1
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
3
|
Zhao X, Cheng P, Xu R, Meng K, Liao S, Jia P, Zheng X, Xiao C. Insights into the development of pentylenetetrazole-induced epileptic seizures from dynamic metabolomic changes. Metab Brain Dis 2022; 37:2441-2455. [PMID: 35838870 DOI: 10.1007/s11011-022-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is often considered to be a progressive neurological disease, and the nature of this progression remains unclear. Understanding the overall and common metabolic changes of epileptic seizures can provide novel clues for their control and prevention. Herein, a chronic kindling animal model was established to obtain generalized tonic-clonic seizures via the repeated injections of pentylenetetrazole (PTZ) at subconvulsive dose. Dynamic metabolomic changes in plasma and urine from PTZ-kindled rats at the different kindling phases were explored using NMR-based metabolomics, in combination with behavioral assessment, brain neurotransmitter measurement, electroencephalography and histopathology. The increased levels of glucose, lactate, glutamate, creatine and creatinine, together with the decreased levels of pyruvate, citrate and succinate, ketone bodies, asparagine, alanine, leucine, valine and isoleucine in plasma and/or urine were involved in the development and progression of seizures. These altered metabolites reflected the pathophysiological processes including the compromised energy metabolism, the disturbed amino acid metabolism, the peripheral inflammation and changes in gut microbiota functions. NMR-based metabolomics could provide brain disease information by the dynamic plasma and urinary metabolic changes during chronic epileptic seizures, yielding classification of seizure stages and profound insights into controlling epilepsy via targeting deficient energy metabolism.
Collapse
Affiliation(s)
- Xue Zhao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Peixuan Cheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Ru Xu
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Kaili Meng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Sha Liao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Pu Jia
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Chaoni Xiao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China.
| |
Collapse
|
4
|
Abstract
Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Developing strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.
Collapse
|
5
|
Zhao X, Liang L, Xu R, Cheng P, Jia P, Bai Y, Zhang Y, Zhao X, Zheng X, Xiao C. Revealing the Antiepileptic Effect of α-Asaronol on Pentylenetetrazole-Induced Seizure Rats Using NMR-Based Metabolomics. ACS OMEGA 2022; 7:6322-6334. [PMID: 35224394 PMCID: PMC8867478 DOI: 10.1021/acsomega.1c06922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 05/04/2023]
Abstract
α-Asaronol from Acorus tatarinowii (known as "Shichangpu" in Traditional Chinese medicine) has been proved to possess more efficient antiepileptic activity and lower toxicity than α-asarone (namely "Xixinnaojiaonang" as an antiepileptic drug in China) in our previous study. However, the molecular mechanism of α-asaronol against epilepsy needs to be known if to become a novel antiepileptic medicine. Nuclear magnetic resonance (NMR)-based metabolomics was applied to investigate the metabolic patterns of plasma and the brain tissue extract from pentylenetetrazole (PTZ)-induced seizure rats when treated with α-asaronol or α-asarone. The results showed that α-asaronol can regulate the metabolomic level of epileptic rats to normal to some extent, and four metabolic pathways were associated with the antiepileptic effect of α-asaronol, including alanine, aspartate, and glutamate metabolism; synthesis and degradation of ketone bodies; glutamine and glutamate metabolism; and glycine, serine, and threonine metabolism. It was concluded that α-asaronol plays a vital role in enhancing energy metabolism, regulating the balance of excitatory and inhibitory neurotransmitters, and inhibiting cell membrane damage to prevent the occurrence of epilepsy. These findings are of great significance in developing α-asaronol into a promising antiepileptic drug derived from Traditional Chinese medicine.
Collapse
|
6
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
7
|
Lin CH, Chou IC, Hong SY. Genetic factors and the risk of drug-resistant epilepsy in young children with epilepsy and neurodevelopment disability: A prospective study and updated meta-analysis. Medicine (Baltimore) 2021; 100:e25277. [PMID: 33761731 PMCID: PMC8049163 DOI: 10.1097/md.0000000000025277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Drug-resistant epilepsy (DRE) affects 7% to 20% of children with epilepsy. Although some risk factors for DRE have been identified, the results have not been consistent. Moreover, data regarding the risk factors for epilepsy and its seizure outcome in the first 2 years of life are limited.We analyzed data for children aged 0 to 2 years with epilepsy and neurodevelopmental disability from January, 2013, through December, 2017. These patients were followed up to compare the risk of DRE in patients with genetic defect (genetic group) with that without genetic defect (nongenetic group). Additionally, we conducted a meta-analysis to identify the pooled prevalence of genetic factors in children with DRE.A total of 96 patients were enrolled. A total of 68 patients were enrolled in the nongenetic group, whereas 28 patients were enrolled in the genetic group. The overall DRE risk in the genetic group was 6.5 times (95% confidence interval [CI], 2.15-19.6; p = 0.03) higher than that in the nongenetic group. Separately, a total of 1308 DRE patients were participated in the meta-analysis. The pooled prevalence of these patients with genetic factors was 22.8% (95% CI 17.4-29.3).The genetic defect plays a crucial role in the development of DRE in younger children with epilepsy and neurodevelopmental disability. The results can serve as a reference for further studies of epilepsy panel design and may also assist in the development of improved treatments and prevention strategies for DRE.
Collapse
Affiliation(s)
- Chien-Heng Lin
- Division of Pediatrics Pulmonology, China Medical University, Children's Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University, Children's Hospital
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatrics Neurology, China Medical University, Children's Hospital
| |
Collapse
|
8
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
9
|
Nikbakht F, Belali R, Rasoolijazi H, Mohammad Khanizadeh A. 2-Deoxyglucose protects hippocampal neurons against kainate-induced temporal lobe epilepsy by modulating monocyte-derived macrophages (mo-MΦ) and progranulin production in the hippocampus. Neuropeptides 2019; 76:101932. [PMID: 31227312 DOI: 10.1016/j.npep.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023]
Abstract
Inflammation is an important factor in the pathology of epilepsy with the hallmarks of resident microglia activation and infiltration of circulating monocytes in the damaged area. In the case of recovery and tissue repair, some monocytes change to macrophages (mo-MΦ) to enhance tissue repair. 2-deoxyglucose (2DG) is an analog of glucose capable of protecting the brain, and progranulin is a neurotrophic factor produced mainly by microglia and has an inflammation modulator effect. This study attempted to evaluate if one of the neuroprotective mechanisms of 2-DG is comprised of increasing monocyte-derived macrophages (mo-MΦ) and progranulin production. Status epilepticus (SE) was induced by i.c.v. injection of kainic acid (KA).2DG (125/mg/kg/day) was administered intraperitoneally. Four days later, animals were sacrificed. Their brain sections were then stained with Cresyl violet and Fluoro-Jade B to count the number of necrotic and degenerating neurons in CA3 and Hilus of dentate gyrus of the hippocampus. Lastly, immunohistochemistry was used to detect CD11b + monocyte, macrophage cells, and Progranulin level was evaluated by Western blotting. The histological analysis showed that 2DG can reduce the number of necrotic and degenerating neurons in CA3 and Hilar areas. Following KA administration, a great number of cD11b+ cells with monocyte morphology were observed in the hippocampus. 2DG not only reduced cD11b+ monocyte cells but was able to convert them to cells with the morphology of macrophages (mo-MΦ). 2DG also caused a significant increase in progranulin level in the hippocampus. Because macrophages and microglia are the most important sources of progranulin, it appears that 2DG caused the derivation of monocytes to macrophages and these cells produced progranulin with a subsequent anti-inflammation effect. In summary, it was concluded that 2DG is neuroprotective and probably one of its neuroprotective mechanisms is by modulating monocyte-derived macrophages by progranulin production.
Collapse
Affiliation(s)
- Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rafie Belali
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Woldman W, Cook MJ, Terry JR. Evolving dynamic networks: An underlying mechanism of drug resistance in epilepsy? Epilepsy Behav 2019; 94:264-268. [PMID: 30981121 PMCID: PMC6581121 DOI: 10.1016/j.yebeh.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 12/01/2022]
Abstract
At least one-third of all people with epilepsy have seizures that remain poorly controlled despite an increasing number of available anti-epileptic drugs (AEDs). Often, there is an initial good response to a newly introduced AED, which may last up to months, eventually followed by the return of seizures thought to be due to the development of tolerance. We introduce a framework within which the interplay between AED response and brain networks can be explored to understand the development of tolerance. We use a computer model for seizure generation in the context of dynamic networks, which allows us to generate an 'in silico' electroencephalogram (EEG). This allows us to study the effect of changes in excitability network structure and intrinsic model properties on the overall seizure likelihood. Within this framework, tolerance to AEDs - return of seizure-like activity - may occur in 3 different scenarios: 1) the efficacy of the drug diminishes while the brain network remains relatively constant; 2) the efficacy of the drug remains constant, but connections between brain regions change; 3) the efficacy of the drug remains constant, but the intrinsic excitability within brain regions varies dynamically. We argue that these latter scenarios may contribute to a deeper understanding of how drug resistance to AEDs may occur.
Collapse
Affiliation(s)
- Wessel Woldman
- Living Systems Institute, Centre for Biomedical Modelling and Analysis, EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, United Kingdom.
| | - Mark J. Cook
- Department of Medicine – St. Vincent's Hospital, The University of Melbourne, Parkville, VIC 3010, Australia,Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John R. Terry
- Living Systems Institute, Centre for Biomedical Modelling and Analysis, EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, United Kingdom
| |
Collapse
|
11
|
Zeng X, Hu K, Chen L, Zhou L, Luo W, Li C, Zong W, Chen S, Gao Q, Zeng G, Jiang D, Li X, Zhou H, Ouyang DS. The Effects of Ginsenoside Compound K Against Epilepsy by Enhancing the γ-Aminobutyric Acid Signaling Pathway. Front Pharmacol 2018; 9:1020. [PMID: 30254585 PMCID: PMC6142013 DOI: 10.3389/fphar.2018.01020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Abstract
The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine's scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Chaopeng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
12
|
Sheng J, Liu S, Qin H, Li B, Zhang X. Drug-Resistant Epilepsy and Surgery. Curr Neuropharmacol 2018; 16:17-28. [PMID: 28474565 PMCID: PMC5771378 DOI: 10.2174/1570159x15666170504123316] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epilepsy is a chronic brain disease that is caused by various factors and characterized by recurrent, episodic and temporary central nervous system dysfunction which results due to excessive discharge of brain neurons. In the past decades, despite the continuous development of antiepileptic drugs, there are still many patients with epilepsy progressing to drugresistant epilepsy. Currently, surgical treatment is one of important way to cure drug-resistant epilepsy. METHODS Data were collected from Web of Science, Medline, Pubmed, through searching of these keywords: "surgery" and "drug-resistant epilepsy". RESULTS An increasing number of studies have shown that surgery plays an important role in the treatment of drug-resistant epilepsy. Moreover, the comprehensive treatment mainly based on surgery can achieve the remission and even cure of drug-resistant epilepsy. CONCLUSION In this review, we discuss the pathogenesis of drug-resistant epilepsy and the comprehensive treatment mainly based on surgery; this review may provide a reference for the clinical treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Shui Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Hanjiao Qin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Xuewen Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| |
Collapse
|
13
|
Yu N, Zhang YF, Zhang K, Cheng YF, Ma HY, Di Q. Pregnane X Receptor Not Nuclear Factor-kappa B Up-regulates P-glycoprotein Expression in the Brain of Chronic Epileptic Rats Induced by Kainic Acid. Neurochem Res 2017; 42:2167-2177. [PMID: 28303499 DOI: 10.1007/s11064-017-2224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
Drug-resistance epilepsy (DRE) is attributed to the brain P-glycoprotein (P-gp) overexpression. We previously reported that nuclear factor-kappa B (NF-κB) played a critical role in regulating P-gp expression at the brain of the acute seizure rats. This study was extended further to investigate the interaction effect of NF-κB and pregnane X receptor (PXR) on P-gp expression at the brain of chronic epileptic rats treated with carbamazepine (CBZ). The chronic epileptic models were induced by the micro-injection of kainic acid (KA) into rats' hippocampus. Subsequently, the successful models were treated with different intervention agents of CBZ; PMA(a non-specific PXR activity inhibitor) or PDTC(a specific NF-κB activity inhibitor) respectively. The expression levels of P-gp and its encoded gene mdr1a/b were significantly up-regulated on the brain of KA-induced chronic epilepsy rats or the epilepsy rats treated with CBZ for 1 week, meanwhile with a high expression of PXR. The treatment of PMA dramatically reduced both PXR and P-gp expressions at the protein and mRNA levels in the chronic epilepsy brain. By compared to the epilepsy model group, the P-gp expression was not markedly attenuated by the inhibition of NF-κB activity with PDTC treatment, nevertheless with a decrease of NF-κB expression in this intervention group. Higher levels of proinflammatory cytokines(IL-1β, IL-6, TNF-α) were found both in the brain tissue and the serum in the epilepsy rats of each group. There was a declined trend of the pro-inflammatory cytokines expression of the PDTC treatment group but with no statistical significance. This study demonstrates for the first time that P-gp up-regulation is due to increase PXR expression in the chronic phase of epilepsy, differently from that NF-κB signaling may induce the P-gp expression in the acute seizure phase. Our results offer insights into the mechanism underlying the development of DRE using or not using CBZ treatment.
Collapse
Affiliation(s)
- Nian Yu
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, 210029, Nanjing, China
| | - Yan-Fang Zhang
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, 210029, Nanjing, China
| | - Kang Zhang
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, 210029, Nanjing, China
| | - Yong-Fei Cheng
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, 210029, Nanjing, China
| | - Hai-Yan Ma
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, 210029, Nanjing, China
| | - Qing Di
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, 210029, Nanjing, China.
| |
Collapse
|
14
|
Leclercq K, Kaminski RM. Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 2015; 49:55-60. [PMID: 26123104 DOI: 10.1016/j.yebeh.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023]
Abstract
Several factors may influence the efficacy of antiepileptic drugs (AEDs) in patients with epilepsy, and treatment resistance could be related to genetics, neuronal network alterations, and modification of drug transporters or targets. Consequently, preclinical models used for the identification of potential new, more efficacious AEDs should reflect at least a few of these factors. Previous studies indicate that induction of status epilepticus (SE) may alter drug efficacy and that this effect could be long-lasting. In this context, we wanted to assess the protective effects of mechanistically diverse AEDs in mice subjected to pilocarpine-induced SE in another seizure model. We first determined seizure thresholds in mice subjected to pilocarpine-induced SE in the 6-Hz model, 2 weeks and 8 weeks following SE. We then evaluated the protective effects of mechanistically diverse AEDs in post-SE and control animals. No major differences in 6-Hz seizure susceptibility were observed between control groups, while the seizure threshold of pilocarpine mice at 8 weeks after SE was higher than at 2 weeks and higher than in control groups. Treatment with AEDs revealed major differences in drug response depending on their mechanism of action. Diazepam produced a dose-dependent protection against 6-Hz seizures in control and pilocarpine mice, both at 2 weeks and 8 weeks after SE, but with a more pronounced increase in potency in post-SE animals at 2 weeks. Levetiracetam induced a potent and dose-dependent protection in pilocarpine mice, 2 weeks after SE, while its protective effects were observed only at much higher doses in control mice. Its potency decreased in post-SE mice at 8 weeks and was very limited (30% protection at the highest tested dose) in the control group. Carbamazepine induced a dose-dependent protection at 2 weeks in control mice but only limited effect (50% at the highest tested dose) in pilocarpine mice. Its efficacy deeply decreased in post-SE mice at 8 weeks after SE. Perampanel and phenytoin showed almost comparable protective effects in all groups of mice. These experiments confirm that prior SE may have an impact on both potency and efficacy of AEDs and indicate that this effect may be dependent on the underlying epileptogenic processes. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
|
15
|
Margineanu DG. Systems biology, complexity, and the impact on antiepileptic drug discovery. Epilepsy Behav 2014; 38:131-42. [PMID: 24090772 DOI: 10.1016/j.yebeh.2013.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
The number of available anticonvulsant drugs increased in the period spanning over more than a century, amounting to the current panoply of nearly two dozen so-called antiepileptic drugs (AEDs). However, none of them actually prevents/reduces the post-brain insult development of epilepsy in man, and in no less than a third of patients with epilepsy, the seizures are not drug-controlled. Plausibly, the enduring limitation of AEDs' efficacy derives from the insufficient understanding of epileptic pathology. This review pinpoints the unbalanced reductionism of the analytic approaches that overlook the intrinsic complexity of epilepsy and of the drug resistance in epilepsy as the core conceptual flaw hampering the discovery of truly antiepileptogenic drugs. A rising awareness of the complexity of epileptic pathology is, however, brought about by the emergence of nonreductionist systems biology (SB) that considers the networks of interactions underlying the normal organismic functions and of SB-based systems (network) pharmacology that aims to restore pathological networks. By now, the systems pharmacology approaches of AED discovery are fairly meager, but their forthcoming development is both a necessity and a realistic prospect, explored in this review.
Collapse
Affiliation(s)
- Doru Georg Margineanu
- Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Mons, Ave. Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|
16
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
17
|
Simonato M, Löscher W, Cole AJ, Dudek FE, Engel J, Kaminski RM, Loeb JA, Scharfman H, Staley KJ, Velíšek L, Klitgaard H. Finding a better drug for epilepsy: preclinical screening strategies and experimental trial design. Epilepsia 2012; 53:1860-7. [PMID: 22708847 DOI: 10.1111/j.1528-1167.2012.03541.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antiepileptic drugs (AEDs) introduced during the past two decades have provided several benefits: they offered new treatment options for symptomatic treatment of seizures, improved ease of use and tolerability, and lowered risk for hypersensitivity reactions and detrimental drug-drug interactions. These drugs, however, neither attenuated the problem of drug-refractory epilepsy nor proved capable of preventing or curing the disease. Therefore, new preclinical screening strategies are needed to identify AEDs that target these unmet medical needs. New therapies may derive from novel targets identified on the basis of existing hypotheses for drug-refractory epilepsy and the biology of epileptogenesis; from research on genetics, transcriptomics, and epigenetics; and from mechanisms relevant for other therapy areas. Novel targets should be explored using new preclinical screening strategies, and new technologies should be used to develop medium- to high-throughput screening models. In vivo testing of novel drugs should be performed in models mimicking relevant aspects of drug refractory epilepsy and/or epileptogenesis. To minimize the high attrition rate associated with drug development, which arises mainly from a failure to demonstrate sufficient clinical efficacy of new treatments, it is important to define integrated strategies for preclinical screening and experimental trial design. An important tool will be the discovery and implementation of relevant biomarkers that will facilitate a continuum of proof-of-concept approaches during early clinical testing to rapidly confirm or reject preclinical findings, and thereby lower the risk of the overall development effort. In this review, we overview some of the issues related to these topics and provide examples of new approaches that we hope will be more successful than those used in the past.
Collapse
Affiliation(s)
- Michele Simonato
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Ferrara, and National Institute of Neuroscience, via Fossato di Mortara 17-19, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Margineanu DG. Systems biology impact on antiepileptic drug discovery. Epilepsy Res 2011; 98:104-15. [PMID: 22055355 DOI: 10.1016/j.eplepsyres.2011.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/21/2011] [Accepted: 10/06/2011] [Indexed: 01/22/2023]
Abstract
Systems biology (SB), a recent trend in bioscience research to consider the complex interactions in biological systems from a holistic perspective, sees the disease as a disturbed network of interactions, rather than alteration of single molecular component(s). SB-relying network pharmacology replaces the prevailing focus on specific drug-receptor interaction and the corollary of rational drug design of "magic bullets", by the search for multi-target drugs that would act on biological networks as "magic shotguns". Epilepsy being a multi-factorial, polygenic and dynamic pathology, SB approach appears particularly fit and promising for antiepileptic drug (AED) discovery. In fact, long before the advent of SB, AED discovery already involved some SB-like elements. A reported SB project aimed to find out new drug targets in epilepsy relies on a relational database that integrates clinical information, recordings from deep electrodes and 3D-brain imagery with histology and molecular biology data on modified expression of specific genes in the brain regions displaying spontaneous epileptic activity. Since hitting a single target does not treat complex diseases, a proper pharmacological promiscuity might impart on an AED the merit of being multi-potent. However, multi-target drug discovery entails the complicated task of optimizing multiple activities of compounds, while having to balance drug-like properties and to control unwanted effects. Specific design tools for this new approach in drug discovery barely emerge, but computational methods making reliable in silico predictions of poly-pharmacology did appear, and their progress might be quite rapid. The current move away from reductionism into network pharmacology allows expecting that a proper integration of the intrinsic complexity of epileptic pathology in AED discovery might result in literally anti-epileptic drugs.
Collapse
Affiliation(s)
- Doru Georg Margineanu
- Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Mons, Ave. Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|