1
|
Soriano MA, Lake J, Comfort P, Suchomel TJ, McMahon JJ, Jiménez-Ormeño E, Sainz de Baranda P. No differences in weightlifting overhead pressing exercises kinetics. Sports Biomech 2024; 23:2080-2092. [PMID: 34704894 DOI: 10.1080/14763141.2021.1993983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to compare the kinetics between the push press (PP), push jerk (PJ), and split jerk (SJ). Sixteen resistance-trained participants (12 men and 4 women; age: 23.8 ± 4.4 years; height: 1.7 ± 0.1 m; body mass: 75.7 ± 13.0 kg; weightlifting experience: 2.2 ± 1.3 years; one repetition maximum [1RM] PP: 76.5 ± 19.5 kg) performed 3 repetitions each of the PP, PJ, and SJ at a relative load of 80% 1RM PP on a force platform. The kinetics (peak and mean force, peak and mean power, and impulse) of the PP, PJ, and SJ were determined during the dip and thrust phases. Dip and thrust displacement and duration were also calculated for the three lifts. In addition, the inter-repetition reliability of each variable across the three exercises was analysed. Moderate to excellent reliability was evident for the PP (Intraclass correlation coefficient [ICC] = 0.91-1.00), PJ (ICC = 0.86-1.00), and SJ (ICC = 0.55-0.99) kinetics. A one-way analysis of variance revealed no significant or meaningful differences (p > 0.05, η2 ≤ 0.010) for any kinetic measure between the PP, PJ, and SJ. In conclusion, there were no differences in kinetics between the PP, PJ, and SJ when performed at the same standardised load of 80% 1RM PP.
Collapse
Affiliation(s)
- Marcos A Soriano
- Strength Training & Neuromuscular Performance Research Group, Camilo José Cela University, Madrid, Spain
- Department of Physical Activity and Sports Sciences, University of Murcia, San Javier, Murcia, Spain
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, UK
| | - Jason Lake
- Department of Sport and Exercise Sciences, University of Chichester, Chichester, UK
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, UK
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Timothy J Suchomel
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, UK
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, UK
| | - Ester Jiménez-Ormeño
- Strength Training & Neuromuscular Performance Research Group, Camilo José Cela University, Madrid, Spain
| | - Pilar Sainz de Baranda
- Department of Physical Activity and Sports Sciences, University of Murcia, San Javier, Murcia, Spain
| |
Collapse
|
2
|
Geisler S, Havers T, Isenmann E, Schulze J, Lourens LK, Nowak J, Held S, Haff GG. Effects of Expertise on Muscle Activity during the Hang Power Clean and Hang Power Snatch Compared to Snatch and Clean Pulls - An Explorative Analysis. J Sports Sci Med 2023; 22:778-789. [PMID: 38045750 PMCID: PMC10690512 DOI: 10.52082/jssm.2023.778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
The purpose was to compare the electromyographic (EMG) activity of the Hang Power Clean (HPC) and Hang Power Snatch (HPS) with the Hang Clean Pull (HCP) and Hang Snatch Pull (HSP). Additionally, the influence of weightlifting expertise (beginner, advanced and elite) on EMG activity was analyzed. Twenty-seven weightlifters (beginner: n = 11, age: 23.9 ± 3.2 years, bodyweight: 75.7 ± 10.5 kg; advanced: n = 10, age: 24.8 ± 4.5 years, bodyweight: 69.4 ± 13.9 kg; elite: n = 6, age: 25.5 ± 5.2 years, bodyweight: 75.5 ± 12.5 kg) participated in this study. Participants performed two repetitions of HPC, HPS, HCP, and HSP at 50%, 70%, and 90% 1RM, respectively. The EMG activity of vastus lateralis (VL), gluteus maximus (GM), erector spinae (ES), rectus abdominis (RA) and trapezius (TZ) was recorded and normalized to the maximum voluntary isometric contraction (MVIC) of each muscle. There were significant differences in RA and ES EMG activity at 70% and 90% 1RM during HPC compared to HCP in the beginner group (p < 0.05, Hedges g = 0.50-1.06). Significant greater ES activity was observed in the beginner, advanced, and elite groups (p < 0.05, g = 0.27-0.98) during the HPS when compared to the HSP at 50-90% 1RM. TZ muscle activity was significantly greater at 50% and 70% 1RM in the HCP compared to the HPC in the elite group (p < 0.05, g = 0.61-1.08), while the beginner group reached significance only at 50% 1RM favoring HPC (p < 0.05, g = 0.38). Moreover, the EMG activity of the TZ during the HSP and HPS was significantly different only at 50% 1RM in the elite group and favored HSP (p < 0.05, g = 0.27). No differences were observed between the levels of weightlifting expertise. Based upon the results of this study, the overall pattern of EMG activity of the predominant muscles involved in HPC/HPS and the corresponding weightlifting pulling derivatives, apart from the stabilizing muscle (RA and ES), is similar at higher intensities (>70% 1RM) and expertise does not influence muscle activity.
Collapse
Affiliation(s)
- Stephan Geisler
- Department of Fitness and Health, IST-University of Applied Sciences, Dusseldorf, Germany
| | - Tim Havers
- Department of Fitness and Health, IST-University of Applied Sciences, Dusseldorf, Germany
| | - Eduard Isenmann
- Department of Fitness and Health, IST-University of Applied Sciences, Dusseldorf, Germany
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Jonas Schulze
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Leonie K Lourens
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Jannik Nowak
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany
| | - G Gregory Haff
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Western Australia
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
| |
Collapse
|
3
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
4
|
Suchomel TJ, McKeever SM, Nolen JD, Comfort P. Muscle Architectural and Force-Velocity Curve Adaptations following 10 Weeks of Training with Weightlifting Catching and Pulling Derivatives. J Sports Sci Med 2022; 21:504-516. [PMID: 36523888 PMCID: PMC9741714 DOI: 10.52082/jssm.2022.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre- and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p > 0.05). The PULL group displayed small-moderate (g = 0.25-0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00-0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12-0.04) and velocity variables (g = 0.32-0.46), respectively. The OL group displayed moderate (g = 0.48-0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47-0.55) improvements. The CATCH group displayed trivial-small (g = -0.39-0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p > 0.05). Performing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
| | | | - Justin D Nolen
- Health Performance Institute, Illinois Bone and Joint Institute, Highland Park
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
5
|
Meechan D, McErlain-Naylor SA, McMahon JJ, Suchomel TJ, Comfort P. Comparing biomechanical time series data across countermovement shrug loads. J Sports Sci 2022; 40:1658-1667. [PMID: 35950819 DOI: 10.1080/02640414.2022.2091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The effect of load on time-series data has yet to be investigated during weightlifting derivatives. This study compared the effect of load on the force-time and velocity-time curves during the countermovement shrug (CMS). Twenty-nine males performed the CMS at relative loads of 40%, 60%, 80%, 100%, 120%, and 140% one repetition maximum (1RM) power clean (PC). A force plate measured the vertical ground reaction force (VGRF), which was used to calculate the barbell-lifter system velocity. Time-series data were normalized to 100% of the movement duration and assessed via statistical parametric mapping (SPM). SPM analysis showed greater negative velocity at heavier loads early in the unweighting phase (12-38% of the movement), and greater positive velocity at lower loads during the last 16% of the movement. Relative loads of 40% 1RM PC maximised propulsion velocity, whilst 140% 1RM maximized force. At higher loads, the braking and propulsive phases commence at an earlier percentage of the time-normalized movement, and the total absolute durations increase with load. It may be more appropriate to prescribe the CMS during a maximal strength mesocycle given the ability to use supramaximal loads. Future research should assess training at different loads on the effects of performance.
Collapse
Affiliation(s)
- David Meechan
- The Salford Institute of Human Movement and Rehabilitation, University of Salford, Salford, UK.,Department of Elite Training Science and Technology Division, Hong Kong Sports Institute, Hong Kong, China
| | | | - John J McMahon
- The Salford Institute of Human Movement and Rehabilitation, University of Salford, Salford, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin, US
| | - Paul Comfort
- The Salford Institute of Human Movement and Rehabilitation, University of Salford, Salford, UK.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| |
Collapse
|
6
|
Nagao H, Ishii Y. Characteristics of the Shrug Motion and Trapezius Muscle Activity During the Power Clean. J Strength Cond Res 2021; 35:3288-3295. [DOI: 10.1519/jsc.0000000000003355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Kipp K, Comfort P, Suchomel TJ. Comparing Biomechanical Time Series Data During the Hang-Power Clean and Jump Shrug. J Strength Cond Res 2021; 35:2389-2396. [PMID: 31009429 DOI: 10.1519/jsc.0000000000003154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
ABSTRACT Kipp, K, Comfort, P, and Suchomel, TJ. Comparing biomechanical time series data during the hang-power clean and jump shrug. J Strength Cond Res 35(9): 2389-2396, 2021-The purpose of this study was to investigate differences in the force-, velocity-, displacement-, and power-time curves during the hang-power clean (HPC) and the jump shrug (JS). To this end, 15 male lacrosse players were recruited from a National Collegiate Athletic Association Division-I team, and performed one set of 3 repetitions of the HPC and JS at 70% of their HPC 1 repetition maximum (1RM HPC). Two in-ground force plates were used to measure the vertical ground reaction force (GRF) and calculate the barbell-lifter system mechanics during each exercise. The time series data were normalized to 100% of the movement phase, which included the initial countermovement and extension phases, and analyzed with curve analysis and statistical parametric mapping (SPM). The SPM procedure highlighted significant differences in the force-time curves of the HPC and JS between 85 and 100% of the movement phase. Likewise, the SPM procedure highlighted significant differences in the velocity- and power-time curve of the HPC and JS between 90 and 100% of the movement phase. For all comparisons, performance of the JS was associated with greater magnitudes of the mechanical outputs. Although results from the curve analysis showed significant differences during other periods of the movement phase, these differences likely reflect statistical issues related to the inappropriate analysis of time series data. Nonetheless, these results collectively indicate that when compared with the HPC, execution of the JS is characterized by greater GRF and barbell-lifter system velocity and power outputs during the final 10% of the movement phase.
Collapse
Affiliation(s)
- Kristof Kipp
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Paul Comfort
- School of Health & Society, Salford University, Salford, United Kingdom ; and
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| |
Collapse
|
8
|
Lynch JT, Spratford W, Perriman DM, Sizeland TJB, Gilbert S, Smith PN, Fearon AM. Individuals with gluteal tendon repair display similar hip biomechanics to those of a healthy cohort during a sit-to-stand task. Gait Posture 2021; 89:61-66. [PMID: 34243137 DOI: 10.1016/j.gaitpost.2021.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gluteal-tendon repair (GTR) is reported to be effective for relieving pain and improving clinical function in patients with gluteal-tendon tears. The sit-to-stand (STS) task is an important activity of daily living and is often used to assess functional capacity in clinical populations. Understanding if and how STS performance is altered in individuals with gluteal tendon repair may be an effective marker of GTR outcomes as well as a possible therapeutic target for post-operative rehabilitation. RESEARCH QUESTION Do biomechanical parameters during STS differ between age- and sex-matched participants with and without gluteal-tendon repair? METHODS 27 participants with a GTR and 29 healthy participants performed the STS task. Data were acquired using the three-dimensional motion capture system and forceplates. Outcomes of interest were task duration, rate of force development, trunk, pelvis, and hip joint angles, moments and powers. Differences were assessed using Generalised linear multivariate models and statistical parametric mapping. RESULTS GTR patients performed the STS movement significantly slower (1.4+/- 0.40 s) compared to controls (1.1+/ -0.2 s) with a significantly lower rate of force development (35.1+/- 5.7 N/kg/ms vs 30.3+/- 8.5 N/kg/ms). There were no group differences for hip, pelvis, or trunk angle over the movement cycle or for maximal or minimal values. Furthermore, there were no significant differences detected in hip joint kinetics. However, there appeared to be substantial between-subject variability indicating different patient-specific movements patterns. SIGNIFICANCE Individuals with a GTR performed the STS task about 20 % slower than healthy controls with a lower rate of force development. The individual variations indicate that participants likely employed different movement strategies to achieve STS. While the lack of differences between groups could suggest that GTR helps restore function and corrects the proposed underlying aetiology, it is possible that the STS task was not sufficiently challenging to discriminate between groups.
Collapse
Affiliation(s)
- Joseph T Lynch
- Australian National University Medical School, Trauma and Orthopaedic Research Unit, The Canberra Hospital, Canberra, Australia.
| | - Wayne Spratford
- University of Canberra Health Research Institute, University of Canberra, Canberra, Australia.
| | - Diana M Perriman
- Australian National University Medical School, Trauma and Orthopaedic Research Unit, The Canberra Hospital, Canberra, Australia.
| | | | - Sally Gilbert
- Australian National University Medical School, Canberra, Australia.
| | - Paul N Smith
- Australian National University Medical School, Trauma and Orthopaedic Research Unit, The Canberra Hospital, Canberra, Australia.
| | - Angela M Fearon
- University of Canberra Health Research Institute, University of Canberra, Canberra, Australia.
| |
Collapse
|
9
|
Lopes Dos Santos M, Jagodinsky A, Lagally KM, Tricoli V, Berton R. Determining the Peak Power Output for Weightlifting Derivatives Using Body Mass Percentage: A Practical Approach. Front Sports Act Living 2021; 3:628068. [PMID: 33959705 PMCID: PMC8093619 DOI: 10.3389/fspor.2021.628068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marcel Lopes Dos Santos
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States.,School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, United States
| | - Adam Jagodinsky
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States
| | - Kristen M Lagally
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Suchomel TJ, Giordanelli MD, Geiser CF, Kipp K. Comparison of Joint Work During Load Absorption Between Weightlifting Derivatives. J Strength Cond Res 2021; 35:S127-S135. [PMID: 33666596 DOI: 10.1519/jsc.0000000000002927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Suchomel, TJ, Giordanelli, MD, Geiser, CF, and Kipp, K. Comparison of joint work during load absorption between weightlifting derivatives. J Strength Cond Res 35(2S): S127-S135, 2021-This study examined the lower-extremity joint-level load absorption characteristics of the hang power clean (HPC) and jump shrug (JS). Eleven Division I male lacrosse players were fitted with 3-dimensional reflective markers and performed 3 repetitions each of the HPC and JS at 30, 50, and 70% of their 1 repetition maximum (1RM) HPC while standing on force plates. Load absorption joint work and duration at the hip, knee, and ankle joints were compared using 3-way repeated-measures mixed analyses of variance. Cohen's d effect sizes were used to provide a measure of practical significance. The JS was characterized by greater load absorption joint work compared with the HPC performed at the hip (p < 0.001, d = 0.84), knee (p < 0.001, d = 1.85), and ankle joints (p < 0.001, d = 1.49). In addition, greater joint work was performed during the JS compared with the HPC performed at 30% (p < 0.001, d = 0.89), 50% (p < 0.001, d = 0.74), and 70% 1RM HPC (p < 0.001, d = 0.66). The JS had a longer loading duration compared with the HPC at the hip (p < 0.001, d = 0.94), knee (p = 0.001, d = 0.89), and ankle joints (p < 0.001, d = 0.99). In addition, the JS had a longer loading duration compared with the HPC performed at 30% (p < 0.001, d = 0.83), 50% (p < 0.001, d = 0.79), and 70% 1RM HPC (p < 0.001, d = 0.85). The JS required greater hip, knee, and ankle joint work on landing compared with the load absorption phase of the HPC, regardless of load. The HPC and JS possess unique load absorption characteristics; however, both exercises should be implemented based on the goals of each training phase.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin; and
| | - Matthew D Giordanelli
- Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Christopher F Geiser
- Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Kristof Kipp
- Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Meechan D, Suchomel TJ, McMahon JJ, Comfort P. A Comparison of Kinetic and Kinematic Variables During the Midthigh Pull and Countermovement Shrug, Across Loads. J Strength Cond Res 2020; 34:1830-1841. [PMID: 32358309 DOI: 10.1519/jsc.0000000000003288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Meechan, D, Suchomel, TJ, McMahon, JJ, and Comfort, P. A comparison of kinetic and kinematic variables during the midthigh pull and countermovement shrug, across loads. J Strength Cond Res 34(7): 1830-1841, 2020-This study compared kinetic and kinematic variables during the midthigh pull (MTP) and countermovement shrug (CMS). Eighteen men (age: 29.43 ± 3.95 years, height: 1.77 ± 0.08 m, body mass: 84.65 ± 18.79 kg, and 1 repetition maximum [1RM] power clean: 1.02 ± 0.18 kg·kg) performed the MTP and CMS at intensities of 40, 60, 80, 100, 120, and 140% 1RM, in a progressive manner. Peak force (PF), mean force (MF), peak velocity, peak barbell velocity (BV), peak power, (PP), mean power (MP), and net impulse were calculated from force-time data during the propulsion phase. During the CMS, PF and MF were maximized at 140% 1RM and was significantly greater than the MTP at all loads (p ≤ 0.001, Hedges g = 0.66-0.90); p < 0.001, g = 0.74-0.99, respectively). Peak velocity and BV were significantly and meaningfully greater during the CMS compared with the MTP across all loads (p < 0.001, g = 1.83-2.85; p < 0.001, g = 1.73-2.30, respectively). Similarly, there was a significantly and meaningfully greater PP and MP during the CMS, across all loads, compared with the MTP (p < 0.001, g = 1.45-2.22; p < 0.001, g = 1.52-1.92). Impulse during the CMS was also significantly greater across all loads (p < 0.001, g = 1.20-1.66) compared with the MTP. Results of this study demonstrate that the CMS may be a more advantageous exercise to perform to enhance force-time characteristics when compared with the MTP, due to the greater kinetics and kinematic values observed.
Collapse
Affiliation(s)
- David Meechan
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom.,Department of Elite Training Science and Technology, Hong Kong Sports Institute, Hong Kong, China; and
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | - John J McMahon
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Paul Comfort
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
12
|
Meechan D, McMahon JJ, Suchomel TJ, Comfort P. A Comparison of Kinetic and Kinematic Variables During the Pull From the Knee and Hang Pull, Across Loads. J Strength Cond Res 2020; 34:1819-1829. [PMID: 32282627 DOI: 10.1519/jsc.0000000000003593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Meechan, D, McMahon, JJ, Suchomel, TJ, and Comfort, P. A comparison of kinetic and kinematic variables during the pull from the knee and hang pull, across loads. J Strength Cond Res 34(7): 1819-1829, 2020-Kinetic and kinematic variables during the pull from the knee (PFK) and hang pull (HP) were compared in this study. Eighteen men (age = 29.43 ± 3.95 years; height 1.77 ± 0.08 m; body mass 84.65 ± 18.79 kg) performed the PFK and HP with 40, 60, 80, 100, 120, and 140% of 1-repetition maximum (1RM) power clean, in a progressive manner. Peak force (PF), mean force (MF), peak system velocity (PSV), mean system velocity (MSV), peak power (PP), mean power (MP), and net impulse were calculated from force-time data during the propulsion phase. During the HP, small-to-moderate yet significantly greater MF was observed compared with the PFK, across all loads (p ≤ 0.001; Hedges g = 0.47-0.73). Hang pull PSV was moderately and significantly greater at 100-140% 1RM (p = 0.001; g = 0.64-0.94), whereas MSV was significantly greater and of a large-to-very large magnitude compared with PFK, across all loads (p < 0.001; g = 1.36-2.18). Hang pull exhibited small to moderate and significantly greater (p ≤ 0.011, g = 0.44-0.78) PP at 100-140%, with moderately and significantly greater (p ≤ 0.001, g = 0.64-0.98) MP across all loads, compared with the PFK. Hang pull resulted in a small to moderate and significantly greater net impulse between 100 and 140% 1RM (p = 0.001, g = 0.36-0.66), compared with PFK. The results of this study demonstrate that compared with the PFK, the HP may be a more beneficial exercise to enhance force-time characteristics, especially at loads of ≥1RM.
Collapse
Affiliation(s)
- David Meechan
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom.,Department of Elite Training Science and Technology Department, Hong Kong Sports Institute, Hong Kong, China; and
| | - John J McMahon
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| |
Collapse
|
13
|
Suchomel TJ, McKeever SM, Comfort P. Training With Weightlifting Derivatives: The Effects of Force and Velocity Overload Stimuli. J Strength Cond Res 2020; 34:1808-1818. [PMID: 32398635 DOI: 10.1519/jsc.0000000000003639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Suchomel, TJ, McKeever, SM, and Comfort, P. Training with weightlifting derivatives: The effects of force and velocity overload stimuli. J Strength Cond Res 34(7): 1808-1818, 2020-The purposes of this study were to compare the training effects of weightlifting movements performed with (CATCH) or without (PULL) the catch phase of clean derivatives performed at the same relative loads or training without the catch phase using a force- and velocity-specific overload stimulus (OL) on isometric and dynamic performance tasks. Twenty-seven resistance-trained men completed 10 weeks of training as part of the CATCH, PULL, or OL group. The CATCH group trained using weightlifting catching derivatives, while the PULL and OL groups used biomechanically similar pulling derivatives. The CATCH and PULL groups were prescribed the same relative loads, while the OL group was prescribed force- and velocity-specific loading that was exercise and phase specific. Preintervention and postintervention isometric midthigh pull (IMTP), relative one repetition maximum power clean (1RM PC), 10-, 20-, and 30-m sprint, and 505 change of direction on the right (505R) and left (505L) leg were examined. Statistically significant differences in preintervention to postintervention percent change were present for relative IMTP peak force, 10-, 20-, and 30-m sprints, and 505L (all p < 0.03), but not for relative 1RM PC or 505R (p > 0.05). The OL group produced the greatest improvements in each of the examined characteristics compared with the CATCH and PULL groups with generally moderate to large practical effects being present. Using a force- and velocity-specific overload stimulus with weightlifting pulling derivatives may produce superior adaptations in relative strength, sprint speed, and change of direction compared with submaximally loaded weightlifting catching and pulling derivatives.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin; and.,Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Shana M McKeever
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin; and
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
14
|
Suchomel TJ, McKeever SM, McMahon JJ, Comfort P. The Effect of Training with Weightlifting Catching or Pulling Derivatives on Squat Jump and Countermovement Jump Force-Time Adaptations. J Funct Morphol Kinesiol 2020; 5:E28. [PMID: 33467244 PMCID: PMC7739439 DOI: 10.3390/jfmk5020028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) force-time curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ force-time curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Shana M. McKeever
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
| | - John J. McMahon
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
15
|
Soriano MA, Kipp K, Lake JP, Suchomel TJ, Marín PJ, Sainz De Baranda MP, Comfort P. Mechanical power production assessment during weightlifting exercises. A systematic review. Sports Biomech 2020; 22:633-659. [PMID: 32336212 DOI: 10.1080/14763141.2020.1747529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The assessment of the mechanical power production is of great importance for researchers and practitioners. The purpose of this review was to compare the differences in ground reaction force (GRF), kinematic, and combined (bar velocity x GRF) methods to assess mechanical power production during weightlifting exercises. A search of electronic databases was conducted to identify all publications up to 31 May 2019. The peak power output (PPO) was selected as the key variable. The exercises included in this review were clean variations, which includes the hang power clean (HPC), power clean (PC) and clean. A total of 26 articles met the inclusion criteria with 53.9% using the GRF, 38.5% combined, and 30.8% the kinematic method. Articles were evaluated and descriptively analysed to enable comparison between methods. The three methods have inherent methodological differences in the data analysis and measurement systems, which suggests that these methods should not be used interchangeably to assess PPO in Watts during weightlifting exercises. In addition, this review provides evidence and rationale for the use of the GRF to assess power production applied to the system mass while the kinematic method may be more appropriate when looking to assess only the power applied to the barbell.
Collapse
Affiliation(s)
- Marcos A Soriano
- Physical Activity and Sport Department, University of Murcia, Murcia, Spain.,Camilo José Cela University. Laboratory of Exercise Physiology, Madrid, Spain.,Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford UK
| | - Kristof Kipp
- Department of Exercise Science and Physical Therapy, Marquette University, Milwaukee, USA
| | - Jason P Lake
- Department of Sport and Exercise Sciences, University of Chichester, Chichester, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, USA
| | | | | | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford UK
| |
Collapse
|
16
|
Abstract
This review examines the literature on weightlifting overhead pressing derivatives (WOPDs) and provides information regarding historical, technical, kinetic and kinematic mechanisms as well as potential benefits and guidelines to implement the use of WOPDs as training tools for sports populations. Only 13 articles were found in a search of electronic databases, which was employed to gather empirical evidence to provide an insight into the kinetic and kinematic mechanisms underpinning WOPDs. Practitioners may implement WOPDs such as push press, push jerk or split jerk from the back as well as the front rack position to provide an adequate stimulus to improve not only weightlifting performance but also sports performance as: (1) the use of WOPDs is an additional strategy to improve weightlifting performance; (2) WOPDs require the ability to develop high forces rapidly by an impulsive triple extension of the hips, knees and ankles, which is mechanically similar to many sporting tasks; (3) WOPDs may be beneficial for enhancing power development and maximal strength in the sport population; and, finally, (4) WOPDs may provide a variation in training stimulus for the sports population due to the technical demands, need for balance and coordination. The potential benefits highlighted in the literature provide a justification for the implementation of WOPDs in sports training. However, there is a lack of information regarding the longitudinal training effects that may result from implementing WOPDs.
Collapse
Affiliation(s)
- Marcos A Soriano
- Department of Physical Activity and Sport Sciences, University of Murcia, San Javier, Spain.
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Statham St, Salford, Manchester, M6 6NY, UK.
| | - Timothy J Suchomel
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Statham St, Salford, Manchester, M6 6NY, UK
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Statham St, Salford, Manchester, M6 6NY, UK
| |
Collapse
|
17
|
James LP, Suchomel TJ, McMahon JJ, Chavda S, Comfort P. Effect of Onset Threshold on Kinetic and Kinematic Variables of a Weightlifting Derivative Containing a First and Second Pull. J Strength Cond Res 2019; 34:298-307. [PMID: 31373974 DOI: 10.1519/jsc.0000000000003316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
James, LP, Suchomel, TJ, McMahon, JJ, Chavda, S, and Comfort, P. Effect of onset threshold on kinetic and kinematic variables of a weightlifting derivative containing a first and second pull. J Strength Cond Res 34(2): 298-307, 2020-This study sought to determine the effect of different movement onset thresholds on both the reliability and absolute values of performance variables during a weightlifting derivative containing both a first and second pull. Fourteen men (age: 25.21 ± 4.14 years; body mass: 81.1 ± 11.4 kg; and 1 repetition maximum [1RM] power clean: 1.0 ± 0.2 kg·kg) participated in this study. Subjects performed the snatch-grip pull with 70% of their power clean 1RM, commencing from the mid-shank, while isolated on a force platform. Two trials were performed enabling within-session reliability of dependent variables to be determined. Three onset methods were used to identify the initiation of the lift (5% above system weight [SW], the first sample above SW, or 10 N above SW), from which a series of variables were extracted. The first peak phase peak force and all second peak phase kinetic variables were unaffected by the method of determining movement onset; however, several remaining second peak phase variables were significantly different between methods. First peak phase peak force and average force achieved excellent reliability regardless of the onset method used (coefficient of variation [CV] < 5%; intraclass correlation coefficient [ICC] > 0.90). Similarly, during the second peak phase, peak force, average force, and peak velocity achieved either excellent or acceptable reliability (CV < 10%; ICC > 0.80) in all 3 onset conditions. The reliability was generally reduced to unacceptable levels at the first sample and 10 N method across all first peak measures except peak force. When analyzing a weightlifting derivative containing both a first and second pull, the 5% method is recommended as the preferred option of those investigated.
Collapse
Affiliation(s)
- Lachlan P James
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Victoria, Australia
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom; and
| | - Shyam Chavda
- London Sport Institute, School of Science and Technology, Middlesex University, Hendon, United Kingdom
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom; and
| |
Collapse
|
18
|
Brotherton EJ, Moseley SE, Langan-Evans C, Pullinger SA, Robertson CM, Burniston JG, Edwards BJ. Effects of two nights partial sleep deprivation on an evening submaximal weightlifting performance; are 1 h powernaps useful on the day of competition? Chronobiol Int 2019; 36:407-426. [PMID: 30626222 DOI: 10.1080/07420528.2018.1552702] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ellis J. Brotherton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sarah E. Moseley
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Samuel A. Pullinger
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- Sports Science Department, Aspire Academy, Doha, Qatar
| | - Colin M. Robertson
- School for Sport and Exercise Sciences, University of Bolton, Bolton, Lancashire, UK
| | - Jatin G. Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ben J. Edwards
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
19
|
Abstract
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.
Collapse
|
20
|
Comfort P, DosʼSantos T, Thomas C, McMahon JJ, Suchomel TJ. An Investigation Into the Effects of Excluding the Catch Phase of the Power Clean on Force-Time Characteristics During Isometric and Dynamic Tasks: An Intervention Study. J Strength Cond Res 2018; 32:2116-2129. [PMID: 29889775 DOI: 10.1519/jsc.0000000000002656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comfort, P, Dos'Santos, T, Thomas, C, McMahon, JJ, and Suchomel, TJ. An investigation into the effects of excluding the catch phase of the power clean on force-time characteristics during isometric and dynamic tasks: an intervention study. J Strength Cond Res 32(8): 2116-2129, 2018-The aims of this study were to compare the effects of the exclusion or inclusion of the catch phase during power clean (PC) derivatives on force-time characteristics during isometric and dynamic tasks, after two 4-week mesocycles of resistance training. Two strength matched groups completed the twice-weekly training sessions either including the catch phase of the PC derivatives (Catch group: n = 16; age 19.3 ± 2.1 years; height 1.79 ± 0.08 m; body mass 71.14 ± 11.79 kg; PC 1 repetition maximum [1RM] 0.93 ± 0.15 kg·kg) or excluding the catch phase (Pull group: n = 18; age 19.8 ± 2.5 years; height 1.73 ± 0.10 m; body mass 66.43 ± 10.13 kg; PC 1RM 0.91 ± 0.18 kg·kg). The Catch and Pull groups both demonstrated significant (p ≤ 0.007, power ≥0.834) and meaningful improvements in countermovement jump height (10.8 ± 12.3%, 5.2 ± 9.2%), isometric mid-thigh pull performance (force [F]100: 14.9 ± 17.2%, 15.5 ± 16.0%, F150: 16.0 ± 17.6%, 16.2 ± 18.4%, F200: 15.8 ± 17.6%, 17.9 ± 18.3%, F250: 10.0 ± 16.1%,10.9 ± 14.4%, peak force: 13.7 ± 18.7%, 9.7 ± 16.3%), and PC 1RM (9.5 ± 6.2%, 8.4 ± 6.1%), before and after intervention, respectively. In contrast to the hypotheses, there were no meaningful or significant differences in the percentage change for any variables between groups. This study clearly demonstrates that neither the inclusion nor exclusion of the catch phase of the PC derivatives results in any preferential adaptations over two 4-week, in-season strength and power, mesocycles.
Collapse
Affiliation(s)
- Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Thomas DosʼSantos
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Christopher Thomas
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom.,University of South Wales, Pontypridd, Cardiff, United Kingdom
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| |
Collapse
|
21
|
Suchomel TJ, Taber CB, Sole CJ, Stone MH. Force-Time Differences between Ballistic and Non-Ballistic Half-Squats. Sports (Basel) 2018; 6:sports6030079. [PMID: 30103536 PMCID: PMC6162472 DOI: 10.3390/sports6030079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to examine the force-time differences between concentric-only half-squats (COHS) performed with ballistic (BAL) or non-ballistic (NBAL) intent across a range of loads. Eighteen resistance-trained men performed either BAL or NBAL COHS at 30%, 50%, 70%, and 90% of their one repetition maximum (1RM) COHS. Relative peak force (PF) and relative impulse from 0–50 ms (Imp50), 0–90 ms (Imp90), 0–200 ms (Imp200), and 0–250 ms (Imp250) were compared using a series of 2 × 4 (intent × load) repeated measures ANOVAs with Bonferroni post hoc tests. Cohen’s d effect sizes were calculated to provide measures of practical significance between the BAL and NBAL COHS and each load. BAL COHS produced statistically greater PF than NBAL COHS at 30% (d = 3.37), 50% (d = 2.88), 70% (d = 2.29), and 90% 1RM (d = 1.19) (all p < 0.001). Statistically significant main effect differences were found between load-averaged BAL and NBAL COHS for Imp90 (p = 0.006, d = 0.25), Imp200 (p = 0.001, d = 0.36), and Imp250 (p < 0.001, d = 0.41), but not for Imp50 (p = 0.018, d = 0.21). Considering the greater PF and impulse observed during the BAL condition, performing COHS with BAL intent may provide a favorable training stimulus compared to COHS performed with NBAL intent.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA.
| | - Christopher B Taber
- Department of Exercise Science, Sacred Heart University, Fairfield, CT 06825, USA.
| | - Christopher J Sole
- Department of Health and Human Performance, The Citadel-The Military College of South Carolina, Charleston, SC 29409, USA.
| | - Michael H Stone
- Department of Exercise and Sport Sciences, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
22
|
Kipp K, Malloy PJ, Smith JC, Giordanelli MD, Kiely MT, Geiser CF, Suchomel TJ. Mechanical Demands of the Hang Power Clean and Jump Shrug: A Joint-Level Perspective. J Strength Cond Res 2018; 32:466-474. [PMID: 27669182 DOI: 10.1519/jsc.0000000000001636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kipp, K, Malloy, PJ, Smith, J, Giordanelli, MD, Kiely, MT, Geiser, CF, and Suchomel, TJ. Mechanical demands of the hang power clean and jump shrug: a joint-level perspective. J Strength Cond Res 32(2): 466-474, 2018-The purpose of this study was to investigate the joint- and load-dependent changes in the mechanical demands of the lower extremity joints during the hang power clean (HPC) and the jump shrug (JS). Fifteen male lacrosse players were recruited from a National Collegiate Athletic Association DI team, and completed 3 sets of the HPC and JS at 30, 50, and 70% of their HPC 1 repetition maximum (1RM HPC) in a counterbalanced and randomized order. Motion analysis and force plate technology were used to calculate the positive work, propulsive phase duration, and peak concentric power at the hip, knee, and ankle joints. Separate 3-way analysis of variances were used to determine the interaction and main effects of joint, load, and lift type on the 3 dependent variables. The results indicated that the mechanics during the HPC and JS exhibit joint-, load-, and lift-dependent behavior. When averaged across joints, the positive work during both lifts increased progressively with external load, but was greater during the JS at 30 and 50% of 1RM HPC than during the HPC. The JS was also characterized by greater hip and knee work when averaged across loads. The joint-averaged propulsive phase duration was lower at 30% than at 50 and 70% of 1RM HPC for both lifts. Furthermore, the load-averaged propulsive phase duration was greater for the hip than the knee and ankle joint. The joint-averaged peak concentric power was the greatest at 70% of 1RM for the HPC and at 30%-50% of 1RM for the JS. In addition, the joint-averaged peak concentric power of the JS was greater than that of the HPC. Furthermore, the load-averaged peak knee and ankle concentric joint powers were greater during the execution of the JS than the HPC. However, the load-averaged power of all joints differed only during the HPC, but was similar between the hip and knee joints for the JS. Collectively, these results indicate that compared with the HPC the JS is characterized by greater hip and knee positive joint work, and greater knee and ankle peak concentric joint power, especially if performed at 30 and 50% of 1RM HPC. This study provides important novel information about the mechanical demands of 2 commonly used exercises and should be considered in the design of resistance training programs that aim to improve the explosiveness of the lower extremity joints.
Collapse
Affiliation(s)
- Kristof Kipp
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Philip J Malloy
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Jordan C Smith
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Matthew D Giordanelli
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Michael T Kiely
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Christopher F Geiser
- Department of Physical Therapy, Program in Exercise Science, Marquette University, Milwaukee, Wisconsin
| | - Timothy J Suchomel
- Department of Exercise Science, East Stroudsburg University, East Stroudsburg, Pennsylvania
| |
Collapse
|
23
|
Hedrick A. Weightlifting Movements and Sprint Performance. Strength Cond J 2018. [DOI: 10.1519/ssc.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Berton R, Lixandrão ME, Pinto E Silva CM, Tricoli V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: a meta-analysis. J Sports Sci 2018; 36:2038-2044. [PMID: 29385904 DOI: 10.1080/02640414.2018.1434746] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Jump performance is considered an important factor in many sports. Thus, strategies such as weightlifting (WL) exercises, traditional resistance training (TRT) and plyometric training (PT) are effective at improving jump performance. However, it is not entirely clear which of these strategies can enable greater improvements on jump height. Thus, the purpose of the meta-analysis was to compare the improvements on countermovement jump (CMJ) performance between training methods which focus on WL exercises, TRT, and PT. Seven studies were included, of which one study performed both comparison. Therefore, four studies comparing WL exercises vs. TRT (total n = 78) and four studies comparing WL exercises vs. PT (total n = 76). The results showed greater improvements on CMJ performance for WL exercises compared to TRT (ESdiff: 0.72 ± 0.23; 95%CI: 0.26, 1.19; P = 0.002; Δ % = 7.5 and 2.1, respectively). The comparison between WL exercises vs. PT revealed no significant difference between protocols (ESdiff: 0.15 ± 0.23; 95%CI: -0.30, 0.60; P = 0.518; Δ % = 8.8 and 8.1, respectively). In conclusion, WL exercises are superior to promote positive changes on CMJ performance compared to TRT; however, WL exercises and PT are equally effective at improving CMJ performance.
Collapse
Affiliation(s)
- Ricardo Berton
- a School of Physical Education and Sport , University of São Paulo , São Paulo , Brazil
| | - Manoel E Lixandrão
- a School of Physical Education and Sport , University of São Paulo , São Paulo , Brazil
| | | | - Valmor Tricoli
- a School of Physical Education and Sport , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
25
|
Effect of a Hexagonal Barbell on the Mechanical Demand of Deadlift Performance. Sports (Basel) 2017; 5:sports5040082. [PMID: 29910442 PMCID: PMC5969032 DOI: 10.3390/sports5040082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/12/2017] [Accepted: 10/21/2017] [Indexed: 12/01/2022] Open
Abstract
This study compared typical mechanical variables of interest obtained directly from barbell motion during deadlift performance with a conventional (CBD) and a hexagonal barbell (HBD). Eleven men, proficient with both deadlift variations, volunteered to participate in the study (age: 20.3 ± 0.6 years; height: 175.5 ± 8.5 m; mass: 88.7 ± 19.0 kg; CBD 1RM: 183 ± 22 kg; HBD 1RM: 194 ± 20 kg). During the first session, CBD and HBD 1RM was assessed; during the second session, they performed 3 sets of 1 CBD repetition with 90% 1RM; and in session three, they repeated this process with the HBD. Barbell displacement was recorded at 1000 Hz and mechanical parameters derived from this. Significantly heavier loads were lifted during HBD (6%, p = 0.003). There were no significant differences between barbell displacement (p = 0.216). However, HBD was performed significantly faster (15%, p = 0.012), HBD load was accelerated for significantly longer (36%, p = 0.004), and significantly larger mean forces underpinned this (6%, p < 0.001), with more work having been performed (7%, p < 0.001) at greater power outputs (28%, p < 0.001). The results of this study showed that heavier HBD loads can be lifted through the same range of motion faster, and that this load is accelerated for significantly longer. The strategies used to achieve these differences could have a significant effect on training outcomes.
Collapse
|
26
|
Ammar A, Riemann BL, Masmoudi L, Blaumann M, Abdelkarim O, Hökelmann A. Kinetic and kinematic patterns during high intensity clean movement: searching for optimal load. J Sports Sci 2017; 36:1319-1330. [PMID: 28895467 DOI: 10.1080/02640414.2017.1376521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of the present study was to investigate loading effects on kinematic and kinetic variables among elite-weightlifters in order to identify an optimal training load to maximize power production for clean-movement. Nine elite-weightlifter (age: 24 ± 4years, body-mass: 77 ± 6.5kg, height: 176 ± 6.1cm and 1RM clean: 170 ± 5kg) performed 2 separate repetitions of the clean using 85, 90, 95% and 100%, in a randomized order, while standing on a force platform and being recorded using 3D-capture-system. Differences in kinematics (barbell displacement, velocity and acceleration) and kinetics (power, vertical ground reaction force (vGRF), rate of force development (RFD), and work) across the loads were statistically assessed. Results revealed significant load effects for the majority of the studied parameters (p < 0.01) and showed that typical bar-displacement, greatest bar-velocity and peak-power were achieved at 85 and 90% 1RM (p < 0.001). Additionally greater average power was shown for 90 and 95% (p < 0.01) and greater work and vGRF were shown for 90, 95 and 100% than 85% 1RM (p < 0.05). Load had no significant effect on peak-vGRF and peak-RFD (p > 0.05). The results of this study, suggest 90% 1RM to be the most advantageous load to train explosive-force and to enhance power-outputs while maintaining technical efficiency in elite-weightlifters.
Collapse
Affiliation(s)
- Achraf Ammar
- a Research Unit: Education, Motricity, Sport and Health, UR15JS01, High Institute of Sport and Physical Education of Sfax , Sfax University , Sfax , Tunisia.,b Institute of Sport Science , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Bryan L Riemann
- c Biodynamics and Human Performance Center , Armstrong State University , Savannah , GA , USA
| | - Liwa Masmoudi
- a Research Unit: Education, Motricity, Sport and Health, UR15JS01, High Institute of Sport and Physical Education of Sfax , Sfax University , Sfax , Tunisia
| | - Marcel Blaumann
- b Institute of Sport Science , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Osama Abdelkarim
- b Institute of Sport Science , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Anita Hökelmann
- b Institute of Sport Science , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| |
Collapse
|
27
|
Marriner CR, Cronin JB, Macadam P, Storey A. Redistributing load using wearable resistance during power clean training improves athletic performance. Eur J Sport Sci 2017; 17:1101-1109. [PMID: 28792857 DOI: 10.1080/17461391.2017.1360396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A popular method to improve athletic performance and lower body power is to train with wearable resistance (WR), for example, weighted vests. However, it is currently unknown what training effect this loading method has on full-body explosive movements such as the power clean. The purpose of this study was to determine what effects WR equivalent to 12% body mass (BM) had on the power clean and countermovement jump (CMJ) performance. Sixteen male subjects (age: 23.2 ± 2.7 years; BM: 90.5 ± 10.3 kg) were randomly assigned to five weeks of traditional (TR) power clean training or training with 12% BM redistributed from the bar to the body using WR. Variables of interest included pre and post CMJ height, power clean one repetition maximum (1RM), peak ground reaction force, power output (PO), and several bar path kinematic variables across loads at 50%, 70%, and 90% of 1RM. The main findings were that WR training: (1) increased CMJ height (8.7%; ES = 0.53) and 1RM power clean (4.2%; ES = 0.2) as compared to the TR group (CMJ height = -1.4%; 1RM power clean = 1.8%); (2) increased PO across all 1RM loads (ES = 0.33-0.62); (3) increased barbell velocity at 90% 1RM (3.5%; ES = 0.74) as compared to the TR group (-4.3%); and (4) several bar path kinematic variables improved at 70% and 90% 1RM loads. WR power clean training with 12% BM can positively influence power clean ability and CMJ performance, as well as improve technique factors.
Collapse
Affiliation(s)
- Caleb R Marriner
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand
| | - John B Cronin
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand.,b School of Exercise , Biomedical and Health Sciences, Edith Cowan University , Perth , Australia
| | - Paul Macadam
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand
| | - Adam Storey
- a Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium , Auckland University of Technology , Auckland , New Zealand
| |
Collapse
|
28
|
Comfort P, Williams R, Suchomel TJ, Lake JP. A Comparison of Catch Phase Force-Time Characteristics During Clean Derivatives From the Knee. J Strength Cond Res 2017; 31:1911-1918. [DOI: 10.1519/jsc.0000000000001660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Suchomel TJ, Nimphius S, Stone MH. The Importance of Muscular Strength in Athletic Performance. Sports Med 2017; 46:1419-49. [PMID: 26838985 DOI: 10.1007/s40279-016-0486-0] [Citation(s) in RCA: 612] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review discusses previous literature that has examined the influence of muscular strength on various factors associated with athletic performance and the benefits of achieving greater muscular strength. Greater muscular strength is strongly associated with improved force-time characteristics that contribute to an athlete's overall performance. Much research supports the notion that greater muscular strength can enhance the ability to perform general sport skills such as jumping, sprinting, and change of direction tasks. Further research indicates that stronger athletes produce superior performances during sport specific tasks. Greater muscular strength allows an individual to potentiate earlier and to a greater extent, but also decreases the risk of injury. Sport scientists and practitioners may monitor an individual's strength characteristics using isometric, dynamic, and reactive strength tests and variables. Relative strength may be classified into strength deficit, strength association, or strength reserve phases. The phase an individual falls into may directly affect their level of performance or training emphasis. Based on the extant literature, it appears that there may be no substitute for greater muscular strength when it comes to improving an individual's performance across a wide range of both general and sport specific skills while simultaneously reducing their risk of injury when performing these skills. Therefore, sport scientists and practitioners should implement long-term training strategies that promote the greatest muscular strength within the required context of each sport/event. Future research should examine how force-time characteristics, general and specific sport skills, potentiation ability, and injury rates change as individuals transition from certain standards or the suggested phases of strength to another.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Exercise Science, East Stroudsburg University, East Stroudsburg, PA, 18301, USA.
| | - Sophia Nimphius
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, WA, Australia
| | - Michael H Stone
- Department of Exercise and Sport Sciences, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, TN, 37614, USA
| |
Collapse
|
30
|
Suchomel TJ, Lake JP, Comfort P. Load Absorption Force-Time Characteristics Following the Second Pull of Weightlifting Derivatives. J Strength Cond Res 2017; 31:1644-1652. [DOI: 10.1519/jsc.0000000000001634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Suchomel TJ, Comfort P, Lake JP. Enhancing the Force-Velocity Profile of Athletes Using Weightlifting Derivatives. Strength Cond J 2017. [DOI: 10.1519/ssc.0000000000000275] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Healy R, Comyns TM. The Application of Postactivation Potentiation Methods to Improve Sprint Speed. Strength Cond J 2017. [DOI: 10.1519/ssc.0000000000000276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Exercise loading history and femoral neck strength in a sideways fall: A three-dimensional finite element modeling study. Bone 2016; 92:9-17. [PMID: 27477004 DOI: 10.1016/j.bone.2016.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Over 90% of hip fractures are caused by falls. Due to a fall-induced impact on the greater trochanter, the posterior part of the thin superolateral cortex of the femoral neck is known to experience the highest stress, making it a fracture-prone region. Cortical geometry of the proximal femur, in turn, reflects a mechanically appropriate form with respect to habitual exercise loading. In this finite element (FE) modeling study, we investigated whether specific exercise loading history is associated with femoral neck structural strength and estimated fall-induced stresses along the femoral neck. One hundred and eleven three-dimensional (3D) proximal femur FE models for a sideways falling situation were constructed from magnetic resonance (MR) images of 91 female athletes (aged 24.7±6.1years, >8years competitive career) and 20 non-competitive habitually active women (aged 23.7±3.8years) that served as a control group. The athletes were divided into five distinct groups based on the typical loading pattern of their sports: high-impact (H-I: triple-jumpers and high-jumpers), odd-impact (O-I: soccer and squash players), high-magnitude (H-M: power-lifters), repetitive-impact (R-I: endurance runners), and repetitive non-impact (R-NI: swimmers). The von Mises stresses obtained from the FE models were used to estimate mean fall-induced stresses in eight anatomical octants of the cortical bone cross-sections at the proximal, middle, and distal sites along the femoral neck axis. Significantly (p<0.05) lower stresses compared to the control group were observed: the H-I group - in the superoposterior (10%) and posterior (19%) octants at the middle site, and in the superoposterior (13%) and posterior (22%) octants at the distal site; the O-I group - in the superior (16%), superoposterior (16%), and posterior (12%) octants at the middle site, and in the superoposterior (14%) octant at the distal site; the H-M group - in the superior (13%) and superoposterior (15%) octants at the middle site, and a trend (p=0.07, 9%) in the superoposterior octant at the distal site; the R-I group - in the superior (14%), superoposterior (23%) and posterior (22%) octants at the middle site, and in the superoposterior (19%) and posterior (20%) octants at the distal site. The R-NI group did not differ significantly from the control group. These results suggest that exercise loading history comprising various impacts in particular is associated with a stronger femoral neck in a falling situation and may have potential to reduce hip fragility.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Mechanical Engineering and Industrial Systems, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Department of Mechanical Engineering and Industrial Systems, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
34
|
Ayers JL, DeBeliso M, Sevene TG, Adams KJ. Hang cleans and hang snatches produce similar improvements in female collegiate athletes. Biol Sport 2016; 33:251-6. [PMID: 27601779 PMCID: PMC4993140 DOI: 10.5604/20831862.1201814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/09/2016] [Accepted: 03/07/2016] [Indexed: 11/14/2022] Open
Abstract
Olympic weightlifting movements and their variations are believed to be among the most effective ways to improve power, strength, and speed in athletes. This study investigated the effects of two Olympic weightlifting variations (hang cleans and hang snatches), on power (vertical jump height), strength (1RM back squat), and speed (40-yard sprint) in female collegiate athletes. 23 NCAA Division I female athletes were randomly assigned to either a hang clean group or hang snatch group. Athletes participated in two workout sessions a week for six weeks, performing either hang cleans or hang snatches for five sets of three repetitions with a load of 80-85% 1RM, concurrent with their existing, season-specific, resistance training program. Vertical jump height, 1RM back squat, and 40-yard sprint all had a significant, positive improvement from pre-training to post-training in both groups (p≤0.01). However, when comparing the gain scores between groups, there was no significant difference between the hang clean and hang snatch groups for any of the three dependent variables (i.e., vertical jump height, p=0.46; 1RM back squat, p=0.20; and 40-yard sprint, p=0.46). Short-term training emphasizing hang cleans or hang snatches produced similar improvements in power, strength, and speed in female collegiate athletes. This provides strength and conditioning professionals with two viable programmatic options in athletic-based exercises to improve power, strength, and speed.
Collapse
Affiliation(s)
- J L Ayers
- Southern Utah University, Physical Education and Human Performance Department, Cedar City, UT, USA
| | - M DeBeliso
- Southern Utah University, Physical Education and Human Performance Department, Cedar City, UT, USA
| | - T G Sevene
- California State University Monterey Bay, Kinesiology Department, Seaside, CA, USA
| | - K J Adams
- California State University Monterey Bay, Kinesiology Department, Seaside, CA, USA
| |
Collapse
|
35
|
Abstract
This review article examines previous weightlifting literature and provides a rationale for the use of weightlifting pulling derivatives that eliminate the catch phase for athletes who are not competitive weightlifters. Practitioners should emphasize the completion of the triple extension movement during the second pull phase that is characteristic of weightlifting movements as this is likely to have the greatest transference to athletic performance that is dependent on hip, knee, and ankle extension. The clean pull, snatch pull, hang high pull, jump shrug, and mid-thigh pull are weightlifting pulling derivatives that can be used in the teaching progression of the full weightlifting movements and are thus less complex with regard to exercise technique. Previous literature suggests that the clean pull, snatch pull, hang high pull, jump shrug, and mid-thigh pull may provide a training stimulus that is as good as, if not better than, weightlifting movements that include the catch phase. Weightlifting pulling derivatives can be implemented throughout the training year, but an emphasis and de-emphasis should be used in order to meet the goals of particular training phases. When implementing weightlifting pulling derivatives, athletes must make a maximum effort, understand that pulling derivatives can be used for both technique work and building strength-power characteristics, and be coached with proper exercise technique. Future research should consider examining the effect of various loads on kinetic and kinematic characteristics of weightlifting pulling derivatives, training with full weightlifting movements as compared to training with weightlifting pulling derivatives, and how kinetic and kinematic variables vary between derivatives of the snatch.
Collapse
|
36
|
|
37
|
Suchomel TJ, Beckham GK, Wright GA. Effect of various loads on the force-time characteristics of the hang high pull. J Strength Cond Res 2015; 29:1295-301. [PMID: 25426514 DOI: 10.1519/jsc.0000000000000748] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the effect of various loads on the force-time characteristics associated with peak power during the hang high pull (HHP). Fourteen athletic men (age: 21.6 ± 1.3 years; height: 179.3 ± 5.6 cm; body mass: 81.5 ± 8.7 kg; 1 repetition maximum [1RM] hang power clean [HPC]: 104.9 ± 15.1 kg) performed sets of the HHP at 30, 45, 65, and 80% of their 1RM HPC. Peak force, peak velocity, peak power, force at peak power, and velocity at peak power were compared between loads. Statistical differences in peak force (p = 0.001), peak velocity (p < 0.001), peak power (p = 0.015), force at peak power (p < 0.001), and velocity at peak power (p < 0.001) existed, with the greatest values for each variable occurring at 80, 30, 45, 80, and 30% 1RM HPC, respectively. Effect sizes between loads indicated that larger differences in velocity at peak power existed as compared with those displayed by force at peak power. It seems that differences in velocity may contribute to a greater extent to differences in peak power production as compared with force during the HHP. Further investigation of both force and velocity at peak power during weightlifting variations is necessary to provide insight on the contributing factors of power production. Specific load ranges should be prescribed to optimally train the variables associated with power development during the HHP.
Collapse
Affiliation(s)
- Timothy J Suchomel
- 1Center of Excellence for Sport Science and Coach Education, Department of Exercise and Sport Sciences, East Tennessee State University, Johnson City, Tennessee; and 2Department of Exercise and Sports Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | | | | |
Collapse
|
38
|
Eltoukhy M, Travascio F, Asfour S, Elmasry S, Heredia-Vargas H, Signorile J. Examination of a lumbar spine biomechanical model for assessing axial compression, shear, and bending moment using selected Olympic lifts. J Orthop 2015; 13:210-9. [PMID: 27408480 DOI: 10.1016/j.jor.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND/AIMS Loading during concurrent bending and compression associated with deadlift, hang clean and hang snatch lifts carries the potential for injury to the intervertebral discs, muscles and ligaments. This study examined the capacity of a newly developed spinal model to compute shear and compressive forces, and bending moments in lumbar spine for each lift. METHODS Five male subjects participated in the study. The spine was modeled as a chain of rigid bodies (vertebrae) connected via the intervertebral discs. Each vertebral reference frame was centered in the center of mass of the vertebral body, and its principal directions were axial, anterior-posterior, and medial-lateral. RESULTS The results demonstrated the capacity of this spinal model to assess forces and bending moments at and about the lumbar vertebrae by showing the variations among these variables with different lifting techniques. CONCLUSION These results show the model's potential as a diagnostic tool.
Collapse
Affiliation(s)
- Moataz Eltoukhy
- Sports Medicine and Motion Analysis Laboratory, Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, USA
| | - Francesco Travascio
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL, USA
| | - Shihab Asfour
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL, USA
| | - Shady Elmasry
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL, USA
| | - Hector Heredia-Vargas
- Sports Medicine and Motion Analysis Laboratory, Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, USA
| | - Joseph Signorile
- Sports Medicine and Motion Analysis Laboratory, Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, USA; Center on Aging, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
39
|
Comfort P, Jones PA, Udall R. The effect of load and sex on kinematic and kinetic variables during the mid-thigh clean pull. Sports Biomech 2015; 14:139-56. [DOI: 10.1080/14763141.2015.1025237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
|
41
|
Suchomel TJ, Wright GA, Kernozek TW, Kline DE. Kinetic comparison of the power development between power clean variations. J Strength Cond Res 2014; 28:350-60. [PMID: 23689341 DOI: 10.1519/jsc.0b013e31829a36a3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to compare the power production of the hang clean (HC), jump shrug (JS), and high pull (HP) when performed at different relative loads. Seventeen men with previous HC training experience, performed 3 repetitions each of the HC, JS, and HP at relative loads of 30, 45, 65, and 80% of their 1 repetition maximum (1RM) HC on a force platform over 3 different testing sessions. Peak power output (PPO), peak force (PF), and peak velocity (PV) of the lifter plus bar system during each repetition were compared. The JS produced a greater PPO, PF, and PV than both the HC (p < 0.001) and HP (p < 0.001). The HP also produced a greater PPO (p < 0.01) and PV (p < 0.001) than the HC. Peak power output, PF, and PV occurred at 45, 65, and 30% 1RM, respectively. Peak power output at 45% 1RM was greater than PPO at 65% (p = 0.043) and 80% 1RM (p = 0.004). Peak force at 30% was less than PF at 45% (p = 0.006), 65% (p < 0.001), and 80% 1RM (p = 0.003). Peak velocity at 30 and 45% was greater than PV at 65% (p < 0.001) and 80% 1RM (p < 0.001). Peak velocity at 65% 1RM was also greater than PV at 80% 1RM (p < 0.001). When designing resistance training programs, practitioners should consider implementing the JS and HP. To optimize PPO, loads of approximately 30 and 45% 1RM HC are recommended for the JS and HP, respectively.
Collapse
Affiliation(s)
- Timothy J Suchomel
- 1Department of Exercise and Sport Sciences, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee; Departments of 2Exercise and Sports Science; and 3Health Professions, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | | | | | | |
Collapse
|
42
|
|
43
|
Comfort P, Fletcher C, McMahon JJ. Determination of optimal loading during the power clean, in collegiate athletes. J Strength Cond Res 2013; 26:2970-4. [PMID: 22190161 DOI: 10.1519/jsc.0b013e318245bed4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although previous research has been performed in similar areas of study, the optimal load for the development of peak power during training remains controversial, and this has yet to be established in collegiate level athletes. The purpose of this study was to determine the optimal load to achieve peak power output during the power clean in collegiate athletes. Nineteen male collegiate athletes (age 21.5 ± 1.4 years; height 173.86 ± 7.98 cm; body mass 78.85 ± 8.67 kg) performed 3 repetitions of power cleans, while standing on a force platform, using loads of 30, 40, 50, 60, 70, and 80% of their predetermined 1-repetition maximum (1RM) power clean, in a randomized, counterbalanced order. Peak power output occurred at 70% 1RM (2,951.7 ± 931.71 W), which was significantly greater than the 30% (2,149.5 ± 406.98 W, p = 0.007), 40% (2,201.0 ± 438.82 W, p = 0.04), and 50% (2,231.1 ± 501.09 W, p = 0.05) conditions, although not significantly different when compared with the 60 and 80% 1RM loads. In addition, force increased with an increase in load, with peak force occurring at 80% 1RM (1,939.1 ± 320.97 N), which was significantly greater (p < 0.001) than the 30, 40, 50, and 60% 1RM loads but not significantly greater (p > 0.05) than the 70% 1RM load (1,921.2 ± 345.16 N). In contrast, there was no significant difference (p > 0.05) in rate of force development across loads. When training to maximize force and power, it may be advantageous to use loads equivalent to 60-80% of the 1RM, in collegiate level athletes.
Collapse
Affiliation(s)
- Paul Comfort
- Human Performance Laboratory, University of Salford, Salford, Greater Manchester, United Kingdom.
| | | | | |
Collapse
|
44
|
Comfort P. Within- and Between-Session Reliability of Power, Force, and Rate of Force Development During the Power Clean. J Strength Cond Res 2013; 27:1210-4. [DOI: 10.1519/jsc.0b013e3182679364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
|
46
|
Comfort P, McMahon JJ, Fletcher C. No Kinetic Differences During Variations of the Power Clean in Inexperienced Female Collegiate Athletes. J Strength Cond Res 2013; 27:363-8. [DOI: 10.1519/jsc.0b013e31825489c6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Gabbett TJ, Ullah S, Finch CF. Identifying risk factors for contact injury in professional rugby league players – Application of a frailty model for recurrent injury. J Sci Med Sport 2012; 15:496-504. [DOI: 10.1016/j.jsams.2012.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 03/13/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|