1
|
Rathmacher JA, Pitchford LM, Stout JR, Townsend JR, Jäger R, Kreider RB, Campbell BI, Kerksick CM, Harty PS, Candow DG, Roberts BM, Arent SM, Kalman DS, Antonio J. International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB). J Int Soc Sports Nutr 2025; 22:2434734. [PMID: 39699070 PMCID: PMC11740297 DOI: 10.1080/15502783.2024.2434734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals. Two forms of HMB have been studied: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA appears to lead to increased appearance of HMB in the bloodstream when compared to HMB-Ca, though recent results are mixed. 2. The available safety/toxicity data suggest that chronic HMB-Ca and HMB-FA consumption are safe for oral HMB supplementation in humans up to at least one year. 3. There are no negative effects of HMB-Ca and HMB-FA on glucose tolerance and insulin sensitivity in humans. There may be improvements in glucose metabolism in younger adults. 4. The primary mode of action of HMB appears to be through its dual mechanism to enhance muscle protein synthesis and suppress muscle protein breakdown. HMB's activation of mTORC1 is independent of the leucine-sensing pathway (Sestrin2-GATOR2 complex). 5. HMB may help reduce muscle damage and promote muscle recovery, which can promote muscle growth/repair. HMB may also have anti-inflammatory effects, which could contribute to reducing muscle damage and soreness. 6. HMB consumption in close proximity to an exercise bout may be beneficial to increase muscle protein synthesis and attenuate the inflammatory response. HMB can provide a beneficial physiological effect when consumed both acutely and chronically in humans. 7. Daily HMB supplementation (38 mg/kg body weight) in combination with exercise training may improve body composition through increasing lean mass and/or decreasing fat mass with benefits in participants across age, sex, and training status. The most pronounced of these improvements in body composition with HMB have been observed in studies with robust resistance training programs and dietary control. 8. HMB may improve strength and power in untrained individuals, but its performance benefits in trained athletes are mixed and increase with an increase in study duration (>6 weeks). HMB's beneficial effects on athletic performance are thought to be driven by improved recovery. 9. HMB supplementation appears to potentially have a positive impact on aerobic performance, especially in trained athletes. The mechanisms of the effects are unknown. 10. HMB supplementation may be important in a non-exercising sedentary and aging population to improve muscle strength, functionality, and muscle quality. The effects of HMB supplementation with exercise are varied, but the combination may have a beneficial effect on the treatment of age-associated sarcopenia under select conditions. 11. HMB may be effective in countering muscle disuse atrophy during periods of inactivity due to illness or injury. The modulation of mitochondrial dynamics and lipid metabolism by HMB may be a potential mechanism for preventing disuse atrophy and aiding rehabilitation beyond HMB's effects on rates of muscle protein synthesis and degradation. 12. The efficacy of HMB in combination with certain nutrients may be enhanced under select conditions.
Collapse
Affiliation(s)
- John A. Rathmacher
- MTI Biotech Inc, Ames, IA, USA
- lowa State University, Department of Animal Science, Ames, IA, USA
| | - Lisa M. Pitchford
- MTI Biotech Inc, Ames, IA, USA
- Iowa State University, Department of Kinesiology, Ames, IA, USA
| | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Jeremy R. Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | | | - Richard B. Kreider
- Texas A&M University, Exercise & Sports Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Patrick S. Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Brandon M. Roberts
- 10 General Greene Ave, Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
2
|
Naimo MA, Varanoske AN, Hughes JM, Pasiakos SM. Skeletal Muscle Quality: A Biomarker for Assessing Physical Performance Capabilities in Young Populations. Front Physiol 2021; 12:706699. [PMID: 34421645 PMCID: PMC8376973 DOI: 10.3389/fphys.2021.706699] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle quality (MQ), defined as the amount of strength and/or power per unit of muscle mass, is a novel index of functional capacity that is increasingly relied upon as a critical biomarker of muscle health in low functioning aging and pathophysiological adult populations. Understanding the phenotypical attributes of MQ and how to use it as an assessment tool to explore the efficacy of resistance exercise training interventions that prioritize functional enhancement over increases in muscle size may have implications for populations beyond compromised adults, including healthy young adults who routinely perform physically demanding tasks for competitive or occupational purposes. However, MQ has received far less attention in healthy young populations than it has in compromised adults. Researchers and practitioners continue to rely upon static measures of lean mass or isolated measures of strength and power, rather than using MQ, to assess integrated functional responses to resistance exercise training and physical stress. Therefore, this review will critically examine MQ and the evidence base to establish this metric as a practical and important biomarker for functional capacity and performance in healthy, young populations. Interventions that enhance MQ, such as high-intensity stretch shortening contraction resistance exercise training, will be highlighted. Finally, we will explore the potential to leverage MQ as a practical assessment tool to evaluate function and enhance performance in young populations in non-traditional research settings.
Collapse
Affiliation(s)
- Marshall A Naimo
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Alyssa N Varanoske
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
3
|
Health and ergogenic potential of oral adenosine-5′-triphosphate (ATP) supplementation. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Rehabilitation Nutrition for Injury Recovery of Athletes: The Role of Macronutrient Intake. Nutrients 2020; 12:nu12082449. [PMID: 32824034 PMCID: PMC7468744 DOI: 10.3390/nu12082449] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
An adequate and balanced diet is of utmost importance in recovery and rehabilitation. "Rehabilitation nutrition" for injury recovery of athletes is similar to sports nutrition, except for the differences that concern the prevention of the risk or presence of sarcopenia, malnutrition, or dysphagia. Rehabilitation nutrition also aims, combined with training, to an adequate long-term nutritional status of the athlete and also in physical condition improvement, in terms of endurance and resistance. The aim of this paper is to define the proper nutrition for athletes in order to hasten their return to the sports after surgery or injury. Energy intake should be higher than the energy target in order to fight sarcopenia-that is 25-30 kcal/kg of body weight. Macro- and micro-nutrients play an important role in metabolism, energy production, hemoglobin synthesis, lean mass and bone mass maintenance, immunity, health, and protection against oxidative damage. Nutritional strategies, such as supplementation of suboptimal protein intake with leucine are feasible and effective in offsetting anabolic resistance. Thus, maintaining muscle mass, without gaining fat, becomes challenging for the injured athlete. A dietary strategy should be tailored to the athlete's needs, considering amounts, frequency, type and, most of all, protein quality. During rehabilitation, simultaneous carbohydrates and protein intake can inhibit muscle breakdown and muscle atrophy. The long-term intake of omega-3 fatty acids enhances anabolic sensitivity to amino acids; thus, it may be beneficial to the injured athlete. Adequate intakes of macronutrients can play a major role supporting athletes' anabolism.
Collapse
|
5
|
Gonzalez AM, Church DD, Townsend JR, Bagheri R. Emerging Nutritional Supplements for Strength and Hypertrophy: An Update of the Current Literature. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Freitas MC, Cholewa JM, Gerosa-Neto J, Gonçalves DC, Caperuto EC, Lira FS, Rossi FE. A Single Dose of Oral ATP Supplementation Improves Performance and Physiological Response During Lower Body Resistance Exercise in Recreational Resistance-Trained Males. J Strength Cond Res 2020; 33:3345-3352. [PMID: 29045315 DOI: 10.1519/jsc.0000000000002198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Freitas, MC, Cholewa, JM, Gerosa-Neto, J, Gonçalves, DC, Caperuto, EC, Lira, FS, and Rossi, FE. A single dose of oral ATP supplementation improves performance and physiological response during lower body resistance exercise in recreational resistance-trained males. J Strength Cond Res 33(12): 3345-3352, 2019-The aim of this study was to investigate the acute effect of adenosine-5'-triphosphate (ATP) supplementation on performance and physiological responses during resistance exercise in recreationally resistance-trained males. Eleven men (age = 27.5 ± 5.5 years, mass = 83.4 ± 9.8 kg, height = 182 ± 0.04 cm) completed 2 randomized, double-blind trials: ATP supplement condition (ATP = 400 mg) or a placebo condition. Thirty minutes after supplement consumption, subjects performed 4 sets of half-squats until momentary muscular failure at 80% of the 1 repetition maximum with 2 minutes of recovery between sets. The total number of repetitions, blood pressure, heart rate, blood lactate, and oxygen consumption were evaluated. The total weight lifted were higher for the ATP condition compared with placebo (Placebo = 3,995.7 ± 1,137.8, ATP = 4,967.4 ± 1,497.9 kg; p = 0.005). Heart rate was higher at set-4 for ATP compared with placebo (p < 0.001) and oxygen consumption during exercise was greater for ATP (p = 0.021). There were no differences between conditions for lactate and blood pressure. In summary, a single oral dose of ATP supplementation improved lower-body resistance training performance and energy expenditure in recreational resistance-trained males.
Collapse
Affiliation(s)
- Marcelo C Freitas
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Jason M Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Jose Gerosa-Neto
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Daniela C Gonçalves
- Biosciences Department, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Erico C Caperuto
- Human Movement Laboratory, University São Judas Tadeu, São Paulo, SP, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Fabrício E Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
7
|
Holland BM, Roberts BM, Krieger JW, Schoenfeld BJ. Does HMB Enhance Body Composition in Athletes? A Systematic Review and Meta-analysis. J Strength Cond Res 2019; 36:585-592. [DOI: 10.1519/jsc.0000000000003461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Negligible Effects of β-Hydroxy-β-Methylbutyrate Free Acid and Calcium Salt on Strength and Hypertrophic Responses to Resistance Training: A Randomized, Placebo-Controlled Study. Int J Sport Nutr Exerc Metab 2019; 29:505-511. [PMID: 30859862 DOI: 10.1123/ijsnem.2018-0337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022]
Abstract
This study evaluated the effects of β-hydroxy-β-methylbutyrate free acid (HMB-FA) and calcium salt (HMB-Ca) on strength, hypertrophy, and markers of muscle damage. In this randomized, double-blind, placebo-controlled study, 44 resistance-trained men (age: 26 ± 4 years; body mass: 84.9 ± 12.0 kg) consuming ≥1.7 g·kg-1·day-1 of protein received HMB-FA (3 g/day; n = 14), HMB-Ca (3 g/day; n = 15), or placebo (PL; cornstarch, 3 g/day; n = 15) for 12 weeks, while performing a periodized resistance training program. Before and after intervention, lean body mass (measured with dual X-ray absorptiometry), maximal dynamic strength (one-repetition maximum), knee extension maximal isometric strength (maximal voluntary isometric contraction [MVIC]), cross-sectional area (measured with ultrasound), and muscle soreness were assessed. MVIC was also measured 48 hr after the first and the last training sessions. All groups increased lean body mass (main time effect: p < .0001; HMB-FA: 1.8 ± 1.8 kg; HMB-Ca: 0.8 ± 1.4 kg; PL: 0.9 ± 1.4 kg), cross-sectional area (main time effect: p < .0001; HMB-FA: 6.6 ± 3.8%; HMB-Ca: 4.7 ± 4.4%; PL: 6.9 ± 3.8%), one-repetition maximum bench press (main time effect: p < .0001; HMB-FA: 14.8 ± 8.4 kg; HMB-Ca: 11.8 ± 7.4 kg; PL: 11.2 ± 6.6 kg), MVIC (main time effect: p < .0001; HMB-FA: 34.4 ± 39.3%; HMB-Ca: 32.3 ± 27.4%; PL: 17.7 ± 20.9%) after the intervention, but no differences between groups were shown. HMB-FA group showed greater leg press strength after the intervention than HMB-Ca and PL groups (Group × Time interaction: p < .05; HMB-FA: 47.7 ± 31.2 kg; HMB-Ca: 43.8 ± 31.7 kg; PL: 30.2 ± 20.9 kg). MVIC measured 48 hr after the first and the last sessions showed no attenuation of force decline with supplementation. Muscle soreness following the first and last sessions was not different between groups. The authors concluded that neither HMB-Ca nor HMB-FA improved hypertrophy or reduced muscle damage in resistance-trained men undergoing resistance training ingesting optimal amounts of protein. HMB-FA but not HMB-Ca resulted in a statistically significant yet minor improvement on leg press one-repetition maximum.
Collapse
|
9
|
Rathmacher JA. Authors' Response. J Strength Cond Res 2019; 32:e4-e6. [PMID: 29570161 DOI: 10.1519/jsc.0000000000002487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Jakubowski JS, Wong EPT, Nunes EA, Noguchi KS, Vandeweerd JK, Murphy KT, Morton RW, McGlory C, Phillips SM. Equivalent Hypertrophy and Strength Gains in β-Hydroxy-β-Methylbutyrate- or Leucine-supplemented Men. Med Sci Sports Exerc 2019; 51:65-74. [PMID: 30113522 PMCID: PMC6303132 DOI: 10.1249/mss.0000000000001752] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ingestion of proteins with high leucine content during resistance training (RT) can augment hypertrophy. Some data suggest that a leucine metabolite, β-hydroxy, β-methylbutyrate (HMB), is substantially more anabolically efficacious than leucine. PURPOSE We aimed to test whether supplementation with HMB versus leucine, added to whey protein, would result in differential muscle hypertrophy and strength gains in young men performing RT. METHODS Twenty-six resistance-trained men (23 ± 2 yr) performed 12 wk of RT with three phases. Phase 1: 8 wk of periodized RT (three training sessions per week). Phase 2: 2 wk overreaching period (five sessions per week). Phase 3: 2 wk taper (three sessions per week). Participants were randomly assigned to twice daily ingestion of: whey protein (25 g) plus HMB (1.5 g) (whey+HMB; n = 13) or whey protein (25 g) plus leucine (1.5 g) (whey+leu; n = 13). Skeletal muscle biopsies were performed before and after RT. Measures of fat- and bone-free mass, vastus lateralis (VL) muscle thickness and muscle cross-sectional area (CSA) (both by ultrasound), muscle fiber CSA, and 1-repetition maximum (1-RM) strength tests were determined. RESULTS We observed increases in fat- and bone-free mass, VL muscle thickness, muscle CSA and fiber type CSA and 1-RM strength with no differences between groups at any phase. We observed no differences between groups or time-group interactions in hormone concentrations at any phase of the RT program. CONCLUSIONS β-Hydroxy-β-methylbutyrate added to whey did not result in greater increases in any measure of muscle mass, strength, or hormonal concentration compared to leucine added to whey. Our results show that HMB is no more effective in stimulating RT-induced hypertrophy and strength gains than leucine.
Collapse
Affiliation(s)
| | - Edwin P T Wong
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | - Everson A Nunes
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopólis, BRAZIL
| | | | | | - Kevin T Murphy
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | | |
Collapse
|
11
|
Teixeira FJ, Matias CN, Monteiro CP, Valamatos MJ, Reis JF, Batista A, Oliveira AC, Alves F, Sardinha LB, Phillips SM. No effect of HMB or α-HICA supplementation on training-induced changes in body composition. Eur J Sport Sci 2018; 19:802-810. [PMID: 30588860 DOI: 10.1080/17461391.2018.1552723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β-hydroxy-β-methylbutyrate (calcium: HMB-Ca and free acid: HMB-FA) and α-hydroxyisocaproic acid (α-HICA) are leucine metabolites that have been proposed to improve body composition and strength when combined with resistance exercise training (RET). In this double-blind randomized controlled pragmatic trial, we evaluated the effects of off-the-shelf supplements: α-HICA, HMB-FA and HMB-Ca, on RET-induced changes in body composition and performance. Forty men were blocked randomized to receive α-HICA (n = 10, fat-free mass [FFM] = 62.0 ± 7.1 kg), HMB-FA (n = 11, FFM = 62.7 ± 10.5 kg), HMB-Ca (n = 9, FFM = 65.6 ± 10.1 kg) or placebo (PLA; n = 10, FFM = 64.2 ± 5.7 kg). The training protocol consisted of a whole-body resistance training routine, thrice weekly for 8 weeks. Body composition was assessed by dual-energy x-ray absorptiometry (DXA) and total body water (TBW) by whole-body bioimpedance spectroscopy (BIS), both at baseline and at the end of weeks 4 and 8. Time-dependent changes were observed for increase in trunk FFM (p < 0.05). No statistically significant between-group or group-by-time interactions were observed. Supplementation with HMB (FA and Ca) or α-HICA failed to enhance body composition to a greater extent than placebo. We do not recommend these leucine metabolites for improving body composition changes with RET in young adult resistance trained men.
Collapse
Affiliation(s)
- Filipe J Teixeira
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Catarina N Matias
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,b Laboratory of Exercise and Health, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Cristina P Monteiro
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Maria J Valamatos
- c Neuromuscular Research Lab, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Joana F Reis
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,e Universidade Europeia , Lisboa , Portugal
| | - Ana Batista
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Ana C Oliveira
- f Nutrition Department , Instituto Superior de Ciências da Saúde Egas Moniz , Almada , Portugal
| | - Francisco Alves
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Luís B Sardinha
- b Laboratory of Exercise and Health, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Stuart M Phillips
- g Department of Kinesiology , McMaster University , Hamilton , Canada
| |
Collapse
|
12
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, Rawson ES, Walsh NP, Garthe I, Geyer H, Meeusen R, van Loon LJC, Shirreffs SM, Spriet LL, Stuart M, Vernec A, Currell K, Ali VM, Budgett RG, Ljungqvist A, Mountjoy M, Pitsiladis YP, Soligard T, Erdener U, Engebretsen L. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med 2018; 52:439-455. [PMID: 29540367 PMCID: PMC5867441 DOI: 10.1136/bjsports-2018-099027] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 12/24/2022]
Abstract
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition programme. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including (1) the management of micronutrient deficiencies, (2) supply of convenient forms of energy and macronutrients, and (3) provision of direct benefits to performance or (4) indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can benefit the athlete, but others may harm the athlete's health, performance, and/or livelihood and reputation (if an antidoping rule violation results). A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome and habitual diet. Supplements intended to enhance performance should be thoroughly trialled in training or simulated competition before being used in competition. Inadvertent ingestion of substances prohibited under the antidoping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount; expert professional opinion and assistance is strongly advised before an athlete embarks on supplement use.
Collapse
Affiliation(s)
| | - Louise M Burke
- Sports Nutrition, Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Melbourne, Australia
| | - Jiri Dvorak
- Department of Neurology, Schulthess Clinic, Zurich, Switzerland
| | - D Enette Larson-Meyer
- Department of Family & Consumer Sciences (Human Nutrition), University of Wyoming, Laramie, Wyoming, USA
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
- Western Australian Institute of Sport, Mount Claremont, Australia
| | | | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah College, Mechanicsburg, Pennsylvania, USA
| | - Neil P Walsh
- College of Health and Behavioural Sciences, Bangor University, Bangor, UK
| | - Ina Garthe
- The Norwegian Olympic and Paralympic Committee and Confederation of Sport, Oslo, Norway
| | - Hans Geyer
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University, Cologne, Germany
| | - Romain Meeusen
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lucas J C van Loon
- Mary MacKillop Institute for Health Research, Melbourne, Australia
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Lawrence L Spriet
- Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | | | - Alan Vernec
- Department of Science and Medicine, World Anti-Doping Agency (WADA), Montreal, Canada
| | | | - Vidya M Ali
- Medical and Scientific Commission, International Olympic Committee, Lausanne, Switzerland
| | - Richard Gm Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | | | - Margo Mountjoy
- Human Health and Nutritional Sciences, Health and Performance, Centre University of Guelph, Guelph, Ontario, Canada
- Medical and Scientific Commission Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Yannis P Pitsiladis
- Medical and Scientific Commission, International Olympic Committee, Lausanne, Switzerland
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Uğur Erdener
- Medical and Scientific Commission, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| |
Collapse
|
14
|
IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int J Sport Nutr Exerc Metab 2018; 28:104-125. [PMID: 29589768 DOI: 10.1123/ijsnem.2018-0020] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete's health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.
Collapse
|
15
|
Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int J Sport Nutr Exerc Metab 2018; 28:188-199. [DOI: 10.1123/ijsnem.2017-0340] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Silva VR, Belozo FL, Micheletti TO, Conrado M, Stout JR, Pimentel GD, Gonzalez AM. β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: a systematic review. Nutr Res 2017; 45:1-9. [DOI: 10.1016/j.nutres.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/27/2022]
|