1
|
Varillas-Delgado D. Nutritional Status and Ergogenic Aids in Performance During Exercise and Sports. Nutrients 2025; 17:1224. [PMID: 40218982 PMCID: PMC11990525 DOI: 10.3390/nu17071224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025] Open
Abstract
The interaction between nutritional status, ergogenic aids, and athletic performance has long been a central focus in sports science [...].
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; or
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
2
|
Wang X, Wang S, Basit A, Wei Q, Zhao K, Liu F, Zhao Y. Metabolomics Provides New Insights into the Mechanisms of Wolbachia-Induced Plant Defense in Cotton Mites. Microorganisms 2025; 13:608. [PMID: 40142501 PMCID: PMC11944673 DOI: 10.3390/microorganisms13030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider mites using parthenogenetic backcrossing and antibiotic treatment methods. A total of 55 differential metabolites were identified, which involved lipids, phenylpropanoids, and polyketides. KEGG pathway enrichment analysis revealed seven significantly enriched metabolic pathways. Among them, flavonoid and flavonol biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism showed extremely significant differences. In Wolbachia-infected cotton leaves, the flavonoid biosynthesis pathway was significantly up-regulated, including quercetin and myricetin, suggesting that the plant produces more secondary metabolites to enhance its defense capability. Glycerophosphocholine (GPC) and sn-glycerol-3-phosphoethanolamine (PE) were significantly down-regulated, suggesting that Wolbachia may impair the integrity and function of plant cell membranes. The downregulation of lysine and the upregulation of L-malic acid indicated that Wolbachia infection may shorten the lifespan of spider mites. At various developmental stages of the spider mites, Wolbachia infection increased the expression of detoxification metabolism-related genes, including gene families such as cytochrome P450, glutathione S-transferase, carboxylesterase, and ABC transporters, thereby enhancing the detoxification capability of the host spider mites. This study provides a theoretical basis for further elucidating the mechanisms by which endosymbiotic bacteria induce plant defense responses and expands the theoretical framework of insect-plant co-evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Liu
- College of Agriculture, Shihezi University, Shihezi 832003, China; (X.W.); (S.W.); (A.B.); (Q.W.); (K.Z.)
| | - Yiying Zhao
- College of Agriculture, Shihezi University, Shihezi 832003, China; (X.W.); (S.W.); (A.B.); (Q.W.); (K.Z.)
| |
Collapse
|
3
|
Devrim-Lanpir A, Ihász F, Demcsik M, Horváth AC, Góczán P, Czepek P, Takács J, Kimble R, Zare R, Gunes FE, Knechtle B, Weiss K, Rosemann T, Heinrich KM. Effects of Acute Citrulline Malate Supplementation on CrossFit ® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study. Nutrients 2024; 16:3235. [PMID: 39408204 PMCID: PMC11478471 DOI: 10.3390/nu16193235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Given the increasing popularity of CrossFit® as a high-intensity functional training program and the potential benefits of citrulline malate (CM) in enhancing exercise performance through its role as a precursor to L-arginine and nitric oxide production, this study aimed to investigate the acute effects of CM supplementation on CrossFit® performance and cardiovascular function. Using a randomized, double-blind, placebo-controlled, cross-over design, 21 recreationally active participants (mean age 22.2 ± 2.6 years, mean body weight 75.9 ± 10.4 kg) with CrossFit® experience completed the "Cindy" workout under CM and placebo conditions. Participants consumed 4.4 g of CM or a placebo 60 min before the workout, and the performance was measured by the number of rounds completed. Secondary outcomes included heart rate response, time spent in different heart rate intensity zones, and post-exercise recovery time. The results indicated no significant difference in the number of rounds completed between the CM and placebo conditions (13.5 ± 5.2 vs. 13.8 ± 6.7 rounds, respectively; p = 0.587). However, the time spent in zone 4 (80-90% of HR max) was significantly increased in the CM condition (527 ± 395 s vs. 453 ± 334 s; p = 0.017), suggesting a potential benefit for aerobic capacity and anaerobic threshold. No significant differences in post-exercise recovery time were observed (6.6 ± 4.7 h vs. 6.9 ± 4.7 h; p = 0.475). This study highlights the need for further research with larger sample sizes, both genders, and different CM dosages to clarify these findings and better understand CM's role in enhancing athletic performance.
Collapse
Affiliation(s)
- Asli Devrim-Lanpir
- School of Health and Human Performance, Dublin City University, D09 V209 Dublin, Ireland;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, 34862 Istanbul, Turkey;
| | - Ferenc Ihász
- Faculty of Education and Psychology, Institute of Sport Sciences, Eötvös Lóránd University, 1075 Szombathely, Hungary; (F.I.); (M.D.); (A.C.H.); (P.G.); (P.C.)
| | - Máté Demcsik
- Faculty of Education and Psychology, Institute of Sport Sciences, Eötvös Lóránd University, 1075 Szombathely, Hungary; (F.I.); (M.D.); (A.C.H.); (P.G.); (P.C.)
| | - András Csaba Horváth
- Faculty of Education and Psychology, Institute of Sport Sciences, Eötvös Lóránd University, 1075 Szombathely, Hungary; (F.I.); (M.D.); (A.C.H.); (P.G.); (P.C.)
| | - Pál Góczán
- Faculty of Education and Psychology, Institute of Sport Sciences, Eötvös Lóránd University, 1075 Szombathely, Hungary; (F.I.); (M.D.); (A.C.H.); (P.G.); (P.C.)
| | - Péter Czepek
- Faculty of Education and Psychology, Institute of Sport Sciences, Eötvös Lóránd University, 1075 Szombathely, Hungary; (F.I.); (M.D.); (A.C.H.); (P.G.); (P.C.)
| | - Johanna Takács
- Department of Social Sciences, Faculty of Health Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Rachel Kimble
- Division of Sport, Exercise and Health, School of Health and Life Sciences, University of the West of Scotland, Blantyre G720LH, UK;
| | - Reza Zare
- Meshkat Sports Complex, Karaj 3149645179, Alborz Province, Iran
- Arses Sports Complex, Karaj 3149645179, Alborz Province, Iran
| | - Fatma Esra Gunes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, 34862 Istanbul, Turkey;
| | - Beat Knechtle
- Institute of Primary Care, University Hospital Zurich, 8091 Zurich, Switzerland; (K.W.); (T.R.)
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
| | - Katja Weiss
- Institute of Primary Care, University Hospital Zurich, 8091 Zurich, Switzerland; (K.W.); (T.R.)
| | - Thomas Rosemann
- Institute of Primary Care, University Hospital Zurich, 8091 Zurich, Switzerland; (K.W.); (T.R.)
| | - Katie M. Heinrich
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA;
- Department of Research and Evaluation, The Phoenix, Manhattan, KS 66502, USA
| |
Collapse
|
4
|
Faria VS, Egan B. Effects of 3 days of citrulline malate supplementation on short-duration repeated sprint running performance in male team sport athletes. Eur J Sport Sci 2024; 24:758-765. [PMID: 38874989 PMCID: PMC11235799 DOI: 10.1002/ejsc.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 06/15/2024]
Abstract
Citrulline malate (CM) is purported to be an ergogenic aid during various types of exercise performance. However, the effects of CM on repeated sprint performance (RSP) are under-explored. In a placebo-controlled, double-blind, counterbalanced cross-over design, male university-level team sport athletes (n = 13) performed two familiarization trials, after which CM or placebo (PLA) (8 × 1 g tablets each day) were taken on the 2 days prior to, and with breakfast on the morning of, each main experimental trial. The main experimental trials employed a RSP protocol consisting of 10 repetitions of 40 m maximal shuttle run test (MST) with a 30 s interval between the start of each sprint. Sprint times and heart rate were recorded throughout the MST, and blood lactate concentrations were measured before, immediately after, and 5 min after completing the MST. CM resulted in better RSP compared to PLA, as indicated by a lower sprint performance decrement (Sdec: CM, 4.68% ± 1.82% vs. PLA, 6.10% ± 1.83%; p = 0.03; ES = 0.77), which was possibly influenced by the fastest sprint time being faster in CM (CM, 8.16 ± 0.34 s vs. PLA, 8.29 ± 0.39 s; p = 0.011; ES = 0.34). There were no differences between CM and PLA in average sprint time (p = 0.54), slowest sprint time (p = 0.48), blood lactate concentrations (p = 0.73) or heart rate (p = 0.18), nor was there a condition × time interaction effect across the 10 sprints (p = 0.166). Three days of CM supplementation (8 g daily) attenuated the sprint performance decrement during short-duration high-intensity exercise in the form of running RSP in male university-level team sport athletes.
Collapse
Affiliation(s)
- Vinicius S. Faria
- School of Health and Human PerformanceDublin City UniversityDublinIreland
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Florida Institute of Human and Machine CognitionPensacolaFloridaUSA
| |
Collapse
|
5
|
Harnden CS, Agu J, Gascoyne T. Effects of citrulline on endurance performance in young healthy adults: a systematic review and meta-analysis. J Int Soc Sports Nutr 2023; 20:2209056. [PMID: 37155582 PMCID: PMC10167868 DOI: 10.1080/15502783.2023.2209056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Citrulline is a popular dietary supplement, primarily thought to exert ergogenic effects on exercise performance through the enhancement of nitric oxide (NO) synthesis and ammonia buffering. However, recent findings surrounding citrulline's effect on endurance performance have been inconsistent. A systematic review and meta-analysis of the relevant literature have yet to be undertaken. AIM To determine if acute ingestion of citrulline has an ergogenic effect on endurance performance in young healthy adults. METHODS A systematic search of three databases was undertaken to find peer-reviewed randomized controlled trials (RCTs) published in English investigating the effects of citrulline supplementation on endurance performance in young healthy adults. Two independent investigators completed a three-phased screening procedure against pre-determined eligibility criteria. Included studies evaluated loading or bolus dosage regimes of citrulline in participants aged 18 or over that were at least recreationally active. Outcome measures focused on time-to-completion (TTC) or time-to-exhaustion (TTE) in continuous submaximal intensity exercise. Cochrane's Risk of Bias 2 (RoB 2) tool was used to assess the risk of bias in individual studies. Meta-analysis was conducted using a fixed-effects model to pool the weighted estimate of standardized mean differences (SMD) across studies. A chi-squared test assessed heterogeneity between studies. This review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Nine studies (n = 158 participants) met the eligibility criteria; five reported TTE outcomes (I2 = 0%, χ2 = 0.37, df = 4, P = 0.99) and four reported TTC outcomes (I2 = 0%, χ2 = 0.46, df = 3, P = 0.93), both with a low between-study heterogeneity. The results of the meta-analyses showed no significant difference in the endurance performance measures, TTE (pooled SMD = 0.03 [-0.27, 0.33]) and TTC (pooled SMD = -0.07 [-0.50, 0.15]), after acute ingestion of citrulline supplementation or a control in young healthy adults. DISCUSSION The current evidence suggests no significant benefit of citrulline supplementation for endurance performance. However, the small evidence base requires further research to fully evaluate this topic. Recommendations include a focus on female populations; higher continuous doses of citrulline over seven days; and TTC outcome measures over longer distances to simulate competition.
Collapse
Affiliation(s)
- Callum S Harnden
- University of Nottingham, Department of Sports and Exercise Medicine, Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Joseph Agu
- University of Nottingham, Department of Sports and Exercise Medicine, Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Tom Gascoyne
- University of Nottingham, Department of Sports and Exercise Medicine, Faculty of Medicine and Health Sciences, Nottingham, UK
| |
Collapse
|
6
|
Wang X, Xu M. Effect of vitamin energy drinks on relieving exercise-induced fatigue in muscle group by ultrasonic bioimaging data analysis. PLoS One 2023; 18:e0285015. [PMID: 37363923 DOI: 10.1371/journal.pone.0285015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE This work was aimed to analyze the effect of vitamin energy drink on muscle fatigue by surface electromyography (SEMG) and ultrasonic bioimaging (USBI). METHODS 20 healthy men were selected to do increasing load fatigue test. Surface electromyographic signals and ultrasonic biological images were collected based on wavelet threshold function with improved thresholds. Time domain and frequency domain characteristic integrated electromyography (IEMG), root mean square amplitude (RMS), average power frequency (MPF), and surface and deep muscle morphological changes were analyzed. Hemoglobin concentration (HB), red blood cell number (RBC), mean volume of red blood cell (MCV), blood lactic acid (BLA), malondialdehyde (MDA), and phosphocreatine kinase (CK) were measured. RESULTS 1) the Accuracy (94.10%), Sensitivity (94.43%), Specificity (93.75%), and Precision (94.07%) of the long and short-term memory (LSTM) specificity for muscle fatigue recognition were higher than those of other models. 2) Compared with the control group, the levels of BLA, MDA, and CK in the experimental group were decreased and HB levels were increased after exercise (P < 0.05). 3) IEMG and RMS of the experimental group were higher than those of the control group, and increased with time (P < 0.05). 4) The mean amplitude of the response signal decreased with time. Compared with the control group, the surface muscle thickness, deep muscle thickness, total muscle thickness, contrast, and homogeneity (HOM) decreased in the experimental group; while the angular second moment (ASM) and contrast increased, showing great differences (P < 0.05). CONCLUSION Surface electromyographic signal and ultrasonic biological image can be used as auxiliary monitoring techniques for muscle fatigue during exercise. Drinking vitamin energy drinks before exercise can relieve physical fatigue to a certain extent and promote the maintenance of muscle microstructure.
Collapse
Affiliation(s)
- Xindi Wang
- School of Aerospace, Harbin Institute of Technology, Harbin, Heilongjiang, China
- China Basketball College, Beijing Sport University, Beijing, Beijing, China
| | - Mengtao Xu
- China Basketball College, Beijing Sport University, Beijing, Beijing, China
| |
Collapse
|
7
|
Gonzalez AM, Yang Y, Mangine GT, Pinzone AG, Ghigiarelli JJ, Sell KM. Acute Effect of L-Citrulline Supplementation on Resistance Exercise Performance and Muscle Oxygenation in Recreationally Resistance Trained Men and Women. J Funct Morphol Kinesiol 2023; 8:88. [PMID: 37489301 PMCID: PMC10366749 DOI: 10.3390/jfmk8030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
L-citrulline serves as a nitric oxide precursor with the potential to increase blood flow and improve resistance exercise performance, yet more research is needed to examine its ergogenic potential. To examine the effect of L-citrulline supplementation on resistance exercise performance, muscle oxygenation, and the subjective perception of effort, energy, focus, fatigue, and muscle pump, eighteen resistance-trained men (n = 11) and women (n = 7) (21.4 ± 1.8 years; 172.3 ± 7.5 cm; 76.9 ± 10.8 kg) were randomly assigned for supplementation with 8 g of L-citrulline (CIT) or a placebo (PL) in a cross-over fashion one hour prior to testing. Participants completed an isometric mid-thigh pull test (IMTP), a ballistic bench press protocol [two sets of two repetitions at 75% 1-repetition maximum (1 RM) with maximum ballistic intent], and a strength-endurance bench press protocol [five repetition-maximum sets at 75% 1RM]. Barbell velocity and power were measured via a linear position transducer during the ballistic protocol, while the repetitions completed, volume load and muscle oxygenation were quantified during the strength-endurance protocol. Subjective measures were assessed at the baseline and immediately pre- and post-exercise. Repeated measures of the analysis of variance and Bayesian equivalents revealed no significant interactions, providing evidence favoring the null hypothesis (BF10 < 1) for IMTP (PL 497.5 ± 133.6 vs. CIT 492.5 ± 129.4 N), barbell velocity, and power, and repetitions completed (PL 36.7 ± 7.2 vs. CIT 36.9 ± 8.1 repetitions). There were also no significant interactions for muscle oxygenation parameters or subjective measures except perceived fatigue. Women reported greater fatigue across all time points compared to men (~1.88 au, p = 0.045, BF10 = 0.2). The results indicate that a single 8 g dose of L-citrulline did not enhance isometric force production, muscle endurance, or muscle oxygenation parameters during the protocol implemented in this study.
Collapse
Affiliation(s)
- Adam M Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| | - Yang Yang
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| | - Gerald T Mangine
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Anthony G Pinzone
- Program in Exercise Science and Exercise Physiology, Kent State University, Kent, OH 44242, USA
| | - Jamie J Ghigiarelli
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| | - Katie M Sell
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| |
Collapse
|
8
|
Park HY, Kim SW, Seo J, Jung YP, Kim H, Kim AJ, Kim S, Lim K. Dietary Arginine and Citrulline Supplements for Cardiovascular Health and Athletic Performance: A Narrative Review. Nutrients 2023; 15:1268. [PMID: 36904267 PMCID: PMC10005484 DOI: 10.3390/nu15051268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisoo Seo
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Yanghoon P. Jung
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Hyunji Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Ah-Jin Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Sonwoo Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023; 15:nu15030660. [PMID: 36771366 PMCID: PMC9921013 DOI: 10.3390/nu15030660] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.
Collapse
|
10
|
The Effect of a Single Dose of Citrulline on the Physical Performance of Soccer-Specific Exercise in Adult Elite Soccer Players (A Pilot Randomized Double-Blind Trial). Nutrients 2022; 14:nu14235036. [PMID: 36501066 PMCID: PMC9739774 DOI: 10.3390/nu14235036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of a single intake of citrulline at 3 g and 6 g doses in adult elite soccer players performing sport-specific exercise. MATERIALS AND METHODS This randomized double-blind placebo-controlled study analyzed 18 soccer players from the top divisions of three European countries. Participants were randomized into three groups of six each and performed a field-based soccer-specific test for 18 min. Comparative analysis of heart rate, fatigue and post-exercise recovery was conducted. RESULTS There were no statistically significant differences in most of the analyzed parameters, nor at any of the time points for lactate concentration. Players' RPE exercise test score did not reveal any differences. CONCLUSIONS Neither a single intake of 3 g nor of 6 g of citrulline malate affected physical performance, subjective feelings of fatigue or post-exercise recovery in adult elite soccer players who performed a soccer-specific test.
Collapse
|
11
|
Meimoun L, Pecchi É, Vilmen C, Bendahan D, Giannesini B. Effect of citrulline malate supplementation on muscle function and bioenergetics during short-term repeated bouts of fatiguing exercise. J Sports Sci 2022; 40:1981-1990. [PMID: 36251983 DOI: 10.1080/02640414.2022.2123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 10/24/2022]
Abstract
Citrulline malate (CM) has been shown to improve muscle performance in healthy participants during a single exercise session. Yet, within the framework of exercises repeated at close time interval, the consequences of CM ingestion on mechanical performance are controversial and the bioenergetics side remains undocumented. The aim of this double-blind placebo-controlled study was to evaluate in vivo the effect of short-term (7 doses in 48 h) oral administration of CM upon gastrocnemius muscle function and bioenergetics using non-invasive multimodal NMR techniques in healthy rats. The experimental protocol consisted of two 6-min bouts of fatiguing exercise spaced by an 8-min recovery period. CM treatment did not affect the basal bioenergetics status and increased the half-fatigue time during the first exercise bout. With exercise repetition, it prevented PCr cost alteration and decreased both the glycolytic ATP production and the contractile ATP cost in working muscle, but these changes were not associated to any improvement in mechanical performance. In addition, CM did not influence the replenishment of high-energy phosphorylated compounds during the post-exercise recovery periods. Therefore, short-term CM administration enhances muscle bioenergetics throughout fatiguing bouts of exercise repeated at close time interval but this enhancement does not benefit to mechanical performance.
Collapse
|
12
|
Burgos J, Viribay A, Fernández-Lázaro D, Calleja-González J, González-Santos J, Mielgo-Ayuso J. Combined Effects of Citrulline Plus Nitrate-Rich Beetroot Extract Co-Supplementation on Maximal and Endurance-Strength and Aerobic Power in Trained Male Triathletes: A Randomized Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 14:40. [PMID: 35010917 PMCID: PMC8746866 DOI: 10.3390/nu14010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Citrulline (CIT) and nitrate-rich beetroot extract (BR) are ergogenic aids and nitric oxide (NO) precursors. In addition, both supplements seem to have other actions at the level of muscle metabolism that can benefit strength and aerobic power performance. Both supplements have been studied in numerous investigations in isolation. However, scientific evidence combining both supplements is scarce, and to the best of the authors' knowledge, there is no current study of endurance athletes. Therefore, the main purpose of this study was to determine the effect of 9 weeks of CIT plus BR supplementation on maximal and endurance-strength performance and aerobic power in male triathletes. This study was a randomized double-blind, placebo-controlled trial where participants (n = 32) were randomized into four different groups: placebo group (PLG; n = 8), CIT plus BR group (CIT- BRG; 3 g/kg/day of CIT plus 3 mg/kg/day of nitrates (NO3-); n = 8), CIT group (CITG; 3 g/kg/day; n = 8) and BR group (BRG; 3 mg/kg/day of NO3-; n = 8). Before (T1) and after 9 weeks (T2), four physical condition tests were carried out in order to assess sport performance: the horizontal jump test (HJUMP), handgrip dynamometer test, 1-min abdominal tests (1-MAT) and finally, the Cooper test. Although, no significant interactions (time × supplementation groups) were found for the strength tests (p > 0.05), the CIT- BRG supplementation presented a trend on HJUMP and 1-MAT tests confirmed by significant increase between two study moments in CIT-BRG. Likewise, CIT-BRG presented significant interactions in the aerobic power test confirmed by this group's improve estimated VO2max during the study with respect to the other study groups (p = 0.002; η2p = 0.418). In summary, supplementing with 3 g/day of CIT and 2.1 g/day of BR (300 mg/day of NO3-) for 9 weeks could increase maximal and endurance strength. Furthermore, when compared to CIT or BR supplementation alone, this combination improved performance in tests related to aerobic power.
Collapse
Affiliation(s)
- José Burgos
- Department of Nursing and Physiotherapy, University of León, 24071 León, Spain
- Burgos Nutrition, Physiology, Nutrition and Sport, 26007 Logroño, Spain;
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria, Spain;
| | - Josefa González-Santos
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| |
Collapse
|
13
|
Acute and Chronic Citrulline Malate Supplementation on Muscle Contractile Properties and Fatigue Rate of the Quadriceps. Int J Sport Nutr Exerc Metab 2021; 31:490-496. [PMID: 34470906 DOI: 10.1123/ijsnem.2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
This study compared the acute and chronic impact of citrulline malate (CM) supplementation on muscle contractile properties and fatigue rate of the quadriceps. Eighteen recreationally trained males consumed both a placebo (PL) and CM treatment for two separate dosing periods. The first experimental testing session for each dosing period was considered the baseline day, the second session the acute day, and the third session the chronic day, which followed seven consecutive days of supplementation. All testing sessions included exercising on a cycle ergometer at 50%-60% of their max power output for 30 min followed by performing the Thorstensson test on an isokinetic dynamometer. A two-way (Supplement × Time) analysis of variance with repeated measures resulted in no significant interactions (p > .05) (PL: baseline day, acute day, chronic day vs. CM: baseline day, acute day, chronic day) for peak power (in watts) (469 ± 81, 490 ± 97, 502 ± 99 vs. 464 ± 85, 480 ± 103, 501 ± 81); peak torque (in newton meters) (150 ± 26, 157 ± 32, 161 ± 31 vs. 149 ± 27, 156 ± 33, 161 ± 26); fatigue rate (in percentage) (57 ± 9, 57 ± 10, 58 ± 9 vs. 57 ± 10, 56 ± 9, 58 ± 9); and heart rate (in beats per minute) (156 ± 17, 146 ± 13, 146 ± 9 vs. 155 ± 11, 146 ± 11, 146 ± 9). The results of this study suggest that neither acute nor chronic supplementation of CM had an effect on recovery or fatigue rate of the quadriceps.
Collapse
|
14
|
Gough LA, Sparks SA, McNaughton LR, Higgins MF, Newbury JW, Trexler E, Faghy MA, Bridge CA. A critical review of citrulline malate supplementation and exercise performance. Eur J Appl Physiol 2021; 121:3283-3295. [PMID: 34417881 PMCID: PMC8571142 DOI: 10.1007/s00421-021-04774-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test–retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.
Collapse
Affiliation(s)
- Lewis A Gough
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK.
| | - S Andy Sparks
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | | | - Josh W Newbury
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK
| | | | - Mark A Faghy
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - Craig A Bridge
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| |
Collapse
|
15
|
Aguiar AF, Casonatto J. Effects of Citrulline Malate Supplementation on Muscle Strength in Resistance-Trained Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Diet Suppl 2021; 19:772-790. [PMID: 34176406 DOI: 10.1080/19390211.2021.1939473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although the ergogenic mechanisms of supplementation with citrulline malate are well known, unclear findings regarding variables of muscle strength have been recorded. Such misleading findings in the literature illustrate the need for well-conducted meta-analysis research to elucidate the possible ergogenic impact, which could have major practical consequences for athletes and recreational practitioners seeking to optimize gains in muscle strength. The objective of this systematic review was to summarize the existing literature that evaluated the effects of citrulline malate supplementation on muscle strength outcomes from resistance exercise in resistance-trained individuals. A systematic electronic search in Medline and Scientific Electronic Library Online (SciELO) was completed in August 2020 identifying randomized controlled trials investigating the effect of citrulline malate supplementation on muscle strength in resistance-trained adults. A subsequent meta-analysis was performed. The meta-analysis involved four studies and 138 assessments (69 in citrulline-malate and 69 in placebo groups). We did not observe an overall effect favoring citrulline-malate supplementation (SMD95% = 0.13 [-0.21; 0.46]). Considering the lower (SMD95% = 0.06 [-0.47; 0.60]) and upper (SMD95% = 0.17 [-0.26; 0.60]) limbs, a non-significant overall effect was identified. The mean effects were similar for "limbs" (upper vs lower) [p = 0.763]. Accordingly, our findings suggest that citrulline malate supplementation does not improve muscle strength in healthy and resistance-trained individuals (PROSPERO registration number: CRD42020159338).
Collapse
Affiliation(s)
- Andreo F Aguiar
- Research Laboratory in Muscular System and Physical Exercise, University of Northern Paraná, Londrina, Brazil
| | - Juliano Casonatto
- Research Group in Physiology and Physical Activity, University of Northern Paraná, Londrina, Brazil
| |
Collapse
|
16
|
Acute Effect of Citrulline Malate on Repetition Performance During Strength Training: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2021; 31:350-358. [PMID: 34010809 DOI: 10.1123/ijsnem.2020-0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 01/31/2021] [Indexed: 11/18/2022]
Abstract
Citrulline malate (CitMal) is a dietary supplement that is suggested to enhance strength training performance. However, there is conflicting evidence on this matter. Thus, the purpose of this meta-analysis was to determine whether supplementing with CitMal prior to strength training could increase the total number of repetitions performed before reaching voluntary muscular failure. A systematic search was conducted wherein the inclusion criteria were double-blind, placebo-controlled studies in healthy participants that examined the effect of CitMal on repetitions to failure during upper body and lower body resistance exercises. The Hedges's g standardized mean differences (SMD) between the placebo and CitMal trials were calculated and used in a random effect model. Two separate subanalyses were performed for upper body and lower body exercises. Eight studies, including 137 participants who consisted of strength-trained men (n = 101) and women (n = 26) in addition to untrained men (n = 9), fulfilled the inclusion criteria. Across the studies, 14 single-joint and multijoint exercises were performed with an average of 51 ± 23 total repetitions during 5 ± 3 sets per exercise at ∼70% of one-repetition maximum. Supplementing with 6-8 g of CitMal 40-60 min before exercise increased repetitions by 3 ± 5 (6.4 ± 7.9%) compared with placebo (p = .022) with a small SMD (0.196). The subanalysis for the lower body resulted in a tendency for an effect of the supplement (8.1 ± 8.4%, SMD: 0.27, p = .051) with no significant effect for the upper body (5.7 ± 8.4%, SMD: 0.16, p = .131). The current analysis observed a small ergogenic effect of CitMal compared with placebo. Acute CitMal supplementation may, therefore, delay fatigue and enhance muscle endurance during high-intensity strength training.
Collapse
|
17
|
Rhim HC, Kim SJ, Park J, Jang KM. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:553-561. [PMID: 33308806 PMCID: PMC7749242 DOI: 10.1016/j.jshs.2020.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/04/2019] [Accepted: 12/30/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Citrulline is one of the non-essential amino acids that is thought to improve exercise performance and reduce post-exercise muscle soreness. We conducted a systematic review and meta-analysis to determine the effect of citrulline supplements on the post-exercise rating of perceived exertion (RPE), muscle soreness, and blood lactate levels. METHODS A random effects model was used to calculate the effect sizes due to the high variability in the study design and study populations of the articles included. A systematic search of PubMed, Web of Science, and ClinicalTrials.gov was performed. Eligibility for study inclusion was limited to studies that were randomized controlled trials involving healthy individuals and that investigated the acute effect of citrulline supplements on RPE, muscle soreness, and blood lactate levels. The supplementation time frame was limited to 2 h before exercise. The types and number of participants, types of exercise tests performed, supplementation protocols for L-citrulline or citrulline malate, and primary (RPE and muscle soreness) and secondary (blood lactate level) study outcomes were extracted from the identified studies. RESULTS The analysis included 13 eligible articles including a total of 206 participants. The most frequent dosage used in the studies was 8 g of citrulline malate. Citrulline supplementation significantly reduced RPE (n = 7, p = 0.03) and muscle soreness 24-h and 48-h after post-exercise (n = 7, p = 0.04; n = 6, p = 0.25, respectively). However, citrulline supplementation did not significantly reduce muscle soreness 72-h post-exercise (n = 4, p = 0.62) or lower blood lactate levels (n = 8, p = 0.17). CONCLUSION Citrulline supplements significantly reduced post-exercise RPE and muscle soreness without affecting blood lactate levels.
Collapse
Affiliation(s)
- Hye Chang Rhim
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Sung Jong Kim
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Jewel Park
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Ki-Mo Jang
- College of Medicine, Korea University, Seoul 02842, Republic of Korea; Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Gonzalez AM, Trexler ET. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J Strength Cond Res 2020; 34:1480-1495. [DOI: 10.1519/jsc.0000000000003426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Blohm K, Beidler J, Rosen P, Kressler J, Hong MY. Effect of acute watermelon juice supplementation on post-submaximal exercise heart rate recovery, blood lactate, blood pressure, blood glucose and muscle soreness in healthy non-athletic men and women. Int J Food Sci Nutr 2019; 71:482-489. [PMID: 31597484 DOI: 10.1080/09637486.2019.1675604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to determine the effects of a single pre-exercise dose of watermelon juice on submaximal post-exercise heart rate (HR) recovery, blood lactate (BL), blood pressure (BP), blood glucose (BG), and muscle soreness in healthy adults. In a randomised crossover design, 27 healthy non-athletic participants (13 males/14 females) consumed 355 mL of watermelon juice, Gatorade, sugar water, or water. HR and BL were significantly higher post-exercise, and both watermelon juice and sugar water increased postprandial BG. However, there were no significant differences among the supplements in HR recovery, BL, or post-exercise muscle soreness. Watermelon juice prevented increased post-exercise systolic and diastolic BP in females, but not in males. More research is warranted to examine the effect of sex on the efficacy of watermelon consumption for controlling BP.
Collapse
Affiliation(s)
- Kara Blohm
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Joshua Beidler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Phil Rosen
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Jochen Kressler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
20
|
Terasawa N, Nakada K. Effect of L-citrulline intake on intermittent short-time high-intensity exercise performance in male collegiate track athletes. ACTA ACUST UNITED AC 2019. [DOI: 10.7600/jpfsm.8.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenta Nakada
- Division of Regional Development Studies, Graduate School of Human and Socio-Environmental Studies, Kanazawa University
| |
Collapse
|
21
|
Supplementary Nitric Oxide Donors and Exercise as Potential Means to Improve Vascular Health in People with Type 1 Diabetes: Yes to NO? Nutrients 2019; 11:nu11071571. [PMID: 31336832 PMCID: PMC6682901 DOI: 10.3390/nu11071571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with a greater occurrence of cardiovascular pathologies. Vascular dysfunction has been shown at the level of the endothelial layers and failure to maintain a continuous pool of circulating nitric oxide (NO) has been implicated in the progression of poor vascular health. Biochemically, NO can be produced via two distinct yet inter-related pathways that involve an upregulation in the enzymatic activity of nitric oxide synthase (NOS). These pathways can be split into an endogenous oxygen-dependent pathway i.e., the catabolism of the amino acid L-arginine to L-citrulline concurrently yielding NO in the process, and an exogenous oxygen-independent one i.e., the conversion of exogenous inorganic nitrate to nitrite and subsequently NO in a stepwise fashion. Although a body of research has explored the vascular responses to exercise and/or compounds known to stimulate NOS and subsequently NO production, there is little research applying these findings to individuals with T1D, for whom preventative strategies that alleviate or at least temper vascular pathologies are critical foci for long-term risk mitigation. This review addresses the proposed mechanisms responsible for vascular dysfunction, before exploring the potential mechanisms by which exercise, and two supplementary NO donors may provide vascular benefits in T1D.
Collapse
|
22
|
Iraki J, Fitschen P, Espinar S, Helms E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports (Basel) 2019; 7:E154. [PMID: 31247944 PMCID: PMC6680710 DOI: 10.3390/sports7070154] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Many nutrition practices often used by bodybuilders lack scientific support and can be detrimental to health. Recommendations during the dieting phase are provided in the scientific literature, but little attention has been devoted to bodybuilders during the off-season phase. During the off-season phase, the goal is to increase muscle mass without adding unnecessary body fat. This review evaluated the scientific literature and provides nutrition and dietary supplement recommendations for natural bodybuilders during the off-season phase. A hyper-energetic diet (~10-20%) should be consumed with a target weight gain of ~0.25-0.5% of bodyweight/week for novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the caloric surplus and weekly weight gain. Sufficient protein (1.6-2.2 g/kg/day) should be consumed with optimal amounts 0.40-0.55 g/kg per meal and distributed evenly throughout the day (3-6 meals) including within 1-2 hours pre- and post-training. Fat should be consumed in moderate amounts (0.5-1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming sufficient amounts (≥3-5 g/kg/day) to support energy demands from resistance exercise. Creatine monohydrate (3-5 g/day), caffeine (5-6 mg/kg), beta-alanine (3-5 g/day) and citrulline malate (8 g/day) might yield ergogenic effects that can be beneficial for bodybuilders.
Collapse
Affiliation(s)
- Juma Iraki
- Iraki Nutrition AS, 2008 Fjerdingby, Norway.
| | | | | | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Auckland University of Technology, Auckland 0632, New Zealand
| |
Collapse
|
23
|
Trexler ET, Persky AM, Ryan ED, Schwartz TA, Stoner L, Smith-Ryan AE. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med 2019; 49:707-718. [DOI: 10.1007/s40279-019-01091-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Chappell AJ, Allwood DM, Simper TN. Citrulline Malate Fails to Improve German Volume Training Performance in Healthy Young Men and Women. J Diet Suppl 2018; 17:249-260. [DOI: 10.1080/19390211.2018.1513433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew J. Chappell
- Food and Nutrition Group, Sheffield School of Business, Sheffield Hallam University, Sheffield, UK
| | - Daniel M. Allwood
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Trevor N. Simper
- Food and Nutrition Group, Sheffield School of Business, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
25
|
Chappell AJ, Allwood DM, Johns R, Brown S, Sultana K, Anand A, Simper T. Citrulline malate supplementation does not improve German Volume Training performance or reduce muscle soreness in moderately trained males and females. J Int Soc Sports Nutr 2018; 15:42. [PMID: 30097067 PMCID: PMC6086018 DOI: 10.1186/s12970-018-0245-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Use of supplements to aid performance is common practice amongst recreationally active individuals, including those without a sufficient evidence base. This investigation sought to assess whether acute supplementation with 8 g of citrulline malate (CM) (1.11: 1 ratio) would improve anaerobic performance. METHODS A randomised double blind placebo control trial was employed, using a counterbalanced design. We recruited recreationally active men and women to take part in an isokinetic chair protocol, based on German Volume Training (GVT) whereby participants attempted to perform 10 sets of 10 repetitions against a force representing 70% of their peak concentric force. RESULTS The number of repetitions achieved over the course of the GVT was 94.0 ± 7.9 and 90.9 ± 13.9 for placebo and CM respectively. There was no significant difference between the placebo and CM treatment for number of repetitions (P = 0.33), isometric (P = 0.60), concentric (P = 0.38), or eccentric (P = 0.65) peak force following the GVT. Total muscle soreness was significantly higher in the CM compared to the placebo treatment following the GVT protocol over 72 h (P = 0.01); although this was not accompanied by a greater workload/number of repetitions in the CM group. CONCLUSIONS We conclude that an acute dose of CM does not significantly affect anaerobic performance using an isokinetic chair in recreational active participants. Practical implications include precaution in recommending CM supplementation. Coaches and athletes should be aware of the disparity between the chemical analyses of the products reviewed in the present investigation versus the manufacturers' claims.
Collapse
Affiliation(s)
- Andrew J Chappell
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK.
| | - Daniel M Allwood
- Department of Biosciences and Chemistry, Sheffield Hallam University, Owen Building, City Campus, Sheffield, UK
| | - Rebecca Johns
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Samantha Brown
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Kiran Sultana
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Annie Anand
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Trevor Simper
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| |
Collapse
|