAM dendrimers after IN administration, globally, showing no general toxicity.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France.
| |
Collapse
|
22
|
Nose-to-brain delivery of drug nanocrystals by using Ca 2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm 2020; 594:120182. [PMID: 33346126 DOI: 10.1016/j.ijpharm.2020.120182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study is to use a carbohydrate polymer deacetylated gellan gum (DGG) as matrix to design nanocrystals based intranasal in situ gel (IG) for nose-to -brain delivery of drug. The harmine nanocrystals (HAR-NC) as model drug were prepared by coupling homogenization and spray-drying technology. The HAR-NC was redispersed in the (DGG) solutions and formed the ionic-triggered harmine nanocrystals based in situ gel (HAR-NC-IG). The crystal state of HAR remained unchanged during the homogenization and spray-drying. And the HAR-NC-IG with 0.5% DGG exhibited excellent in situ-gelation ability, water retention property and in vitro release behavior. The bioavailability in brain of intranasal HAR-NC-IG were 25-fold higher than that of oral HAR-NC, which could be attributed to nanosizing effect of HAR-NC and bioadhesive property of DGG triggered by nasal fluid. And the HAR-NC-IG could significantly inhibit the expression of acetylcholinesterase (AchE) and increase the content of acetylcholin (ACh) in brain compared with those of reference formulations (p < 0.01). The DGG based nanocrystals-in situ gel was a promising carrier for nose-to-brain delivery of poorly soluble drug, which could prolong the residence time and improve the bioavailability of poorly soluble drugs in brain.
Collapse
|
23
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, Kesharwani P, Ravichandiran V, Kumar P, Naidu VGM, Murty US, Ajazuddin, Alexander A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327:235-265. [PMID: 32739524 DOI: 10.1016/j.jconrel.2020.07.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India.
| |
Collapse
|
24
|
Zakir F, Ahmad A, Farooq U, Mirza MA, Tripathi A, Singh D, Shakeel F, Mohapatra S, Ahmad FJ, Kohli K. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine (Lond) 2020; 15:1167-1187. [PMID: 32370601 DOI: 10.2217/nnm-2020-0079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Aim: To investigate the potential of a thermosensitive intranasal formulation of raloxifene hydrochloride (RH) for systemic delivery with the possibility of enhanced bioavailability and anti-osteoporotic efficacy. Methods: In this work, a commercially scalable nanoemulsion in thermosensitive gel, aligned with better clinical acceptability, has been developed and evaluated. Results: A significant 7.4-fold improvement in bioavailability of RH was recorded when compared with marketed tablets. Likewise, in vivo pharmacodynamics studies suggested 162% enhanced bone density and significantly improved biochemical markers compared with per-oral marketed tablet. Conclusion: The formulation, being safe and patient compliant, successfully tuned anti-osteoporotic effects with improved therapeutic performance. Further, the work provided an exceptional lead to carry out the study in clinical settings.
Collapse
Affiliation(s)
- Foziyah Zakir
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Adil Ahmad
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Alok Tripathi
- Endocrinology Division, Central Drug Research Institute, BS-10/1, Sec 10, Jankipuram Ext, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Singh
- Endocrinology Division, Central Drug Research Institute, BS-10/1, Sec 10, Jankipuram Ext, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh, 226031, India
| | - Faiyaz Shakeel
- Center of Excellence in Biotechnology Research (CEBR), Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
25
|
Inoue D, Furubayashi T, Tanaka A, Sakane T, Sugano K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur J Pharm Biopharm 2020; 149:145-153. [DOI: 10.1016/j.ejpb.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/25/2019] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
|
26
|
Abstract
This is an overview of the current drug delivery systems (DDSs) starting with various routes of drug administration. Various drug formulations are then described as well as devices used for drug delivery and targeted drug delivery. There has been a considerable increase in the number of new biotechnology-based therapeutics. Most of these are proteins and peptides, and their delivery present special challenges. Cell and gene therapies are sophisticated methods of delivery of therapeutics. Nanoparticles are important for refining drug delivery. In addition to being vehicles for drug delivery, nanoparticles can be used as pharmaceuticals as well as diagnostics. Most of the advances in targeted drug delivery have occurred in therapy of cancer. Drug delivery to the brain across the blood-brain barrier presents many challenges. Refinements in drug delivery will facilitate the development of personalized medicine. The ideal DDS is defined. Commercial aspects, challenges, and future of DDSs are discussed.
Collapse
|
27
|
Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson's disease treatment? Expert Opin Drug Deliv 2019; 16:1355-1366. [PMID: 31663382 DOI: 10.1080/17425247.2019.1684895] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Intranasal drug delivery is a largely unexplored, promising approach for the treatment of various neurological disorders. However, due to the challenging constraints available in the pathway of nose-to-brain delivery, finding an effective treatment for Parkinsonism is still an impending mission for research workers. This warrants development of novel treatment alternatives for Parkinson's disease (PD). Intranasal delivery of mucoadhesive nanocarriers is one such novel approach which might help in curbing the glitches associated with the currently available therapy.Areas covered: This review summarizes the evidences supporting nose-to-brain delivery of polymer-based mucoadhesive nanocarriers for the treatment of PD. A concise insight into the lipid-based mucoadhesive nanocarriers has also been presented. The recent researches have been compiled pertaining to the use of mucoadhesive nanocarrriers for improving the treatment outcomes of PD via intranasal drug delivery.Expert opinion: Although the use of nanocarrier-based strategies for site-specific delivery via intranasal route has proven effective, the magnitude of improvement remains moderate resulting in limited translation from industry to the market. Comprehensive understanding of the mucoadhesive polymer, its characteristics and mechanisms involved for an effective nose-to-brain uptake of the drug is a promising avenue to develop novel formulations for effective management of Parkinson disease.
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia (KSA)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Chen Y, Cheng G, Hu R, Chen S, Lu W, Gao S, Xia H, Wang B, Sun C, Nie X, Shen Q, Fang W. A Nasal Temperature and pH Dual-Responsive In Situ Gel Delivery System Based on Microemulsion of Huperzine A: Formulation, Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019; 20:301. [PMID: 31485857 DOI: 10.1208/s12249-019-1513-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023] Open
Abstract
Huperzine A (hup A), extracted from the Chinese medicinal plant Huperzia serrata, is a reversible and highly selective second-generation acetylcholine esterase (AchE) inhibitor for treating Alzheimer's disease (AD), but it suffers from low bioavailability in the brain. This study aimed to develop a nasal temperature and pH dual-responsive in situ gel delivery system based on microemulsion of hup A (hup A-M-TPISG). The optimal formulation was obtained by central composite design and response surface methodology. The optimized mucoadhesive formulation, hup A-M-TPISG, was composed of pluronic F127 (20.80%), pluronic F68 (2.8%), and chitosan (0.88%) as the gel matrix, which could gelatinize under physiological conditions (29-34°C, pH 6.5) because of its temperature and pH responsiveness. The optimized hup A-M-TPISG formulation was further evaluated by in vitro release and in vivo pharmacokinetic studies via microdialysis. The in vitro release study showed continuous and steady drug release from hup A-M-TPISG, which was in accordance with the first-order model. Moreover, the pharmacokinetic results revealed that the optimized formulation for nasal administration, with convenient administration and improved patient compliance, could achieve similar brain-targeting properties as intravenous administration. In conclusion, the hup A-M-TPISG for intranasal administration, as an effective and safe vehicle, could enhance the absorption of hup A in vivo and would be a promising noninvasive alternative for partially improving brain-targeting therapy.
Collapse
|
29
|
Guo T, Guo Y, Gong Y, Ji J, Hao S, Deng J, Wang B. An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. Int J Pharm 2019; 566:46-56. [PMID: 31121211 DOI: 10.1016/j.ijpharm.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
Abstract
Intranasal drug delivery provided an alternative and effective approach for the intervention of an intracerebral hemorrhage (ICH). However, the short retention time at the absorption site and slow drug transport in intranasal gel influence the drug bioavailability and outcome of ICH. Herein, we fabricated a novel intranasal gel with oriented drug migration utilizing a charge-driven strategy to attenuate brain injury after ICH. Nicardipine hydrochloride (NCD) was entrapped in chitosan nanoparticles (CS NPs) and dispersed in an HAMC gel. Subsequently, one side of the gel was coated with a positively charged film. The oriented migration of CS NPs in the HAMC gel was determined, and the drug bioavailability was also enhanced. Furthermore, a blood-induced ICH rat model was established to evaluate the therapeutic effect of CS NPs + HAMC composites. Intranasal administration of the CS NPs + HAMC (+) composite showed a stronger neuroprotective effect in terms of brain edema reduction and neural apoptosis inhibition compared to the CS NPs + HAMC composite. These results suggested that the oriented and rapid drug transport from nose to brain can be achieved using the charge-driven strategy, and this intranasal drug delivery system has the potential to provide a new therapeutic strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuanyuan Guo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yuhua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jingou Ji
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jia Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
30
|
Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Xie H, Li L, Sun Y, Wang Y, Gao S, Tian Y, Ma X, Guo C, Bo F, Zhang L. An Available Strategy for Nasal Brain Transport of Nanocomposite Based on PAMAM Dendrimers via In Situ Gel. NANOMATERIALS 2019; 9:nano9020147. [PMID: 30682799 PMCID: PMC6409925 DOI: 10.3390/nano9020147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers are efficient drug carriers. The presence of a physiological pathway for nasal brain transport provides a potential path for direct brain-targeted delivery of dendrimer nanocomposites. In this study, we synthesized PAMAM dendrimer composites with a nanoscale size; the particle size of PAE (Paeonol)/mPEG (the heterofunctional PEG polymer with a methoxy)-PAMAM G5.NHAc and mPEG-PAMAM G5.NH₂-FITC were 72.41 ± 11.58 nm and 96.51 ± 7.77 nm, and the zeta potential of PAE/mPEG-PAMAM G5.NHAc and mPEG-PAMAM G5.NH₂-FITC were + 0.57 ± 0.11 mv and + 9.60 ± 0.41 mv, respectively. The EE% and DL% of PAE in PAE/mPEG-PAMAM G5.NHAc were 53.77% and 13.92%, respectively. PAE/mPEG-PAMAM G5.NHAc/DGG ionic-sensitive in situ gel was prepared, the viscosity of solution and gel state were 112 ± 3.2 mPa and 1403 ± 38.5 mPa, respectively. The in vitro goat mucoadhesive strength of the gel was 4763.36 ± 85.39 dyne/cm². In situ gel system was proven to be a non-Newtonian pseudo-plastic fluid with shear thinning, thixotropy and yield stress. The optimal model of PAE released from PAE/mPEG-PAMAM G5.NHAc and PAE/mPEG-PAMAM G5.NHAc/DGG were the Higuchi equation and the Korsmeyer-Peppas equation, respectively. The cytotoxicity of the nanocomposites showed a concentration-dependence, and the cell viabilities of PAE/mPEG-PAMAM G5.NHAc were both higher than 95% between 0.0001 μM and 10 μM. mPEG-PAMAM G5.NH₂-FITC was efficiently taken up by cells and exhibited strong fluorescence in the cytoplasm and nucleus. Significant accumulation of nanocomposites was observed in the brain after administration of the in situ gel group, and maximum accumulation was reached at 12 h. A small amount of accumulation was observed in the nanocomposite solution group only at 2 h. Therefore, the direct nasal brain transport efficiency of PAMAM dendrimer nanocomposites can be significantly improved after combining with in situ gel. PAMAM dendrimer nanocomposite/DGG is a potential drug delivery system for nasal brain transport.
Collapse
Affiliation(s)
- Huichao Xie
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lingjun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yue Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuzhen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shuang Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuan Tian
- College of Graduate, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xuemei Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chengcheng Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Fumin Bo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Li Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
32
|
Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 2019; 559:86-101. [PMID: 30677480 DOI: 10.1016/j.ijpharm.2019.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Thermosensitive hydrogels are in situ gelling systems composed of hydrophilic homopolymers or block copolymers which remain as solutions at room temperature and form gels after administration into the body. Its application in advanced drug delivery has gained significant attention in recent years. The tunable characteristics of thermosensitive hydrogels make them versatile and capable of incorporating both hydrophilic and lipophilic compounds and macromolecules. The drug molecules can be included as free molecules or preformulated into nano- or micro-particles or liposomes. Although there were several reviews on the materials of thermosensitive hydrogels, the compatibility between the drug and thermosensitive material as well as its in vitro release mechanisms and in vivo performance have barely been investigated. The current review is proposed aiming to not only provide an update on the recent development in thermosensitive hydrogel formulations for nasal, ocular and cutaneous deliveries, but also identify the relationship between the drug characteristics and the loading strategies, and their impacts on the release mechanisms and the in vivo performance. Our current update for the first time highlights the essential features for successful development of in situ thermosensitive hydrogels to facilitate nasal, ocular or cutaneous drug deliveries.
Collapse
|
33
|
Lin YJ, Mi FL, Lin PY, Miao YB, Huang T, Chen KH, Chen CT, Chang Y, Sung HW. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv Drug Deliv Rev 2019; 139:71-82. [PMID: 30529306 DOI: 10.1016/j.addr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of insulin in micro- or nanodelivery systems may eliminate the need for frequent subcutaneous injections, improving the quality of life of diabetic patients. Formulations for oral, intranasal, pulmonary, subcutaneous, and transdermal administration have been developed. The use of stimuli-responsive polymeric carriers that can release the encapsulated drug in response to changes of the environmental stimuli or external activation enables the design of less invasive or non-invasive systems for smart insulin delivery from depots in the body. This article will look at strategies for the development of responsive delivery systems and the future meeting of the demands of new modes of insulin delivery.
Collapse
|
34
|
Yang M, Zhang Q, Wang Q, Sørensen KK, Boesen JT, Ma SY, Jensen KJ, Kwan KM, Ngo JCK, Chan HYE, Zuo Z. Brain-Targeting Delivery of Two Peptidylic Inhibitors for Their Combination Therapy in Transgenic Polyglutamine Disease Mice via Intranasal Administration. Mol Pharm 2018; 15:5781-5792. [PMID: 30392378 DOI: 10.1021/acs.molpharmaceut.8b00938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 μmol/kg) and L1P3V8 (6 μmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.
Collapse
Affiliation(s)
- Mengbi Yang
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Qian Zhang
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Qianwen Wang
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Kasper K Sørensen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Josephine T Boesen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Sum Yi Ma
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Knud J Jensen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Kin Ming Kwan
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China.,Partner State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Jacky Chi Ki Ngo
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Ho Yin Edwin Chan
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China.,Gerald Choa Neuroscience Centre , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Zhong Zuo
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| |
Collapse
|
35
|
Elkomy MH, El-Menshawe SF, Ali AA, Halawa AA, El-Din ASGS. Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker. Drug Deliv Transl Res 2018; 8:165-177. [PMID: 29159693 DOI: 10.1007/s13346-017-0449-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to develop and optimize a betahistine dihydrochloride (BH) thermoreversible bioadhesive gel intended for transdermal delivery. The gels were obtained via cold method. A full factorial design was employed to investigate the joint effect of Poloxamer 407 concentration (18 and 20%), adhesive polymer type (Polyvinyl pyrolidone, Hydroxypropyl methylcellulose, and Carbopol 934), and adhesive polymer concentration (0.5 and 1.5%) on gelling temperature, viscosity at 37 °C, and adhesion strength. Data collected were analyzed using multiple linear regression. A desirability index approach with relative importance weight was used to choose the most desirable formulation. F4 (20% Poloxamer+1.5% Carbopol) was selected for further characterization. F4 released 96.97% drug in 12 h across hairless rat skin. F4 gelation temperature and time were 36 ± 0.35 °C, and 6 ± 0.7 min, respectively. F4 adhesive force was 8835.68 dyne/cm2. F4 was tested for its appetite suppressing effect in a rat model and it was evaluated histopathologically. Rats' chow intake and weight gain was significantly decreased with no signs of inflammation or lipolysis when the optimized BH gel formulation, F4, was compared with untreated animals and animals treated with BH free gel. The results suggest that BH is percutaneously absorbed from the gel base and that the BH gel is tolerable. The desirability index approach with relative importance weight of responses was effective in determination of the optimum formulation. BH is systemically effective and well-tolerated when applied topically in hydrogel-based systems. The Carbopol-Poloxamer gel is a promising modality for transdermal delivery of BH.
Collapse
Affiliation(s)
- Mohammed Hassan Elkomy
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Shahira F El-Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Adel Ahmed Ali
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | | | - Ahmed S G Srag El-Din
- Department of Pharmaceutics and Clinical Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
36
|
Khan K, Aqil M, Imam SS, Ahad A, Moolakkadath T, Sultana Y, Mujeeb M. Ursolic acid loaded intra nasal nano lipid vesicles for brain tumour: Formulation, optimization, in-vivo brain/plasma distribution study and histopathological assessment. Biomed Pharmacother 2018; 106:1578-1585. [PMID: 30119233 DOI: 10.1016/j.biopha.2018.07.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
The aim was to formulate an optimized ursolic acid (UA) loaded lipid vesicle using formulation by design approach (FbD) for improving the drug targeting by nasal route for brain tumor. Three factors were evaluated at three different levels using anethole (terpene) (A), ethanol (B) and phospholipid90 G (C) as independent variables and their individual and combined effects were observed for PDI (Y1), vesicle size (Y2) and encapsulation efficiency (Y3) to select an optimal system (UALVopt). The optimized formulation was further converted into gel and evaluated for drug release, nasal permeation study, brain/plasma uptake and histopathology study. The UALVopt formulation containing anethole as terpene (1% as A), ethanol (2.6% as B) and phospholipid90 G (8.8 mg as C) showed low PDI (0.212), vesicle size (115.56 nm) and high entrapment efficiency (76.42%). The in-vitro drug release and ex-vivo permeation study results revealed prolonged drug release and permeation. The brain/blood ratio for UALVGopt remained significantly higher at all the time points with respect to UALVopt indicating higher and prolonged retention of drug at site of action. The histopathological study of the nasal mucosa and brain confirmed non-toxic nature of developed formulation. The formulation UALVGopt could serve as a better alternative for the brain targeting via the intranasal route which in turn could subsequently improve its efficacy.
Collapse
Affiliation(s)
- Karishma Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi, 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi, 110062, India.
| | - Syed Sarim Imam
- Department of Pharmaceutics, Glocal School of Pharmacy, Glocal University, Saharanpur, 247121, Uttar Pradesh, India.
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Thasleem Moolakkadath
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi, 110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi, 110062, India
| | - Mohd Mujeeb
- Department of Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), M. B. Road, New Delhi, 110062, India
| |
Collapse
|
37
|
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018; 10:pharmaceutics10030159. [PMID: 30213143 PMCID: PMC6161217 DOI: 10.3390/pharmaceutics10030159] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Poloxamer 407, also known by the trademark Pluronic® F127, is a water-soluble, non-ionic triblock copolymer that is made up of a hydrophobic residue of polyoxypropylene (POP) between the two hydrophilic units of polyoxyethylene (POE). Poloxamer 407-based hydrogels exhibit an interesting reversible thermal characteristic. That is, they are liquid at room temperature, but they assume a gel form when administered at body temperature, which makes them attractive candidates as pharmaceutical drug carriers. These systems have been widely investigated in the development of mucoadhesive formulations because they do not irritate the mucosal membranes. Based on these mucoadhesive properties, a simple administration into a specific compartment should maintain the required drug concentration in situ for a prolonged period of time, decreasing the necessary dosages and side effects. Their main limitations are their modest mechanical strength and, notwithstanding their bioadhesive properties, their tendency to succumb to rapid elimination in physiological media. Various technological approaches have been investigated in the attempt to modulate these properties. This review focuses on the application of poloxamer 407-based hydrogels for mucosal drug delivery with particular attention being paid to the latest published works.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| |
Collapse
|
38
|
Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv 2018; 15:1007-1019. [PMID: 30173567 DOI: 10.1080/17425247.2018.1517741] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mucosal drug delivery is an attractive route of administration, particularly in overcoming deficits of conventional dosage forms including high first-pass metabolism and poor bioavailability. Fast drainage from the target mucosa, however, represents a major limitation as it prevents sufficient drug absorption. In order to address these problems, mucoadhesive in situ gelling drug delivery systems have been investigated as they facilitate easy application in combination with a longer residence time at the administration site resulting in more desirable therapeutic effects. AREAS COVERED The present review evaluates the importance of the combination of mucoadhesive and in situ gelling polymers along with mechanisms of in situ gelation and mucoadhesion. In addition, an overview about recent applications in mucosal drug delivery is provided. EXPERT OPINION In situ gelling and mucoadhesive polymers proved to be essential excipients in order to prolong the mucosal residence time of drug delivery systems. Due to this prolonged residence time both local and systemic therapeutic efficacy of numerous drugs can be substantially improved. Depending on the site of administration and the incorporated drug, combinations of different polymers with in situ gelling and mucoadhesive properties are needed to keep the delivery system as long as feasible at the target site.
Collapse
Affiliation(s)
- Forouhe Zahir-Jouzdani
- a Department of Pharmaceutical Technology , Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria.,b Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Julian Dominik Wolf
- a Department of Pharmaceutical Technology , Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria.,c Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck , Trientlgasse, Innsbruck , Austria
| | - Fatemeh Atyabi
- b Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Andreas Bernkop-Schnürch
- a Department of Pharmaceutical Technology , Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
39
|
Rajput A, Bariya A, Allam A, Othman S, Butani SB. In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res 2018; 8:1460-1470. [DOI: 10.1007/s13346-018-0540-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Choi JE, Kim KR, Noh Y, Chung WH, Cho YS, Chung SK, Dhong HJ, Kim HY. Intranasal distribution and clearance of thermoreversible gel in an animal model. Int Forum Allergy Rhinol 2017; 7:705-711. [PMID: 28544659 DOI: 10.1002/alr.21944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND Poloxamer 407 (P407) has been investigated for an intranasal drug delivery system. However, there is little known about the distribution and clearance of intranasally applied P407. The purpose of this study was to evaluate the distribution and clearance time of P407 in an animal model. METHODS Five male pigs were administered the experimental solution (18% of P407 with 0.01% of fluorescein) and the control solution (normal saline with 0.01% of fluorescein) into their right and left nasal cavity, respectively. For quantitative analysis, endoscopic images of each nasal cavity were taken immediately and at 10, 20, 30, and 60 minutes after intranasal administration. RESULTS The experimental group showed a significantly wider distribution of fluorescein than the control group at 10, 20, and 30 minutes. The experimental group also showed a significantly higher mean intensity of fluorescein than the control group at 10, 20, and 30 minutes. The mean intensity in the control group was significantly decreased during 30 minutes but the mean intensity in the experimental group was significantly decreased during 60 minutes. CONCLUSION A substantial amount of P407 remained in the nasal cavity for at least 30 minutes post-application.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki Ryung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Yangseop Noh
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Won-Ho Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Yang-Sun Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Seung-Kyu Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Hun-Jong Dhong
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| | - Hyo Yeol Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Republic of Korea
| |
Collapse
|
41
|
Vashist A, Kaushik A, Alexis K, Dev Jayant R, Sagar V, Vashist A, Nair M. Bioresponsive Injectable Hydrogels for On-demand Drug Release and Tissue Engineering. Curr Pharm Des 2017; 23:3595-3602. [PMID: 28521694 PMCID: PMC6889087 DOI: 10.2174/1381612823666170516144914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
The emergence of injectable hydrogels as biomaterials has been a revolutionary breakthrough in the field of on-demand drug delivery and tissue engineering. The promising features of these systems include their biodegradability, biocompatibility, permeability, ease of the surgical implantation, and most importantly exhibit minimally invasiveness. These hydrogels have been explored as sustained and on-demand release carriers for the various bioactive agents, growth factors, live cells, various hydrophobic drugs and as extracellular matrices for tissue engineering. Present review is an attempt to highlight the recent systems explored for on-demand drug release and tissue engineering. It also gives an overview of the role of nanotechnology in the advancements of injectable hydrogels. The future prospects and challenges of these hydrogels have also been addressed.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Kayla Alexis
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Vidya Sagar
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, Índia
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| |
Collapse
|
42
|
In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Pramudya I, Rico CG, Lee C, Chung H. POSS-Containing Bioinspired Adhesives with Enhanced Mechanical and Optical Properties for Biomedical Applications. Biomacromolecules 2016; 17:3853-3861. [DOI: 10.1021/acs.biomac.6b00805] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Irawan Pramudya
- Department
of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Catalina G. Rico
- Department
of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Choogon Lee
- Department
of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306, United States
| | - Hoyong Chung
- Department
of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
44
|
Kulkarni JA, Avachat AM. Pharmacodynamic and pharmacokinetic investigation of cyclodextrin-mediated asenapine maleate in situ nasal gel for improved bioavailability. Drug Dev Ind Pharm 2016; 43:234-245. [DOI: 10.1080/03639045.2016.1236808] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juilee A. Kulkarni
- Department of Pharmaceutics, STES’s Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Amelia M. Avachat
- Department of Pharmaceutics, STES’s Sinhgad College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
45
|
Shelke S, Shahi S, Jadhav K, Dhamecha D, Tiwari R, Patil H. Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:103. [PMID: 27091045 DOI: 10.1007/s10856-016-5713-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The objective of the current study was to formulate and characterize thermoreversible gel of Eletriptan Hydrobromide for brain targeting via the intranasal route. Ethosomes were prepared by 3(2) factorial design with two independent variables (concentration of soya lecithin and ethanol) and two response variables [percent entrapment efficiency and vesicle size (nm)] using ethanol injection method. Formulated ethosomes were evaluated for preliminary microscopic examination followed by percent drug entrapment efficiency, vesicle size analysis, zeta potential, polydispersibility index and Transmission electron microscopy (TEM). TEM confirms spherical morphology of ethosomes, whereas Malvern zeta sizer confirms that the vesicle size was in the range of 191 ± 6.55-381.3 ± 61.0 nm. Ethosomes were incorporated in gel using poloxamer 407 and carbopol 934 as thermoreversible and mucoadhesive polymers, respectively. Ethosomal gels were evaluated for their pH, viscosity, mucoadhesive strength, in vitro drug release and ex vivo drug permeation through the sheep nasal mucosa. Mucoadhesive strength and pH was found to be 4400 ± 45 to 5500 ± 78.10 dynes/cm(2) and 6.0 ± 0.3 to 6.2 ± 0.1, respectively. In-vitro drug release from the optimized ethosomal gel formulation (G4) was found to be almost 100 % and ex vivo permeation of 4980 µg/ml with a permeability coefficient of 11.94 ± 0.04 × 10(-5) cm/s after 24 h. Histopathological study of the nasal mucosa confirmed non-toxic nature of ethosomal gels. Formulated EH loaded ethosomal thermoreversible gel could serve as the better alternative for the brain targeting via the intranasal route which in turn could subsequently improve its bioavailability.
Collapse
Affiliation(s)
- Santosh Shelke
- Department of Pharmaceutics, Yash Institute of Pharmacy, Bajaj Nagar, Aurangabad, Maharashtra, 431134, India.
| | - Sadhana Shahi
- Department of Pharmaceutics, Government College of Pharmacy, Osmanpura, Aurangabad, Maharashtra, 431005, India
| | - Kiran Jadhav
- KLE University's College of Pharmacy, Nehru Nagar, Belgaum, Karnataka, 590010, India
| | - Dinesh Dhamecha
- KLE University's College of Pharmacy, Nehru Nagar, Belgaum, Karnataka, 590010, India
| | - Roshan Tiwari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Hemlata Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
46
|
Sallam MA, Helal HM, Mortada SM. Rationally designed nanocarriers for intranasaltherapy of allergic rhinitis: influence of carrier type on in vivo nasal deposition. Int J Nanomedicine 2016; 11:2345-57. [PMID: 27307734 PMCID: PMC4887068 DOI: 10.2147/ijn.s98547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study is to develop a locally acting nasal delivery system of triamcinolone acetonide (TA) for the maintenance therapy of allergic rhinitis. The effect of encapsulating TA in different nanocarriers on its mucosal permeation and retention as well as in vivo nasal deposition has been studied. A comparative study was established between polymeric oil core nanocapsules (NCs), lipid nanocarriers such as nanoemulsion (NE), and nanostructured lipid carriers (NLCs). The elaborated nanocarriers were compared with TA suspension and the commercially available suspension "Nasacort(®)". The study revealed that NC provided the highest mucosal retention, as 46.14%±0.048% of the TA initial dose was retained after 24 hours, while showing the least permeation through the nasal mucosa. On the other hand, for TA suspension and Nasacort(®), the mucosal retention did not exceed 23.5%±0.047% of the initial dose after 24 hours. For NE and NLC, values of mucosal retention were 19.4%±0.041% and 10.97%±0.13%, respectively. NC also showed lower mucosal irritation and superior stability compared with NE. The in vivo nasal deposition study demonstrated that NC maintained drug in its site of action (nasal cavity mucosa) for the longest period of time. The elaborated polymeric oil core NCs are efficient carriers for the administration of nasally acting TA as it produced the least permeation results, thus decreasing systemic absorption of TA. Although NCs have been administered via various routes, this is the first study to implement the polymeric oil core NC as an efficient carrier for localized nasal drug delivery.
Collapse
Affiliation(s)
- Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hala Mahmoud Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sana Mohamed Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
47
|
Shingaki T, Katayama Y, Nakaoka T, Irie S, Onoe K, Okauchi T, Hayashinaka E, Yamaguchi M, Tanki N, Ose T, Hayashi T, Wada Y, Furubayashi T, Cui Y, Sakane T, Watanabe Y. Visualization of drug translocation in the nasal cavity and pharmacokinetic analysis on nasal drug absorption using positron emission tomography in the rat. Eur J Pharm Biopharm 2015; 99:45-53. [PMID: 26639201 DOI: 10.1016/j.ejpb.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
We performed positron emission tomography (PET) using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) to evaluate the pharmacokinetics of nasal drug absorption in the rat. The dosing solution of [(18)F]FDG was varied in volume (ranging from 5 to 25 μl) and viscosity (using 0% to 3% concentrations of hydroxypropylcellulose). We modeled the pharmacokinetic parameters regarding the nasal cavity and pharynx using mass balance equations, and evaluated the values that were obtained by fitting concentration-time profiles using WinNonlin® software. The regional nasal permeability was also estimated using the active surface area derived from the PET images. The translocation of [(18)F]FDG from the nasal cavity was visualized using PET. Analysis of the PET imaging data revealed that the pharmacokinetic parameters were independent of the dosing solution volume; however, the viscosity increased the absorption rate constant and decreased the mucociliary clearance rate constant. Nasal permeability was initially higher but subsequently decreased until the end of the study, indicating regional differences in permeability in the nasal cavity. We concluded that the visualization of drug translocation in the nasal cavity in the rat using PET enables quantitative analysis of nasal drug absorption, thereby facilitating the development of nasal formulations for human use.
Collapse
Affiliation(s)
- Tomotaka Shingaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yumiko Katayama
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takayoshi Nakaoka
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kayo Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Okauchi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masataka Yamaguchi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nobuyoshi Tanki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takayuki Ose
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takuya Hayashi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoyuki Furubayashi
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Yilong Cui
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toshiyasu Sakane
- Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
48
|
Kumar A, Garg T, Sarma GS, Rath G, Goyal AK. Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design. Eur J Pharm Sci 2015; 70:140-51. [PMID: 25676136 DOI: 10.1016/j.ejps.2015.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
Migraine is a chronic disorder characterized by significant headache and various associated symptoms which worsen with exertion. Zolmitriptan approved for use in the acute treatment of migraine and related vascular headaches but are limited by high pain recurrence due to rapid drug elimination. Combinationalformulationof triptans and a nonsteroidal anti-inflammatory drug may provide a quicker and longer duration of relief from the subsequent pain during the attack. In this study, we formulate a Zolmitriptan (ZT) & ketorolac tromethamine (KT) loaded thermo reversible in-situ mucoadhesive intranasal gel (TMISG) formulation which gels at the nasal mucosal temperature and contains a bioadhesive polymer (Xyloglucan) that lengthens the residence time will enhance the bioavailability of the combinational drugs. This study uses Box-Behnken design for the first time to develop, optimize the TMISG and assess factors affecting the critical quality attributes. Histopathological study of the nasal mucosa suggested that the formulation was safe for nasal administration. The statistical difference in absolute bioavailability between oral and intranasal route suggested that intranasal route had almost 21% increases in bioavailability for ZT and for KT there was 16% increase over oral formulations. Optimized formulation would help mitigate migraine associated symptoms much better over the currently available formulations.
Collapse
Affiliation(s)
- Animesh Kumar
- Department of Pharmaceutical Quality Assurance, I.S.F. College of Pharmacy, Moga 142001, Punjab, India
| | - Tarun Garg
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga 142001, Punjab, India
| | - Ganti S Sarma
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga 142001, Punjab, India
| | - Goutam Rath
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga 142001, Punjab, India
| | - Amit Kumar Goyal
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
49
|
Xu X, Shen Y, Wang W, Sun C, Li C, Xiong Y, Tu J. Preparation and in vitro characterization of thermosensitive and mucoadhesive hydrogels for nasal delivery of phenylephrine hydrochloride. Eur J Pharm Biopharm 2014; 88:998-1004. [DOI: 10.1016/j.ejpb.2014.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/29/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
50
|
Kassem AA, Ismail FA, Naggar VF, Aboulmagd E. Comparative study to investigate the effect of meloxicam or minocycline HCl in situ gel system on local treatment of periodontal pockets. AAPS PharmSciTech 2014; 15:1021-8. [PMID: 24831089 PMCID: PMC4113610 DOI: 10.1208/s12249-014-0118-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
In situ gelling formulations allow easy application to the target area. Gelation is induced by physiological stimuli at the site of application where the formula attains semisolid properties and exerts sustained drug release. In situ gelling formulations containing either 3% meloxicam (Mx) or 2% minocycline HCl (MH) were prepared for local application into the periodontal pockets. Gel formulations were based on the thermosensitive Pluronic(®) (Pl) and the pH-sensitive Carbopol(®) (C) polymers. C gels were prepared in combination with HPMC (H) to decrease its acidity. The total percent drug released from Pl formulae was 21.72% after 1 week for Mx and 85% after 3 days for MH. Their release kinetics data indicated anomalous non-Fickian behavior that could be controlled by both diffusion and chain relaxation. Addition of MH to C/H gels (1:2.5) resulted in liquefaction, followed by drug precipitation. Regarding C/H gel containing Mx, it showed a prolonged release rate up to 7 days with an initial burst effect; the kinetics data revealed Fickian-diffusion mechanism. The in vitro antibacterial activity studies for MH gel in Pl revealed that the drug released exceeded the minimum inhibitory concentration (MIC) of MH against Staphylococcus aureus ATCC 6538; placebo gel showed no effect on the microorganism. Clinical evaluation of Pl gels containing either Mx or MH showed significant improvement in chronic periodontitis patients, manifested by decrease in pocket depth and gingival index and increase in bone density.
Collapse
Affiliation(s)
- Abeer Ahmed Kassem
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,
| | | | | | | |
Collapse
|