1
|
Ayturk SA, Taskiran OO, Tohma EK, Dincel AS, Demirsoy N, Sepici V. Pharmacogenetics of Response to Bisphosphonate Treatment in Postmenopausal Osteoporosis: A Prospective Study. J Bone Metab 2025; 32:21-30. [PMID: 40098426 PMCID: PMC11960302 DOI: 10.11005/jbm.24.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/25/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND This study aims to investigate the effect of genetic polymorphisms of vitamin D receptor (VDR), estrogen receptor 1 (ER1), and Col1a1 on the response to bisphosphonate (BP) therapy in women with postmenopausal osteoporosis (OP). METHODS Twenty-one women with postmenopausal OP who received alendronate, ibandronate, or zoledronic acid for one year were enrolled in this study. Bone mineral density (BMD) at the lumbar spine and femoral neck were assessed by dual energy X-ray absorptiometry at baseline and after 12 months. Serum osteocalcin levels were measured at baseline and after 12 months. Polymorphic sites of the genes encoding ER1, VDR and Col1a1 proteins were amplified by polymerase chain reaction and examined using restriction fragment length polymorphism. Response to BP treatment and change in osteocalcin levels were compared among women with different gene polymorphisms. RESULTS Ratio of responders to treatment regarding improvements in the BMD of lumbar spine and femoral neck was adequate in 76% and 62%, respectively. There was no significant difference in treatment response regarding BMD in either region or change in serum osteocalcin levels among different gene polymorphisms. CONCLUSIONS These findings did not support the potential role of VDR BsmI, Col1a1 Sp1, ER1 PvuII, or XbaI polymorphisms in predicting the response to BP therapy in women with postmenopausal OP. Further investigation with larger prospective studies is required.
Collapse
Affiliation(s)
- Sirin Akbulut Ayturk
- Department of Physical Medicine and Rehabilitation, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Türkiye
| | - Ozden Ozyemisci Taskiran
- Department of Physical Medicine and Rehabilitation, Koç University School of Medicine, İstanbul,
Türkiye
| | - Ebru Koseoglu Tohma
- Department of Physical Medicine and Rehabilitation, Muğla Training and Research Hospital, Muğla,
Türkiye
| | - Aylin Sepici Dincel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara,
Türkiye
| | - Nesrin Demirsoy
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara,
Türkiye
| | - Vesile Sepici
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara,
Türkiye
| |
Collapse
|
2
|
Anitua E, Alkhraisat M, Eguia A. Clinical Performance of Implant-Supported Prostheses in the Rehabilitation of Patients Previously Treated for Medication-Related Osteonecrosis of the Jaws (MRONJ): A Systematic Review. Cureus 2024; 16:e61658. [PMID: 38966469 PMCID: PMC11223626 DOI: 10.7759/cureus.61658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
There is a lack of consensus on managing resultant bone and soft tissue defects or on restoring oral function and aesthetics following medication-related osteonecrosis of the jaws (MRONJ) lesion healing. This clinical challenge presents a dilemma for practitioners. Removable prostheses pose a recurrence risk if poorly fitted and may inadequately restore function or aesthetics in cases of significant bone defect. Dental implant-supported prostheses could enhance function and quality of life, though their risks and indications are not well-defined. This systematic review examines the clinical outcomes and complications associated with implant-supported rehabilitations post-MRONJ surgery. This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations and it was pre-registered in the Prospective Register of Systematic Reviews (PROSPERO) (CRD42023492539).
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine, Biotechnology Institute (BTI), Vitoria, ESP
| | | | - Asier Eguia
- Estomatology II, University of The Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, ESP
| |
Collapse
|
3
|
Guaraná WL, Lima CAD, Barbosa AD, Crovella S, Sandrin-Garcia P. Farnesyl Diphosphate Synthase Gene Associated with Loss of Bone Mass Density and Alendronate Treatment Failure in Patients with Primary Osteoporosis. Int J Mol Sci 2024; 25:5623. [PMID: 38891810 PMCID: PMC11172034 DOI: 10.3390/ijms25115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.
Collapse
Affiliation(s)
- Werbson Lima Guaraná
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
| | - Camilla Albertina Dantas Lima
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
- Department of Oceanography, Technology and Geoscience Center, Federal University of Pernambuco, Recife Campus, Recife 50740-550, Brazil
| | - Alexandre Domingues Barbosa
- Rheumatology Division, Clinical Hospital of Federal University of Pernambuco, Recife Campus, Recife 50740-900, Brazil;
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Paula Sandrin-Garcia
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
- Department of Genetics, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50730-120, Brazil
| |
Collapse
|
4
|
López-Delgado L, Del Real A, Sañudo C, Garcia-Ibarbia C, Laguna E, Menendez G, Garcia-Montesinos B, Santurtun A, Merino J, Pérez-Núñez MI, Riancho JA. Osteogenic capacity of mesenchymal stem cells from patients with osteoporotic hip fractures in vivo. Connect Tissue Res 2022; 63:243-255. [PMID: 33618587 DOI: 10.1080/03008207.2021.1894140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Human mesenchymal stem cells (MSCs) have the ability to differentiate into bone-forming osteoblasts. The aim of this study was to elucidate if MSCs from patients with OP show a senescent phenotype and explore their bone-forming ability in vivo. MATERIALS AND METHODS MSCs from patients with OP and controls with osteoarthritis (OA) were implanted into the subcutaneous tissue of immunodeficient mice for histological analysis and expression of human genes by RT-PCR. The expression of senescence-associated phenotype (SASP) genes, as well as p16, p21, and galactosidase, was studied in cultures of MSCs. RESULTS In vivo bone formation was evaluated in 103 implants (47 OP, 56 OA). New bone was observed in 45% of the implants with OP cells and 46% of those with OA cells (p = 0.99). The expression of several bone-related genes (collagen, osteocalcin, alkaline phosphatase, sialoprotein) was also similar in both groups. There were no differences between groups in SASP gene expression, p16, and p21 expression, or in senescence-associated galactosidase activity. CONCLUSION Senescence markers and the osteogenic capacity in vivo of MSCs from patients with OP are not inferior to that of cells from controls of similar age with OA. This supports the interest of future studies to evaluate the potential use of autologous MSCs from OP patients in bone regeneration procedures.
Collapse
Affiliation(s)
- Laura López-Delgado
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Esther Laguna
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Guillermo Menendez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | | | - Ana Santurtun
- Unit of Legal Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - Jesus Merino
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - María I Pérez-Núñez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
5
|
del Real Á, Valero C, Olmos JM, Hernández JL, Riancho JA. Pharmacogenetics of Osteoporosis: A Pathway Analysis of the Genetic Influence on the Effects of Antiresorptive Drugs. Pharmaceutics 2022; 14:pharmaceutics14040776. [PMID: 35456610 PMCID: PMC9032991 DOI: 10.3390/pharmaceutics14040776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Osteoporosis is a skeletal disorder defined by a decreased bone mineral density (BMD) and an increased susceptibility to fractures. Bisphosphonates and selective oestrogen receptor modulators (SERM) are among the most widely used drugs. They inhibit bone resorption by targeting the mevalonate and oestrogen pathways, respectively. The aim of this study was to determine if common variants of genes in those pathways influence drug responses. We studied 192 women treated with oral aminobisphosphonates and 51 with SERMs. Genotypes at 154 SNPs of the mevalonate pathway and 806 in the oestrogen pathway were analyzed. Several SNPs located in genes FDPS and FNTA were associated with the bisphosphonate-induced changes in hip bone mineral density (BMD), whereas polymorphisms of the PDSS1, CYP19A1, CYP1A1, and CYP1A2 genes were associated with SERM-induced changes in spine BMD. After multivariate analyses, genotypes combining genes FDPS and FNTA showed a stronger association with bisphosphonate response (r = 0.34; p = 0.00009), whereas the combination of CYP19A1 and PDSS1 genotypes was associated with the response to SERMs (r = 0.62, p = 0.0003). These results suggest that genotyping genes in these pathways may help predict the response to antiresorptive drugs and hence make personalized therapeutic choices.
Collapse
Affiliation(s)
- Álvaro del Real
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
| | - Carmen Valero
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José M. Olmos
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Jose L. Hernández
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José A. Riancho
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
- Correspondence:
| |
Collapse
|
6
|
Is there a familial predisposition to bisphosphonate-induced atypical femoral fractures? Turk J Phys Med Rehabil 2021; 67:370-373. [PMID: 34870126 PMCID: PMC8606994 DOI: 10.5606/tftrd.2021.5248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Bisphosphonates are commonly used in the treatment of osteoporosis. Atypical femoral fracture (AFF) is a well-known adverse effect of bisphosphonate use. The importance of genetic factors has been demonstrated in bone quality, bone turnover, and in the response to osteoporosis treatment. Herein, we present two cases of bilateral AFFs after bisphosphonate use for a short period of time in members of the same family (mother and her daughter) and discuss genetic predisposition to bisphosphonate-induced AFFs in the light of literature data.
Collapse
|
7
|
Therapeutic approach and management algorithms in medication-related osteonecrosis of the jaw (MONJ): recommendations of a multidisciplinary group of experts. Arch Osteoporos 2020; 15:101. [PMID: 32623599 DOI: 10.1007/s11657-020-00761-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The justification for this consensus is the absence of local protocols on Medication-Related Osteonecrosis of the Jaws (MONJ), for prevention, evaluation, and treatment, involving physicians and dentists, leading to suspension of antiresorptive treatments, despite their benefit in the prevention of fragility fractures (40-70%). These fractures cause disability and mortality (80% and 20-30%, respectively), as opposed to the low risk associated with MONJ in osteoporotic (0.01-0.03%) and oncological patients (1.3-1.8%). PURPOSE To provide management recommendations through algorithms that guide health professionals to prevent, diagnose, and treat MONJ in different clinical scenarios. METHOD A technical multidisciplinary team composed of specialists with extensive experience in osteoporosis or osteonecrosis of the jaw from Fundación Santa Fé (Bogotá, Colombia) and the Asociación Colombiana de Osteoporosis y Metabolismo Mineral was selected. Three rounds were carried out: definition of questions, answers using Delphi methodology, and the discussion of questions in order to have an agreement. The whole group participated in two phases, and the developer group in the total number of rounds. A literature review was conducted to obtain academic support to design questions with clinical relevance. RESULTS AND CONCLUSIONS The consensus group generated definitions and recommendations useful for doctors and dentists, following clinical algorithms involving four scenarios: osteoporosis patient who requires dental procedures and has not received antiresorptives, osteoporosis patient who are under treatment with antiresorptives, cancer patients, and MONJ-instituted patients. The therapeutic approach in osteoporosis and cancer patients, in invasive dental procedures, must be relied on the risk-benefit treatment.
Collapse
|
8
|
Clinical, Diagnostic and Prognostic Significance of Farnesyl Diphosphate Synthase Gene Polymorphism in Patients with Osteoarthritis: Decreased Bone Density and Overweight. Fam Med 2020. [DOI: 10.30841/2307-5112.1-2.2020.204544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Hsu YH, Estrada K, Evangelou E, Ackert-Bicknell C, Akesson K, Beck T, Brown SJ, Capellini T, Carbone L, Cauley J, Cheung CL, Cummings SR, Czerwinski S, Demissie S, Econs M, Evans D, Farber C, Gautvik K, Harris T, Kammerer C, Kemp J, Koller DL, Kung A, Lawlor D, Lee M, Lorentzon M, McGuigan F, Medina-Gomez C, Mitchell B, Newman A, Nielson C, Ohlsson C, Peacock M, Reppe S, Richards JB, Robbins J, Sigurdsson G, Spector TD, Stefansson K, Streeten E, Styrkarsdottir U, Tobias J, Trajanoska K, Uitterlinden A, Vandenput L, Wilson SG, Yerges-Armstrong L, Young M, Zillikens C, Rivadeneira F, Kiel DP, Karasik D. Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry. J Bone Miner Res 2019; 34:1284-1296. [PMID: 30888730 PMCID: PMC6650334 DOI: 10.1002/jbmr.3698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with ∼2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p ≤ 2.6 × 10-8 ) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 × 10-5 ). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA
| | - Karol Estrada
- Broad Institute, Cambridge, MA
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Cheryl Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| | - Kristina Akesson
- Department of Clinical Sciences Malmö, Lund University, Sweden
- Department of Orthopedics, Skåne University Hospital, S-205 02 Malmö, Sweden
| | - Thomas Beck
- Beck Radiological Innovations, Baltimore, MD
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Terence Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA
| | - Laura Carbone
- Department of Medicine at the Medical College of Georgia at Augusta University, Augusta, GA
| | - Jane Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Ching-Lung Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Michael Econs
- Department of Medicine and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Daniel Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Charles Farber
- Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Kaare Gautvik
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, and University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
| | - Tamara Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, NIA, Bethesda, MD
| | - Candace Kammerer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - John Kemp
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Daniel L Koller
- Department of Medicine and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Annie Kung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Debbie Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Miryoung Lee
- University of Texas, School of Public Health at Bronwsville, TX
| | - Mattias Lorentzon
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Fiona McGuigan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, New York, USA
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | - Braxton Mitchell
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center - Veterans Administration Medical Center, Baltimore, MD
| | - Anne Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Munro Peacock
- Department of Medicine and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Sjur Reppe
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, and University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
| | - J Brent Richards
- Department of Human Genetics, McGill University, and Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - John Robbins
- Department of Medicine, University California at Davis, Sacramento, CA
| | | | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Campus, London, UK
| | | | - Elizabeth Streeten
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center - Veterans Administration Medical Center, Baltimore, MD
| | | | | | | | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Liesbeth Vandenput
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Campus, London, UK
- School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | | | - Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA
| | - Carola Zillikens
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA
| | - David Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
10
|
Pauza CD, Liou ML, Lahusen T, Xiao L, Lapidus RG, Cairo C, Li H. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front Immunol 2018; 9:1305. [PMID: 29937769 PMCID: PMC6003257 DOI: 10.3389/fimmu.2018.01305] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022] Open
Abstract
Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing a broad range of tumor cells and demonstrated the capacity for tumor reduction in murine xenotransplant tumor models. Translating these findings to the clinic produced promising initial results but greater potency is needed. Here, we review the literature on gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells within the tumor environment to increase potency and achieve objective responses during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, have the potential to overcome many problems in cancer therapy especially for tumors with no known treatment, lacking tumor-specific antigens for targeting by antibodies and CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work from many laboratories studying gamma delta T cells is needed to fulfill the promise of effective and safe cancer immunotherapy.
Collapse
Affiliation(s)
- C David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Rena G Lapidus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
| |
Collapse
|
11
|
Rowe DW, Adams DJ, Hong SH, Zhang C, Shin DG, Renata Rydzik C, Chen L, Wu Z, Garland G, Godfrey DA, Sundberg JP, Ackert-Bicknell C. Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry. Curr Osteoporos Rep 2018; 16:77-94. [PMID: 29508144 DOI: 10.1007/s11914-018-0421-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The international mouse phenotyping consortium (IMPC) is producing defined gene knockout mouse lines. Here, a phenotyping program is presented that is based on micro-computed tomography (μCT) assessment of distal femur and vertebra. Lines with significant variation undergo a computer-based bone histomorphometric analysis. RECENT FINDINGS Of the 220 lines examined to date, approximately 15% have a significant variation (high or low) by μCT, most of which are not identified by the IMPC screen. Significant dimorphism between the sexes and bone compartments adds to the complexity of the skeletal findings. The μCT information that is posted at www.bonebase.org can group KOMP lines with similar morphological features. The histological data is presented in a graphic form that associates the cellular features with a specific anatomic group. The web portal presents a bone-centric view appropriate for the skeletal biologist/clinician to organize and understand the large number of genes that can influence skeletal health. Cataloging the relative severity of each variant is the first step towards compiling the dataset necessary to appreciate the full polygenic basis of degenerative bone disease.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
| | - Douglas J Adams
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - C Renata Rydzik
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | | | - Dana A Godfrey
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| | | | - Cheryl Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| |
Collapse
|
12
|
Becnel M, Manasanch EE. Myeloma patients: genes increase risk for osteonecrosis of the jaw. Leuk Lymphoma 2017; 58:2271-2272. [DOI: 10.1080/10428194.2017.1337116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Melody Becnel
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet Esteve Manasanch
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Lima CAD, Javorski NR, Souza APO, Barbosa AD, Valença APMC, Crovella S, Souza PRE, De Azevedo Silva J, Sandrin-Garcia P. Polymorphisms in key bone modulator cytokines genes influence bisphosphonates therapy in postmenopausal women. Inflammopharmacology 2017; 25:191-201. [PMID: 28220389 DOI: 10.1007/s10787-017-0322-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/28/2017] [Indexed: 12/20/2022]
Abstract
Osteoporosis is a multifactorial and debilitating disease resulting from decreased bone mineral density (BMD) and loss of tissue microarchitecture. Ineffective therapies may lead to bone fractures and subsequent death. Single nucleotide polymorphisms (SNPs) in key immune regulator genes have been associated with therapeutic response to bisphosphonates, which are the first therapeutic line of choice for osteoporosis. However, cytokine pathways and their relation with therapeutic adhesion remain to be fully elucidated. Aimed at better understanding these processes, we investigated the response to bisphosphonate therapy in postmenopausal women and four SNPs in key proinflammatory cytokines genes: IL23R +2284 (C>A) (rs10889677), IL17A +672 (G>A) (rs7747909), IL12B +1188 (T>G) (rs3212227) and INF-γ -1616 (G>A) (rs2069705). A total of 69 patients treated with bisphosphonate were followed for a period of 1 up to 4 years, genotyped and compared according to their changes in bone mineral density (BMD) and level of biochemical markers during their treatment. The INF-γ -1616 G/G associated with increased BMD values in femoral neck (GG/AA, p = 0.016) and decreased BMD values in total hip (GG/GA, p = 0.019; GG/AA, p = 0.011). In relation to biochemical markers, INF-γ -1616 SNP associated with increased alkaline phosphatase (GG/AA; p < 0.0001) and parathyroid hormone levels (AA/GA; p = 0.017). Vitamin D values changes were related to IL17A +672 (GG/GA, p = 0.034) and to IL12B +1188 (TT/TG, p = 0.046) SNPs. Besides, significant differences in changes of calcium levels correlated with IL23R +2284 (CC/CA, p = 0.016) genotypes. Altogether, we suggest that these polymorphisms may play an important role for therapeutic decisions in osteoporosis treatment.
Collapse
Affiliation(s)
- C A D Lima
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil. .,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - N R Javorski
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - A P O Souza
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - A D Barbosa
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Division of Rheumatology, Clinical Hospital, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - A P M C Valença
- Department of Oceanography, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - S Crovella
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - P R E Souza
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Genetics, Rural Federal University of Pernambuco (UFRPE), Recife, PE, Brazil
| | - J De Azevedo Silva
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - P Sandrin-Garcia
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|