1
|
Repullo C, Castaño-Zambudio A, Del Campo-Vecino J, Jiménez-Reyes P. Resisted sprint training with combined loads improve the maximum velocity in professional female soccer. Sports Biomech 2025:1-18. [PMID: 39882739 DOI: 10.1080/14763141.2025.2453817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
We analysed the long-term adaptations of resisted sprint training (RST) with combined loads on the performance and kinematics of the maximal velocity (MV). One team women's professional soccer players performed a six-week training programme with progressive sled loading from 20% to 80% of body mass. Pre-training, post-training and detraining measures were obtained for sprint times for 0-20 m, 20-30 m and 0-30 m, while step length (SL), step rate (SR), step velocity, trunk, hip, thigh, knee, shank ankle, foot and centre of mass (CoM) angles were digitised with an 18-point human model. Two points were included: toe-off and touchdown, and both legs ipsilateral and contralateral. Sprint times were significantly reduced in the acceleration and MV phase, with a homogeneous individual response within the group. There were no significant alterations in the angles of the trunk, hip, thigh, knee, shank, ankle and foot across the different tests, nor in SR. Significant alterations in CoM-angle, step velocity and higher SL were observed. RST with progressive of combined loads effectively improved MV performance without causing changes that generated an adverse effect on sprint kinematics. The study offers an RST training programme to enhance sprint performance in professional female soccer.
Collapse
Affiliation(s)
- Carmen Repullo
- Education Faculty, Autonoma University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
2
|
Jiménez-Reyes P, van den Tillaar R, Castaño-Zambudio A, Gleadhill S, Nagahara R. Understanding sprint phase-specific training stimuli: a cluster analysis approach to overload conditions. Front Sports Act Living 2024; 6:1510379. [PMID: 39722738 PMCID: PMC11669057 DOI: 10.3389/fspor.2024.1510379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction This study analyzed the impact of various overload conditions on sprint performance compared to free sprinting, aiming to identify the loading scenarios that most closely replicate the mechanics of unresisted sprints across the full acceleration spectrum. While velocity-based training methods have gained popularity, their applicability is limited to the plateau phase of sprinting. Methods To address this limitation, we employed cluster analysis to identify scenarios that best replicate the mechanical characteristics of free sprinting across various overload conditions. Sixteen experienced male sprinters performed sprints under six conditions: unresisted, overspeed (OS) and four overloaded conditions inducing a velocity loss (VL) of 10%, 25%, 50% and 65% using a resistance training device with intelligent drag technology. Ground reaction forces and spatiotemporal parameters were recorded for all steps using a 52-meter force plate system for all sprint conditions. Results Cluster analysis revealed four distinct groups aligning with established sprint phases: initial contact, early-acceleration, mid-acceleration, and late-acceleration. Results showed that heavier loads prolonged the mechanical conditions typical of early-acceleration and mid-acceleration phases, potentially enhancing training stimuli for these crucial sprint components of sprint performance. Specifically, VL50 and VL65 loads extended the early-acceleration phase mechanics to steps 7-8, compared to steps 2-4 for lighter loads. Conversely, lighter loads more effectively replicated late-acceleration mechanics, but only after covering substantial distances, typically from the 11- to 29-meter mark onwards. Discussion These findings suggest that tailoring overload conditions to specific sprint phases can optimize sprint-specific training and provide coaches with precise strategies for load prescription. These insights offer a more nuanced approach to resistance-based sprint training by accounting for every step across all acceleration phases, rather than focusing solely on the plateau phase, which accounts for only 20-30% of the steps collected during initial contact to peak velocity depending on the analyzed overload condition.
Collapse
Affiliation(s)
| | | | | | | | - Ryu Nagahara
- National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| |
Collapse
|
3
|
Sašek M, Leban Ž, Kranjc S, Šarabon N. Impact of Hydraulic Resistance on Spatiotemporal Characteristics of Initial Six Steps When Sprinting Under Varying Loads. J Funct Morphol Kinesiol 2024; 9:263. [PMID: 39728247 DOI: 10.3390/jfmk9040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Evaluations of the usability of hydraulic resistance for resisted sprint-training purposes remains rare. Thus, this study compared step-by-step changes in spatiotemporal characteristics during the first 10 m of sprints with varying hydraulic resistance loads. Methods: Fourteen male athletes performed 20 m sprints under minimal (10 N, considered as normal sprint), moderate (100 N), and heavy (150 N) hydraulic resistance loads. Split times at 10 m, contact time (CT), step length (SL), flight time, and step speed (SS) from the first to the sixth step were measured. A two-way repeated measures ANOVA (load × step) and a one-way ANOVA (load) with post hoc comparisons were used to assess the effects on spatiotemporal characteristics and split times, respectively. Results: Under higher loads, the 10 m times were significantly longer (η2 = 0.79). The CT, SL, and SS varied significantly from step to step within all loads (η2 = 0.45, 0.41, and 0.54, respectively). The CT, SL, and SS of the first, fourth, fifth, and sixth steps of normal sprint differed significantly from most steps under moderate and heavy load (Cohen's d = -3.09 to 5.39). In contrast, the smallest differences were observed between the second and third step of normal sprint and second to sixth steps under heavy load (Cohen's d = -0.67 to 1.32, and -0.71 to 1.38, respectively). Conclusions: At the same load settings, a hydraulic resistance device induces changes in step characteristics comparable with those of other motorized devices and is therefore a viable option for resisted sprint training. If the goal of the training is to replicate the steps of the initial sprint acceleration phase, ~150 N of hydraulic resistance would be optimal.
Collapse
Affiliation(s)
- Matic Sašek
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Žiga Leban
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Sara Kranjc
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, 6000 Koper, Slovenia
- Laboratory for Motor Control and Motor Behavior, S2P, Science to Practice, Ltd., 1000 Ljubljana, Slovenia
- Ludwig Boltzmann Institute for Rehabilitation Research, 1010 Vienna, Austria
| |
Collapse
|
4
|
Grassadonia G, Bruni M, Alcaraz PE, Freitas TT. Energetic and Neuromuscular Demands of Unresisted, Parachute- and Sled-Resisted Sprints in Youth Soccer Players: Differences Between Two Novel Determination Methods. SENSORS (BASEL, SWITZERLAND) 2024; 24:7248. [PMID: 39599029 PMCID: PMC11598239 DOI: 10.3390/s24227248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The aim of this study was to analyze the differences in terms of (1) muscle activation patterns; (2) metabolic power (MP) and energy cost (EC) estimated via two determination methods (i.e., the Global Positioning System [GPS] and electromyography-based [EMG]); and (3) the apparent efficiency (AE) of 30-m linear sprints in seventeen elite U17 male soccer players performed under different conditions (i.e., unloaded sprint [US], parachute sprint [PS], and four incremental sled loads [SS15, SS30, SS45, SS60, corresponding to 15, 30, 45 and 60 kg of additional mass]). In a single testing session, each participant executed six trials (one attempt per sprint type). The results indicated that increasing the sled loads led to a linear increase in the relative contribution of the quadriceps (R2 = 0.98) and gluteus (R2 = 0.94) and a linear decrease in hamstring recruitment (R2 = 0.99). The MP during the US was significantly different from SS15, SS30, SS45, and SS60, as determined by the GPS and EMG approaches (p-values ranging from 0.01 to 0.001). Regarding EC, significant differences were found among the US and all sled conditions (i.e., SS15, SS30, SS45, and SS60) using the GPS and EMG methods (all p ≤ 0.001). Moreover, MP and EC determined via GPS were significantly lower in all sled conditions when compared to EMG (all p ≤ 0.001). The AE was significantly higher for the US when compared to the loaded sprinting conditions (all p ≤ 0.001). In conclusion, muscle activation patterns, MP and EC, and AE changed as a function of load in sled-resisted sprinting. Furthermore, GPS-derived MP and EC seemed to underestimate the actual neuromuscular and metabolic demands imposed on youth soccer players compared to EMG.
Collapse
Affiliation(s)
- Gabriele Grassadonia
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (P.E.A.); (T.T.F.)
- UPSS—International Department of Motor Arts, Popular University of Sport Sciences, 00122 Rome, Italy
- UPM—Department of Medical Sciences, Popular University of Milan, 20122 Milan, Italy
- MIU—Department of Sport Sciences, Miami International University, Miami, FL 33131, USA
| | | | - Pedro E. Alcaraz
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (P.E.A.); (T.T.F.)
- Facultad de Deporte, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
- Strength and Conditioning Society, 30008 Murcia, Spain
| | - Tomás T. Freitas
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (P.E.A.); (T.T.F.)
- Facultad de Deporte, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
- Strength and Conditioning Society, 30008 Murcia, Spain
- NAR—Nucleus of High Performance in Sport, São Paulo 04753-060, Brazil
| |
Collapse
|
5
|
Dietze-Hermosa MS, Montalvo S, Gonzalez MP, Dorgo S. The Impact of an 8-Week Resisted Sprint Training Program on Ice Skating Performance in Male Youth Ice Hockey Players. J Strength Cond Res 2024; 38:957-965. [PMID: 38620058 DOI: 10.1519/jsc.0000000000004732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
ABSTRACT Dietze-Hermosa, MS, Montalvo, S, Gonzalez, MP, and Dorgo, S. The impact of an 8-week, resisted, sprint training program on ice skating performance in male youth ice hockey players. J Strength Cond Res 38(5): 957-965, 2024-The purposes of this randomized control study were to (a) compare the effects of an on-ice versus an overground resisted sprint training intervention and a control condition and (b) identify changes in ice skating kinematics and kinetics after training intervention participation. Twenty-four youth ice hockey players were randomly allocated into 3 groups: (a) on-ice resisted sprint training (on-ice RST); (b) overground resisted sprint training (overground RST); and (c) body weight resistance training (control). During the 8-week intervention, the 2 RST groups engaged in sled towing methods, whereas the control group engaged in a body weight resistance training program twice a week. A series of individual, repeated-measures analysis of variances with post hoc pairwise comparisons were conducted for variables of interest. An interaction effect was noted for ice skating s-cornering agility drill completion time ( p = 0.01; ηp2 = 0.36), ice skating 30-m top speed completion time ( p = 0.04; ηp2 = 0.27), step length ( p = 0.04; ηp2 = 0.26), and knee angle at touchdown ( p = 0.03; ηp2 = 0.30). The on-ice RST group displayed superior improvements across ice skating tests compared with the control group. Data show that on-ice RST has the greatest transfer effect to ice skating metrics; however, improvements in certain ice skating metrics can be observed with overground training also.
Collapse
Affiliation(s)
- Martin S Dietze-Hermosa
- Department of Human Performance and Recreation, Brigham Young University-Idaho, Rexburg, Idaho
| | - Samuel Montalvo
- Wu Tsai Human Performance Alliance, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford University, California
- Stanford Sports Cardiology, Stanford University, Stanford, California; and
| | - Matthew P Gonzalez
- Department of Kinesiology, The University of Texas at San Antonio, San Antonio, Texas
| | - Sandor Dorgo
- Department of Kinesiology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
6
|
Grassadonia G, Alcaraz PE, Freitas TT. Comparison of Metabolic Power and Energy Cost of Submaximal and Sprint Running Efforts Using Different Methods in Elite Youth Soccer Players: A Novel Energetic Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:2577. [PMID: 38676194 PMCID: PMC11054392 DOI: 10.3390/s24082577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Sprinting is a decisive action in soccer that is considerably taxing from a neuromuscular and energetic perspective. This study compared different calculation methods for the metabolic power (MP) and energy cost (EC) of sprinting using global positioning system (GPS) metrics and electromyography (EMG), with the aim of identifying potential differences in performance markers. Sixteen elite U17 male soccer players (age: 16.4 ± 0.5 years; body mass: 64.6 ± 4.4 kg; and height: 177.4 ± 4.3 cm) participated in the study and completed four different submaximal constant running efforts followed by sprinting actions while using portable GPS-IMU units and surface EMG. GPS-derived MP was determined based on GPS velocity, and the EMG-MP and EC were calculated based on individual profiles plotting the MP of the GPS and all EMG signals acquired. The goodness of fit of the linear regressions was assessed by the coefficient of determination (R2), and a repeated measures ANOVA was used to detect changes. A linear trend was found in EMG activity during submaximal speed runs (R2 = 1), but when the sprint effort was considered, the trend became exponential (R2 = 0.89). The EMG/force ratio displayed two different trends: linear up to a 30 m sprint (R2 = 0.99) and polynomial up to a 50 m sprint (R2 = 0.96). Statistically significant differences between the GPS and EMG were observed for MP splits at 0-5 m, 5-10 m, 25-30 m, 30-35 m, and 35-40 m and for EC splits at 5-10 m, 25-30 m, 30-35 m, and 35-40 m (p ≤ 0.05). Therefore, the determination of the MP and EC based on GPS technology underestimated the neuromuscular and metabolic engagement during the sprinting efforts. Thus, the EMG-derived method seems to be more accurate for calculating the MP and EC in this type of action.
Collapse
Affiliation(s)
- Gabriele Grassadonia
- UCAM Research Center for High Performance Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (G.G.); (P.E.A.)
- UPSS—International Department of Motor Arts, Popular University of Sport Sciences, 00122 Rome, Italy
- UPM—Department of Medical Sciences, Popular University of Milan, 20122 Milan, Italy
- MIU—Department of Sport Sciences, Miami International University, Miami, FL 33131, USA
| | - Pedro E. Alcaraz
- UCAM Research Center for High Performance Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (G.G.); (P.E.A.)
- Faculty of Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
- Strength and Conditioning Society, 30008 Murcia, Spain
| | - Tomás T. Freitas
- UCAM Research Center for High Performance Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (G.G.); (P.E.A.)
- Faculty of Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
- Strength and Conditioning Society, 30008 Murcia, Spain
- NAR—Nucleus of High Performance in Sport, São Paulo 04753-060, Brazil
| |
Collapse
|
7
|
Ward C, Catháin CÓ, Chéilleachair NN, Grassick S, Kelly DT. Does Resisted Sprint Training Improve the Sprint Performance of Field-Based Invasion Team Sport Players? A Systematic Review and Meta-analysis. Sports Med 2024; 54:659-672. [PMID: 37897636 DOI: 10.1007/s40279-023-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Developing the sprint performance of field-based invasion team sport (FITS) players is considered an essential training goal for FITS coaching practitioners, and thus numerous training methods are employed to elicit improvements. Although interest in resisted sprint training (RST) has grown considerably in recent times, there remains a lack of clarity around its utility in FITS, particularly regarding the use and effectiveness of heavier RST loads. OBJECTIVES The aims of this review were to (1) compare RST to unresisted sprinting, (2) examine if RST can improve sprint performance and (3) investigate if external load and the method of load prescription influence the impact of RST in FITS players. METHODS The systematic review and meta-analysis were conducted in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The search strategy included terms for RST, RST modalities and FITS, and was applied to PubMed, SPORTDiscus, Web of Science and OpenGrey databases. Methodological quality and risk of bias associated with each study were assessed using the Physiotherapy Evidence Database scale (PEDro) and Cochrane Risk of Bias assessment tool respectively. RESULTS Twenty-one studies met the inclusion criteria for this review and were included in the final analysis. The primary between-group analysis revealed no differences between RST and unresisted sprinting for developing the early acceleration, late acceleration and maximum velocity sprint phases. Secondly, a within-group analysis found significant improvements for resisted sprint training in the early acceleration (standardised mean difference [SMD] - 0.80) and late acceleration (SMD - 0.28) sprint phases, with no change detected for the maximum velocity phase. Finally, significant moderate improvements were found for light (SMD - 0.69) and very heavy (SMD - 1.01) loads during early acceleration. CONCLUSIONS Resisted sprint training achieved similar improvements in sprint performance to those found for unresisted sprinting during the acceleration and maximum velocity sprint phases. Within-group findings show RST is an effective method for improving early acceleration and late acceleration performance of FITS players. Finally, a subgroup analysis supports the use of light and very heavy loads for increasing early acceleration performance, while also highlighting greater benefits associated with using the percentage velocity decrement loading method. CLINICAL TRIAL REGISTRATION Open Science Framework, https://osf.io/thms7/ .
Collapse
Affiliation(s)
- Cormac Ward
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, N37 HD68, Ireland.
| | - Ciarán Ó Catháin
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, N37 HD68, Ireland
| | - Niamh Ní Chéilleachair
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, N37 HD68, Ireland
| | - Shaun Grassick
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, N37 HD68, Ireland
| | - David T Kelly
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, N37 HD68, Ireland
| |
Collapse
|
8
|
Zabaloy S, Freitas TT, Carlos-Vivas J, Giráldez JC, Loturco I, Pareja-Blanco F, Gálvez González J, Alcaraz PE. Estimation of maximum sprinting speed with timing gates: greater accuracy of 5-m split times compared to 10-m splits. Sports Biomech 2024; 23:262-272. [PMID: 33428549 DOI: 10.1080/14763141.2020.1838603] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
This study assessed the validity of 5-m (TG5) and 10-m (TG10) split times measured with timing gates to estimate maximum sprint speed (MSS) against a criterion measure radar gun (RG) during the maximum velocity phase of a 30-m sprint. Nineteen amateur rugby players performed two 30-m sprints. The timing gates were placed at the starting line and at 5-, 10-, 20-, 25- and 30-m. In addition, a RG was used to measure instantaneous velocity. Both trials per participant were used selected as references. MSS obtained from TG10, TG5 and RG showed high intraclass correlation coefficients (0.971-0.978), low coefficients of variation (1.14-1.70%) and smallest detectable changes (<0.02 m/s). Pairwise comparison revealed differences (p = 0.002) in MSS when comparing TG10 to RG, but not TG5 and RG (p = 0.957). Almost perfect correlations were found between RG, TG5 and TG10 (r > 0.926, p < 0.001). In conclusion, MSS obtained from TG5, TG10 and RG presented good intra-session reliability. However, practitioners should be aware that substantial differences exist between TG10 and RG. For the assessment of MSS in team-sport athletes, it is recommended the use of TG5 for more accurate estimations when a gold standard criterion is not available.
Collapse
Affiliation(s)
- Santiago Zabaloy
- Faculty of Physical Activity and Sports, Universidad of Flores, Buenos Aires, Argentina
- Faculty of Sports Sciences, Pablo de Olavide University, Seville, Spain
| | - Tomás T Freitas
- UCAM Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Murcia, Spain
- Nucleus of High Performance in Sport (NAR), São Paulo, Brazil
| | - Jorge Carlos-Vivas
- UCAM Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Julián C Giráldez
- Faculty of Physical Activity and Sports, Universidad of Flores, Buenos Aires, Argentina
| | - Irineu Loturco
- Nucleus of High Performance in Sport (NAR), São Paulo, Brazil
- Department of Human Movement Sciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- University of South Wales, Pontypridd, UK
| | - Fernando Pareja-Blanco
- Faculty of Sports Sciences, Pablo de Olavide University, Seville, Spain
- Physical Performance & Athletic Research Center, Pablo de Olavide University, Seville, Spain
| | | | - Pedro E Alcaraz
- UCAM Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Murcia, Spain
- Faculty of Sport Sciences, Catholic University of Murcia (UCAM), Murcia, Spain
| |
Collapse
|
9
|
Loturco I, Freitas TT, Zabaloy S, Pereira LA, Moura TBMA, Fernandes V, Mercer VP, Alcaraz PE, Zając A, Bishop C. Speed Training Practices of Brazilian Olympic Sprint and Jump Coaches: Toward a Deeper Understanding of Their Choices and Insights (Part II). J Hum Kinet 2023; 89:187-211. [PMID: 38053953 PMCID: PMC10694730 DOI: 10.5114/jhk/174071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023] Open
Abstract
This is the second article in a three-article collection regarding the plyometric, speed, and resistance training practices of Brazilian Olympic sprint and jump coaches. Here, we list and describe six out of the ten speed training methods most commonly employed by these experts to enhance the sprinting capabilities of their athletes. Maximum speed sprinting, form running, resisted sprinting, overspeed running, uphill and downhill running, and sport-specific movement methods are critically examined with reference to their potential application in different sport contexts. In an era when sprint speed is of critical importance across numerous sports, practitioners can employ the methods outlined here to design efficient training programs for their athletes.
Collapse
Affiliation(s)
- Irineu Loturco
- NAR—Nucleus of High Performance in Sport, São Paulo, Brazil
- Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil
- Department of Sport, Health, and Exercise Science, University of South Wales, Pontypridd, Wales, United Kingdom
| | - Tomás T. Freitas
- NAR—Nucleus of High Performance in Sport, São Paulo, Brazil
- Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
- Facultad de Deporte, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Santiago Zabaloy
- Faculty of Physical Activity and Sports, University of Flores, Buenos Aires, Argentina
| | | | | | | | | | - Pedro E. Alcaraz
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Adam Zając
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Chris Bishop
- London Sport Institute, Middlesex University, London, United Kingdom
| |
Collapse
|
10
|
Sastre-Munar A, Jiménez-Reyes P, Romero-Franco N. Effects of a six-week multimodal training programme on the sprinting ability of adolescent rugby sevens players. J Sports Sci 2023; 41:990-998. [PMID: 37712360 DOI: 10.1080/02640414.2023.2257514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
This study evaluated the effects of 6-week multimodal training on the sprinting performance and biomechanics of adolescent rugby players. Twenty-four players were assigned to control group (CG) or intervention group (IG). For 6 weeks, CG maintained their training routine, while IG completed a training programme consisting of unresisted sprints, as well as heavy-resisted sprints, running technique drills and lumbopelvic stability. Before and after, sprint performance, horizontal force-velocity profile (FV-h), sprinting kinematics and spatiotemporal data were obtained. After the training, IG reduced the 0-5 m (p = 0.044), 0-10 m (p = 0.046) and 25-30 m (p = 0.035) split times compared with CG. In FV-h, IG displayed a higher maximal theoretical horizontal force (p = 0.035) and ratio of force (p = 0.048) than CG. Regarding kinematic and spatiotemporal variables, only IG improved step length (p < 0.001), step rate (p = 0.005) and distance between knees (p = 0.048) compared with baseline, but there were no between-group differences. Six weeks of multimodal training improved sprinting acceleration and mechanical variables of force application during sprinting of adolescent rugby players. Although IG improved some biomechanical variables compared with baseline, these changes were similar to those observed in CG.
Collapse
Affiliation(s)
- Andreu Sastre-Munar
- Sport High Performance Centre of Balearic Islands, Palma de Mallorca, Spain
- Nursing and Physiotherapy Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | - Natalia Romero-Franco
- Nursing and Physiotherapy Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
11
|
Impact of Sled Loads on Performance and Kinematics of Elite Sprinters and Rugby Players. Int J Sports Physiol Perform 2022; 17:465-473. [PMID: 34965512 DOI: 10.1123/ijspp.2020-0867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine the changes in resisted sprint performance and kinematics provoked by different sled loads in elite sprinters and rugby players. METHODS Eight elite male sprinters and 10 rugby union players performed 20-m sprints under 3 loading conditions (0%, 20%, and 60% body mass [BM]). Sprint time was measured in 0 to 5, 5 to 10, and 10 to 20 m, while stride length and hip, knee, and ankle angles were measured using an 8-sensor motion analysis system at the same distances. RESULTS Sprinters were significantly faster than rugby players in unresisted and resisted sprints using 20% BM (effect size, "ES" [90% confidence limit, CL] range: 0.65 [0.03 to 1.27]; 3.95 [3.10 to 4.81]), but these differences were not significant at 60% BM. Compared to rugby players, sprinters showed lower velocity decrement in resisted sprints using 20% BM (ES [90% CL] range: 0.75 [0.06 to 1.44]; 2.43 [0.83 to 4.02], but higher velocity decrement using 60% BM (ES [90% CL] range: 1.13 [0.43 to 1.82]; 1.46 [0.81 to 2.11]). No significant differences were detected in stride length between sprinters and rugby players for any sprint condition (ES [90% CL] range: 0.02 [-0.72 to 0.76]; 0.84 [0.13 to 1.54]). Rugby players showed higher hip flexion in resisted sprints (ES [90% CL] range: 0.30 [-0.54 to 1.14]; 1.17 [0.20 to 2.15]) and lower plantar flexion in both unresisted and resisted sprints (ES [90% CL] range: 0.78 [0.18 to 1.38]; 1.69 [1.00 to 2.38] than sprinters. CONCLUSIONS The alterations induced by resisted sprints in sprint velocity and running technique differed between sprinters and rugby players. Some caution should be taken with general sled loads prescriptions, especially when relative loads are based on distinct percentages of BM, as training responses vary among sports and individuals.
Collapse
|
12
|
Zabaloy S, Freitas TT, Pareja-Blanco F, Alcaraz PE, Loturco I. Narrative Review on the Use of Sled Training to Improve Sprint Performance in Team Sport Athletes. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Comparison of Muscle Activity During 200 m Indoor Curve and Straight Sprinting in Elite Female Sprinters. J Hum Kinet 2021; 80:309-316. [PMID: 34868438 PMCID: PMC8607777 DOI: 10.2478/hukin-2021-0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to assess whether peak surface electromyography (sEMG) amplitude of selected lower limb muscles differed during a) curve and straight sprinting, b) sprinting in inside and outside lanes between lower limbs. Eleven well-trained female sprinters (personal best: 24.1 ± 1.1 s) were included in a randomized within-subject design study, in which participants underwent two experimental conditions: all-out 200 m indoor sprints in the innermost and outermost lane. Peak sEMG amplitude was recorded bilaterally from gastrocnemius medialis, biceps femoris, gluteus maximus, tibialis anterior, and vastus lateralis muscles. Left gastrocnemius medialis peak sEMG amplitude was significantly higher than for the right leg muscle during curve (p = 0.011) and straight sprinting (p < 0.001) when sprinting in the inside lane, and also significantly higher when sprinting in the inside vs. outside lane for both curve and straight sprinting (p = 0.037 and p = 0.027, respectively). Moreover, left biceps femoris peak sEMG amplitude was significantly higher during straight sprinting in the inside vs. outside lane (p = 0.006). Furthermore, right and left vastus lateralis peak sEMG amplitude was significantly higher during curve sprinting in the inside lane (p = 0.001 and p = 0.004, respectively) and for the left leg muscle peak sEMG amplitude was significantly higher during curve compared to straight sprinting in the outside lane (p = 0.024). Results indicate that curve sprinting creates greater demands mainly for the gastrocnemius medialis of the inner than the outer leg, but the degree of these requirements seems to depend on the radius of the curve, thus significant changes were noted during sprinting in the inside lane, but not in the outside lane.
Collapse
|
14
|
Martínez-Serrano A, Marín-Cascales E, Spyrou K, Freitas TT, Alcaraz PE. Electromyography, Stiffness and Kinematics of Resisted Sprint Training in the Specialized SKILLRUN ® Treadmill Using Different Load Conditions in Rugby Players. SENSORS 2021; 21:s21227482. [PMID: 34833557 PMCID: PMC8622140 DOI: 10.3390/s21227482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
This study’s aim was to analyze muscle activation and kinematics of sled-pushing and resisted-parachute sprinting with three load conditions on an instrumentalized SKILLRUN® treadmill. Nine male amateur rugby union players (21.3 ± 4.3 years, 75.8 ± 10.2 kg, 176.6 ± 8.8 cm) performed a sled-push session consisting of three 15-m repetitions at 20%, 55% and 90% body mas and another resisted-parachute session using three different parachute sizes (XS, XL and 3XL). Sprinting kinematics and muscle activity of three lower-limb muscles (biceps femoris (BF), vastus lateralis (VL) and gastrocnemius medialis (GM)) were measured. A repeated-measures analysis of variance (RM-ANOVA) showed that higher loads during the sled-push increased (VL) (p ≤ 0.001) and (GM) (p ≤ 0.001) but not (BF) (p = 0.278) activity. Furthermore, it caused significant changes in sprinting kinematics, stiffness and joint angles. Resisted-parachute sprinting did not change kinematics or muscle activation, despite producing a significant overload (i.e., speed loss). In conclusion, increased sled-push loading caused disruptions in sprinting technique and altered lower-limb muscle activation patterns as opposed to the resisted-parachute. These findings might help practitioners determine the more adequate resisted sprint exercise and load according to the training objective (e.g., power production or speed performance).
Collapse
Affiliation(s)
- Antonio Martínez-Serrano
- UCAM Research Center for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain; (A.M.-S.); (K.S.); (P.E.A.)
- Strength and Conditioning Society, 00118 Rome, Italy;
| | | | - Konstantinos Spyrou
- UCAM Research Center for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain; (A.M.-S.); (K.S.); (P.E.A.)
- Strength and Conditioning Society, 00118 Rome, Italy;
- Faculty of Sports Sciences, Catholic University of Murcia, 30107 Murcia, Spain
| | - Tomás T. Freitas
- UCAM Research Center for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain; (A.M.-S.); (K.S.); (P.E.A.)
- Strength and Conditioning Society, 00118 Rome, Italy;
- Faculty of Sports Sciences, Catholic University of Murcia, 30107 Murcia, Spain
- NAR—Nucleus of High Performance in Sport, São Paulo 04753-060, Brazil
- Correspondence: ; Tel.: +34-968-278-566
| | - Pedro E. Alcaraz
- UCAM Research Center for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain; (A.M.-S.); (K.S.); (P.E.A.)
- Strength and Conditioning Society, 00118 Rome, Italy;
| |
Collapse
|
15
|
Matusiński A, Pietraszewski P, Krzysztofik M, Gołaś A. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters. Front Physiol 2021; 12:651659. [PMID: 33746784 PMCID: PMC7973236 DOI: 10.3389/fphys.2021.651659] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Considering the effectiveness of resisted sprint training, and the acute enhancement of sprinting performance through locomotor post-activation performance enhancement, the main objective of the research was to determine the acute effects of resisted activation with loads of 5, 10, and 15% body mass on sprint and flying start sprint performance in elite female sprinters using resisted drag technology system. Ten elite female sprinters (age: 23.2 ± 5.4 years, body mass: 54.2 ± 6.1 kg, height: 167.4 ± 7.3 cm, personal best for 100 m: 12.05 ± 0.56 s, and for 400 m: 53.17 ± 2.76 s) performed two unresisted 20-m sprints (from a crouched and flying start) before and after a single resisted sprint loaded with 5, 10, or 15% body mass to verify the effectiveness of the activation stimulus. Compared with pre-activation, Friedman tests showed that peak velocity increased by 1.6 ± 2.2% [effect size (ES) = 0.66], 2.3 ± 1.5% (ES = 1.33), and 0.2 ± 1% (ES = 0.09), as well as peak force by 2.8 ± 2.1% (ES = 0.49), 3.5 ± 2.3% (ES = 1), and 0.5 ± 2.4% (ES = 0.14), concomitant with a significant decreased in sprint time by −0.5 ± 1.2% (ES = −0.07), −2.5 ± 1.3% (ES = −0.64), and −1 ± 1.4% (ES = −0.36) for the 5, 10, and 15% body mass post-activation, respectively (p < 0.001; for all). Furthermore, the ANOVA showed that peak power increased by 2.9 ± 2.3% (ES = 0.61), 3.8 ± 2.2% (ES = 1.05), and 2 ± 7.1% (ES = 0.22) for the 5, 10, and 15% body mass resisted-conditioning activity, respectively, with no difference between the three conditions (p = 0.003 main effect time, no interaction). Moreover, compared with the 5 and 15% body mass trials [−1.5 ± 2% (ES = −0.44), −0.8 ± 0.8% (ES = −0.44), respectively], the ANOVA showed that flying start sprint time significantly decreased by −4.3 ± 1.1% (ES = −1.25) (p < 0.001, interaction effect) after a 10% body mass resisted-conditioning activity. The results of this study indicated that resisted sprints acutely enhance sprint performance; however, their effectiveness depends on the applied load. A single resisted sprint using 10% body mass is effective at inducing a potentiating effect on subsequent 20-m flying start sprint performance in elite female sprinters. Therefore, keeping in mind the optimal load, it is recommended to perform resisted sprints as a conditioning activation when seeking to acutely enhance 20-m flying start sprint performance in these athletes.
Collapse
Affiliation(s)
- Aleksander Matusiński
- Department of Exercise and Sport Performance, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Przemysław Pietraszewski
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michał Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Artur Gołaś
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|